823 lines
30 KiB
C++
823 lines
30 KiB
C++
|
#include "Exception.hpp"
|
||
|
#include "MeshBoolean.hpp"
|
||
|
#include "libslic3r/TriangleMesh.hpp"
|
||
|
#include "libslic3r/TryCatchSignal.hpp"
|
||
|
#include "libslic3r/format.hpp"
|
||
|
#undef PI
|
||
|
|
||
|
// Include igl first. It defines "L" macro which then clashes with our localization
|
||
|
#include <igl/copyleft/cgal/mesh_boolean.h>
|
||
|
#undef L
|
||
|
|
||
|
// CGAL headers
|
||
|
#include <CGAL/Polygon_mesh_processing/corefinement.h>
|
||
|
#include <CGAL/Exact_integer.h>
|
||
|
#include <CGAL/Surface_mesh.h>
|
||
|
#include <CGAL/Cartesian_converter.h>
|
||
|
#include <CGAL/Polygon_mesh_processing/orient_polygon_soup.h>
|
||
|
#include <CGAL/Polygon_mesh_processing/repair.h>
|
||
|
#include <CGAL/Polygon_mesh_processing/remesh.h>
|
||
|
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
|
||
|
#include <CGAL/Polygon_mesh_processing/orientation.h>
|
||
|
// BBS: for segment
|
||
|
#include <CGAL/mesh_segmentation.h>
|
||
|
#include <CGAL/property_map.h>
|
||
|
#include <CGAL/boost/graph/copy_face_graph.h>
|
||
|
#include <CGAL/boost/graph/Face_filtered_graph.h>
|
||
|
// BBS: for boolean using mcut
|
||
|
#include "mcut/include/mcut/mcut.h"
|
||
|
#include "boost/log/trivial.hpp"
|
||
|
|
||
|
namespace Slic3r {
|
||
|
namespace MeshBoolean {
|
||
|
|
||
|
using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
|
||
|
using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
|
||
|
|
||
|
TriangleMesh eigen_to_triangle_mesh(const EigenMesh &emesh)
|
||
|
{
|
||
|
auto &VC = emesh.first; auto &FC = emesh.second;
|
||
|
|
||
|
indexed_triangle_set its;
|
||
|
its.vertices.reserve(size_t(VC.rows()));
|
||
|
its.indices.reserve(size_t(FC.rows()));
|
||
|
|
||
|
for (Eigen::Index i = 0; i < VC.rows(); ++i)
|
||
|
its.vertices.emplace_back(VC.row(i).cast<float>());
|
||
|
|
||
|
for (Eigen::Index i = 0; i < FC.rows(); ++i)
|
||
|
its.indices.emplace_back(FC.row(i));
|
||
|
|
||
|
return TriangleMesh { std::move(its) };
|
||
|
}
|
||
|
|
||
|
EigenMesh triangle_mesh_to_eigen(const TriangleMesh &mesh)
|
||
|
{
|
||
|
EigenMesh emesh;
|
||
|
emesh.first = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
|
||
|
Eigen::Index(mesh.its.vertices.size()),
|
||
|
3).cast<double>();
|
||
|
|
||
|
emesh.second = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
|
||
|
Eigen::Index(mesh.its.indices.size()),
|
||
|
3);
|
||
|
return emesh;
|
||
|
}
|
||
|
|
||
|
void minus(EigenMesh &A, const EigenMesh &B)
|
||
|
{
|
||
|
auto &[VA, FA] = A;
|
||
|
auto &[VB, FB] = B;
|
||
|
|
||
|
Eigen::MatrixXd VC;
|
||
|
Eigen::MatrixXi FC;
|
||
|
igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_MINUS);
|
||
|
igl::copyleft::cgal::mesh_boolean(VA, FA, VB, FB, boolean_type, VC, FC);
|
||
|
|
||
|
VA = std::move(VC); FA = std::move(FC);
|
||
|
}
|
||
|
|
||
|
void minus(TriangleMesh& A, const TriangleMesh& B)
|
||
|
{
|
||
|
EigenMesh eA = triangle_mesh_to_eigen(A);
|
||
|
minus(eA, triangle_mesh_to_eigen(B));
|
||
|
A = eigen_to_triangle_mesh(eA);
|
||
|
}
|
||
|
|
||
|
void self_union(EigenMesh &A)
|
||
|
{
|
||
|
EigenMesh result;
|
||
|
auto &[V, F] = A;
|
||
|
auto &[VC, FC] = result;
|
||
|
|
||
|
igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_UNION);
|
||
|
igl::copyleft::cgal::mesh_boolean(V, F, Eigen::MatrixXd(), Eigen::MatrixXi(), boolean_type, VC, FC);
|
||
|
|
||
|
A = std::move(result);
|
||
|
}
|
||
|
|
||
|
void self_union(TriangleMesh& mesh)
|
||
|
{
|
||
|
auto eM = triangle_mesh_to_eigen(mesh);
|
||
|
self_union(eM);
|
||
|
