284 lines
11 KiB
C++
284 lines
11 KiB
C++
|
#ifndef slic3r_Line_hpp_
|
||
|
#define slic3r_Line_hpp_
|
||
|
|
||
|
#include "libslic3r.h"
|
||
|
#include "Point.hpp"
|
||
|
|
||
|
#include <type_traits>
|
||
|
|
||
|
namespace Slic3r {
|
||
|
|
||
|
class BoundingBox;
|
||
|
class Line;
|
||
|
class Line3;
|
||
|
class Linef3;
|
||
|
class Polyline;
|
||
|
class ThickLine;
|
||
|
typedef std::vector<Line> Lines;
|
||
|
typedef std::vector<Line3> Lines3;
|
||
|
typedef std::vector<ThickLine> ThickLines;
|
||
|
|
||
|
Linef3 transform(const Linef3& line, const Transform3d& t);
|
||
|
|
||
|
namespace line_alg {
|
||
|
|
||
|
template<class L, class En = void> struct Traits {
|
||
|
static constexpr int Dim = L::Dim;
|
||
|
using Scalar = typename L::Scalar;
|
||
|
|
||
|
static Vec<Dim, Scalar>& get_a(L &l) { return l.a; }
|
||
|
static Vec<Dim, Scalar>& get_b(L &l) { return l.b; }
|
||
|
static const Vec<Dim, Scalar>& get_a(const L &l) { return l.a; }
|
||
|
static const Vec<Dim, Scalar>& get_b(const L &l) { return l.b; }
|
||
|
};
|
||
|
|
||
|
template<class L> const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
|
||
|
template<class L> using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
|
||
|
|
||
|
template<class L> auto get_a(L &&l) { return Traits<remove_cvref_t<L>>::get_a(l); }
|
||
|
template<class L> auto get_b(L &&l) { return Traits<remove_cvref_t<L>>::get_b(l); }
|
||
|
|
||
|
// Distance to the closest point of line.
|
||
|
template<class L>
|
||
|
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *nearest_point)
|
||
|
{
|
||
|
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||
|
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||
|
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||
|
if (l2 == 0.0) {
|
||
|
// a == b case
|
||
|
*nearest_point = get_a(line);
|
||
|
return va.squaredNorm();
|
||
|
}
|
||
|
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||
|
// We find projection of this point onto the line.
|
||
|
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||
|
const double t = va.dot(v) / l2;
|
||
|
if (t <= 0.0) {
|
||
|
// beyond the 'a' end of the segment
|
||
|
*nearest_point = get_a(line);
|
||
|
return va.squaredNorm();
|
||
|
} else if (t >= 1.0) {
|
||
|
// beyond the 'b' end of the segment
|
||
|
*nearest_point = get_b(line);
|
||
|
return (point - get_b(line)).template cast<double>().squaredNorm();
|
||
|
}
|
||
|
|
||
|
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||
|
return (t * v - va).squaredNorm();
|
||
|
}
|
||
|
|
||
|
// Distance to the closest point of line.
|
||
|
template<class L>
|
||
|
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||
|
{
|
||
|
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||
|
return distance_to_squared<L>(line, point, &nearest_point);
|
||
|
}
|
||
|
|
||
|
template<class L>
|
||
|
double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||
|
{
|
||
|
return std::sqrt(distance_to_squared(line, point));
|
||
|
}
|
||
|
|
||
|
// Returns a squared distance to the closest point on the infinite.
|
||
|
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||
|
template<class L>
|
||
|
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
|
||
|
{
|
||
|
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
|
||
|
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
|
||
|
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||
|
if (l2 == 0.) {
|
||
|
// a == b case
|
||
|
*closest_point = get_a(line);
|
||
|
return va.squaredNorm();
|
||
|
}
|
||
|
// Consider the line extending the segment, parameterized as a + t (b - a).
|
||
|
// We find projection of this point onto the line.
|
||
|
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
|
||
|
const double t = va.dot(v) / l2;
|
||
|
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
|
||
|
return (t * v - va).squaredNorm();
|
||
|
}
|
||
|
|
||
|
// Returns a squared distance to the closest point on the infinite.
|
||
|
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||
|
template<class L>
|
||
|
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||
|
{
|
||
|
Vec<Dim<L>, Scalar<L>> nearest_point;
|
||
|
return distance_to_infinite_squared<L>(line, point, &nearest_point);
|
||
|
}
|
||
|
|
||
|
// Returns a distance to the closest point on the infinite.
|
||
|
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||
|
template<class L>
|
||
|
double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
|
||
|
{
|
||
|
return std::sqrt(distance_to_infinite_squared(line, point));
|
||
|
}
|
||
|
|
||
|
template<class L> bool intersection(const L &l1, const L &l2, Vec<Dim<L>, Scalar<L>> *intersection_pt)
|
||
|
{
|
||
|
using Floating = typename std::conditional<std::is_floating_point<Scalar<L>>::value, Scalar<L>, double>::type;
|
||
|
using VecType = const Vec<Dim<L>, Floating>;
|
||
|
const VecType v1 = (l1.b - l1.a).template cast<Floating>();
|
||
|
const VecType v2 = (l2.b - l2.a).template cast<Floating>();
|
||
|
Floating denom = cross2(v1, v2);
|
||
|
if (fabs(denom) < EPSILON)
|
||
|
#if 0
|
||
|
// Lines are collinear. Return true if they are coincident (overlappign).