mesh = eigen_to_triangle_mesh(eM);
|
||
|
}
|
||
|
|
||
|
namespace cgal {
|
||
|
|
||
|
namespace CGALProc = CGAL::Polygon_mesh_processing;
|
||
|
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
|
||
|
|
||
|
using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
||
|
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
|
||
|
using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
|
||
|
using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
|
||
|
|
||
|
struct CGALMesh {
|
||
|
_EpicMesh m;
|
||
|
CGALMesh() = default;
|
||
|
CGALMesh(const _EpicMesh& _m) :m(_m) {}
|
||
|
};
|
||
|
|
||
|
void save_CGALMesh(const std::string& fname, const CGALMesh& cgal_mesh) {
|
||
|
std::ofstream os(fname);
|
||
|
os << cgal_mesh.m;
|
||
|
os.close();
|
||
|
}
|
||
|
// /////////////////////////////////////////////////////////////////////////////
|
||
|
// Converions from and to CGAL mesh
|
||
|
// /////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
template<class _Mesh> void triangle_mesh_to_cgal(const TriangleMesh& M, _Mesh& out)
|
||
|
{
|
||
|
using Index3 = std::array<size_t, 3>;
|
||
|
|
||
|
if (M.empty()) return;
|
||
|
|
||
|
std::vector<typename _Mesh::Point> points;
|
||
|
std::vector<Index3> indices;
|
||
|
points.reserve(M.its.vertices.size());
|
||
|
indices.reserve(M.its.indices.size());
|
||
|
for (auto& v : M.its.vertices) points.emplace_back(v.x(), v.y(), v.z());
|
||
|
for (auto& _f : M.its.indices) {
|
||
|
auto f = _f.cast<size_t>();
|
||
|
indices.emplace_back(Index3{ f(0), f(1), f(2) });
|
||
|
}
|
||
|
|
||
|
CGALProc::orient_polygon_soup(points, indices);
|
||
|
CGALProc::polygon_soup_to_polygon_mesh(points, indices, out);
|
||
|
|
||
|
// Number the faces because 'orient_to_bound_a_volume' needs a face <--> index map
|
||
|
unsigned index = 0;
|
||
|
for (auto face : out.faces()) face = CGAL::SM_Face_index(index++);
|
||
|
|
||
|
if (CGAL::is_closed(out))
|
||
|
CGALProc::orient_to_bound_a_volume(out);
|
||
|
else
|
||
|
throw Slic3r::RuntimeError("Mesh not watertight");
|
||
|
}
|
||
|
|
||
|
template<class _Mesh>
|
||
|
void triangle_mesh_to_cgal(const std::vector<stl_vertex> & V,
|
||
|
const std::vector<stl_triangle_vertex_indices> &F,
|
||
|
_Mesh &out)
|
||
|
{
|
||
|
if (F.empty()) return;
|
||
|
|
||
|
size_t vertices_count = V.size();
|
||
|
size_t edges_count = (F.size()* 3) / 2;
|
||
|
size_t faces_count = F.size();
|
||
|
out.reserve(vertices_count, edges_count, faces_count);
|
||
|
|
||
|
for (auto &v : V)
|
||
|
out.add_vertex(typename _Mesh::Point{v.x(), v.y(), v.z()});
|
||
|
|
||
|
using VI = typename _Mesh::Vertex_index;
|
||
|
for (auto &f : F)
|
||
|
out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
|
||
|
}
|
||
|
|
||
|
inline Vec3f to_vec3f(const _EpicMesh::Point& v)
|
||
|
{
|
||
|
return { float(v.x()), float(v.y()), float(v.z()) };
|
||
|
}
|
||
|
|
||
|
inline Vec3f to_vec3f(const _EpecMesh::Point& v)
|
||
|
{
|
||
|
CGAL::Cartesian_converter<EpecKernel, EpicKernel> cvt;
|
||
|
auto iv = cvt(v);
|
||
|
return { float(iv.x()), float(iv.y()), float(iv.z()) };
|
||
|
}
|
||
|
|
||
|
template<class _Mesh>
|
||
|
indexed_triangle_set cgal_to_indexed_triangle_set(const _Mesh &cgalmesh)
|
||
|
{
|
||
|
indexed_triangle_set its;
|
||
|
its.vertices.reserve(cgalmesh.num_vertices());
|
||
|
its.indices.reserve(cgalmesh.num_faces());
|
||
|
|
||
|
const auto &faces = cgalmesh.faces();
|
||
|
const auto &vertices = cgalmesh.vertices();
|
||
|
int vsize = int(vertices.size());
|
||
|
|
||
|
for (auto &vi : vertices) {
|
||
|
auto &v = cgalmesh.point(vi); // Don't ask...
|
||
|
its.vertices.emplace_back(to_vec3f(v));
|
||
|
}
|
||
|
|
||
|
for (auto &face : faces) {
|
||
|
auto vtc = cgalmesh.vertices_around_face(cgalmesh.halfedge(face));
|
||
|
|
||
|
int i = 0;
|
||
|
Vec3i facet;
|
||
|
for (auto v : vtc) {
|
||
|
int iv = v;
|
||
|
if (i > 2 || iv < 0 || iv >= vsize) { i = 0; break; }
|
||
|
facet(i++) = iv;
|
||
|
}
|
||
|
|
||
|
if (i == 3)
|
||
|
its.indices.emplace_back(facet);
|
||
|
}
|
||
|
|
||
|
return its;
|
||
|
}
|
||
|
|
||
|
template<class _Mesh> TriangleMesh cgal_to_triangle_mesh(const _Mesh &cgalmesh)
|
||
|
{
|
||
|
indexed_triangle_set its = cgal_to_indexed_triangle_set(cgalmesh);
|
||
|
return TriangleMesh(std::move(its));
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<CGALMesh, CGALMeshDeleter>
|
||
|
triangle_mesh_to_cgal(const std::vector<stl_vertex> &V,
|
||
|
const std::vector<stl_triangle_vertex_indices> &F)
|
||
|
{
|
||
|
std::unique_ptr<CGALMesh, CGALMeshDeleter> out(new CGALMesh{});
|
||
|
triangle_mesh_to_cgal(V, F, out->m);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
TriangleMesh cgal_to_triangle_mesh(const CGALMesh &cgalmesh)
|
||
|
{
|
||
|
return TriangleMesh{cgal_to_indexed_triangle_set(cgalmesh.m)};
|
||
|
}
|
||
|
|
||
|
indexed_triangle_set cgal_to_indexed_triangle_set(const CGALMesh &cgalmesh)
|
||
|
{
|
||
|
return cgal_to_indexed_triangle_set(cgalmesh.m);
|
||
|
}
|
||
|
|
||
|
// /////////////////////////////////////////////////////////////////////////////
|
||
|
// Boolean operations for CGAL meshes
|
||
|
// /////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
static bool _cgal_diff(CGALMesh &A, CGALMesh &B, CGALMesh &R)
|
||
|
{
|
||
|
const auto &p = CGALParams::throw_on_self_intersection(true);
|
||
|
return CGALProc::corefine_and_compute_difference(A.m, B.m, R.m, p, p);
|
||
|
}
|
||
|
|
||
|
static bool _cgal_union(CGALMesh &A, CGALMesh &B, CGALMesh &R)
|
||
|
{
|
||
|
const auto &p = CGALParams::throw_on_self_intersection(true);
|
||
|
return CGALProc::corefine_and_compute_union(A.m, B.m, R.m, p, p);
|
||
|
}
|
||
|
|
||
|
static bool _cgal_intersection(CGALMesh &A, CGALMesh &B, CGALMesh &R)
|
||
|
{
|
||
|
const auto &p = CGALParams::throw_on_self_intersection(true);
|
||
|
return CGALProc::corefine_and_compute_intersection(A.m, B.m, R.m, p, p);
|
||
|
}
|
||
|
|
||
|
template<class Op> void _cgal_do(Op &&op, CGALMesh &A, CGALMesh &B)
|
||
|
{
|
||
|
bool success = false;
|
||
|
bool hw_fail = false;
|
||
|
try {
|
||
|
CGALMesh result;
|
||
|
try_catch_signal({SIGSEGV, SIGFPE}, [&success, &A, &B, &result, &op] {
|
||
|
success = op(A, B, result);
|
||
|
}, [&] { hw_fail = true; });
|
||
|
A = std::move(result); // In-place operation does not work
|
||
|
} catch (...) {
|
||
|
success = false;
|
||
|
}
|
||
|
|
||
|
if (hw_fail)
|
||
|
throw Slic3r::HardCrash("CGAL mesh boolean operation crashed.");
|
||
|
|
||
|
if (! success)
|
||
|
throw Slic3r::RuntimeError("CGAL mesh boolean operation failed.");
|
||
|
}
|
||
|
|
||
|
void minus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_diff, A, B); }
|
||
|
void plus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_union, A, B); }