|
||
|
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
const VecType v12 = (l1.a - l2.a).template cast<Floating>();
|
||
|
Floating nume_a = cross2(v2, v12);
|
||
|
Floating nume_b = cross2(v1, v12);
|
||
|
Floating t1 = nume_a / denom;
|
||
|
Floating t2 = nume_b / denom;
|
||
|
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
||
|
// Get the intersection point.
|
||
|
(*intersection_pt) = (l1.a.template cast<Floating>() + t1 * v1).template cast<Scalar<L>>();
|
||
|
return true;
|
||
|
}
|
||
|
return false; // not intersecting
|
||
|
}
|
||
|
|
||
|
} // namespace line_alg
|
||
|
|
||
|
class Line
|
||
|
{
|
||
|
public:
|
||
|
Line() {}
|
||
|
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
|
||
|
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
|
||
|
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||
|
void translate(const Point &v) { this->a += v; this->b += v; }
|
||
|
void translate(double x, double y) { this->translate(Point(x, y)); }
|
||
|
void rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
|
||
|
void reverse() { std::swap(this->a, this->b); }
|
||
|
double length() const { return (b - a).cast<double>().norm(); }
|
||
|
Point midpoint() const { return (this->a + this->b) / 2; }
|
||
|
bool intersection_infinite(const Line &other, Point* point) const;
|
||
|
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
|
||
|
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
|
||
|
double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
|
||
|
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
|
||
|
double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
|
||
|
double perp_distance_to(const Point &point) const;
|
||
|
bool parallel_to(double angle) const;
|
||
|
bool parallel_to(const Line& line) const;
|
||
|
bool perpendicular_to(double angle) const;
|
||
|
bool perpendicular_to(const Line& line) const;
|
||
|
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
|
||
|
double orientation() const;
|
||
|
double direction() const;
|
||
|
Vector vector() const { return this->b - this->a; }
|
||
|
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
|
||
|
bool intersection(const Line& line, Point* intersection) const;
|
||
|
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
|
||
|
bool clip_with_bbox(const BoundingBox &bbox);
|
||
|
// Extend the line from both sides by an offset.
|
||
|
void extend(double offset);
|
||
|
|
||
|
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||
|
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
|
||
|
|
||
|
// Returns a distance to the closest point on the infinite.
|
||
|
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
|
||
|
static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
|
||
|
static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
|
||
|
|
||
|
Point a;
|
||
|
Point b;
|
||
|
|
||
|
static const constexpr int Dim = 2;
|
||
|
using Scalar = Point::Scalar;
|
||
|
};
|
||
|
|
||
|
class ThickLine : public Line
|
||
|
{
|
||
|
public:
|
||
|
ThickLine() : a_width(0), b_width(0) {}
|
||
|
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
|
||
|
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||
|
|
||
|
double a_width, b_width;
|
||
|
};
|
||
|
|
||
|
class Line3
|
||
|
{
|
||
|
public:
|
||
|
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
|
||
|
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
|
||
|
|
||
|
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||
|
Vec3crd vector() const { return this->b - this->a; }
|
||
|
|
||
|
Vec3crd a;
|
||
|
Vec3crd b;
|
||
|
|
||
|
static const constexpr int Dim = 3;
|
||
|
using Scalar = Vec3crd::Scalar;
|
||
|
};
|
||
|
|
||
|
class Linef
|
||
|
{
|
||
|
public:
|
||
|
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
|
||
|
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
|
||
|
|
||
|
Vec2d a;
|
||
|
Vec2d b;
|
||
|
|
||
|
static const constexpr int Dim = 2;
|
||
|
using Scalar = Vec2d::Scalar;
|
||
|
};
|
||
|
using Linesf = std::vector<Linef>;
|
||
|
|
||
|
class Linef3
|
||
|
{
|
||
|
public:
|
||
|
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
|
||
|
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
|
||
|
|
||
|
Vec3d intersect_plane(double z) const;
|
||
|
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||
|
Vec3d vector() const { return this->b - this->a; }
|
||
|
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||
|
double length() const { return vector().norm(); }
|
||
|
|
||
|
Vec3d a;
|
||
|
Vec3d b;
|
||
|
|
||
|
static const constexpr int Dim = 3;
|
||
|
using Scalar = Vec3d::Scalar;
|
||
|
};
|
||
|
|
||
|
BoundingBox get_extents(const Lines &lines);
|
||
|
|
||
|
} // namespace Slic3r
|
||
|
|
||
|
// start Boost
|
||
|
#include <boost/polygon/polygon.hpp>
|
||
|
namespace boost { namespace polygon {
|
||
|
template <>
|
||
|
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
|
||
|
|
||
|
template <>
|
||
|
struct segment_traits<Slic3r::Line> {
|
||
|
typedef coord_t coordinate_type;
|
||
|
typedef Slic3r::Point point_type;
|
||
|
|
||
|
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
|
||
|
return dir.to_int() ? line.b : line.a;
|
||
|
}
|
||
|
};
|
||
|
} }
|
||
|
// end Boost
|
||
|
|
||
|
#endif // slic3r_Line_hpp_
|