|
||
|
void intersect(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_intersection, A, B); }
|
||
|
bool does_self_intersect(const CGALMesh &mesh) { return CGALProc::does_self_intersect(mesh.m); }
|
||
|
// BBS
|
||
|
void segment(CGALMesh& src, std::vector<CGALMesh>& dst, double smoothing_alpha = 0.5, int segment_number=5)
|
||
|
{
|
||
|
typedef boost::graph_traits<_EpicMesh>::face_descriptor face_descriptor;
|
||
|
typedef _EpicMesh::Property_map<face_descriptor, double> Facet_double_map;
|
||
|
typedef CGAL::Face_filtered_graph<_EpicMesh> Filtered_graph;
|
||
|
|
||
|
_EpicMesh mesh = src.m;
|
||
|
Facet_double_map sdf_property_map;
|
||
|
|
||
|
sdf_property_map = mesh.add_property_map<face_descriptor, double>("f:sdf").first;
|
||
|
|
||
|
CGAL::sdf_values(mesh, sdf_property_map);
|
||
|
|
||
|
// create a property-map for segment-ids
|
||
|
typedef _EpicMesh::Property_map<face_descriptor, std::size_t> Facet_int_map;
|
||
|
Facet_int_map segment_property_map = mesh.add_property_map<face_descriptor, std::size_t>("f:sid").first;;
|
||
|
// segment the mesh using default parameters for number of levels, and smoothing lambda
|
||
|
// Any other scalar values can be used instead of using SDF values computed using the CGAL function
|
||
|
std::size_t number_of_segments = CGAL::segmentation_from_sdf_values(mesh, sdf_property_map, segment_property_map, segment_number, smoothing_alpha);
|
||
|
//print area of each segment and then put it in a Mesh and print it in an OFF file
|
||
|
Filtered_graph segment_mesh(mesh);
|
||
|
_EpicMesh mesh_merged;
|
||
|
for (std::size_t id = 0; id < number_of_segments; ++id)
|
||
|
{
|
||
|
segment_mesh.set_selected_faces(id, segment_property_map);
|
||
|
//std::cout << "Segment " << id << "'s area is : " << CGAL::Polygon_mesh_processing::area(segment_mesh) << std::endl;
|
||
|
_EpicMesh out;
|
||
|
CGAL::copy_face_graph(segment_mesh, out);
|
||
|
|
||
|
// save_CGALMesh("out.off", out);
|
||
|
|
||
|
// fill holes
|
||
|
typedef boost::graph_traits<_EpicMesh>::halfedge_descriptor halfedge_descriptor;
|
||
|
typedef boost::graph_traits<_EpicMesh>::vertex_descriptor vertex_descriptor;
|
||
|
std::vector<halfedge_descriptor> border_cycles;
|
||
|
CGAL::Polygon_mesh_processing::extract_boundary_cycles(out, std::back_inserter(border_cycles));
|
||
|
for (halfedge_descriptor h : border_cycles)
|
||
|
{
|
||
|
std::vector<face_descriptor> patch_facets;
|
||
|
#if 0
|
||
|
std::vector<vertex_descriptor> patch_vertices;
|
||
|
CGAL::Polygon_mesh_processing::triangulate_and_refine_hole(out, h, std::back_inserter(patch_facets),
|
||
|
std::back_inserter(patch_vertices));
|
||
|
std::cout << "* Number of facets in constructed patch: " << patch_facets.size() << std::endl;
|
||
|
std::cout << " Number of vertices in constructed patch: " << patch_vertices.size() << std::endl;
|
||
|
#else
|
||
|
CGAL::Polygon_mesh_processing::triangulate_hole(out, h, std::back_inserter(patch_facets));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//if (id > 2) {
|
||
|
// mesh_merged.join(out);
|
||
|
//}
|
||
|
//else
|
||
|
{
|
||
|
dst.emplace_back(std::move(CGALMesh(out)));
|
||
|
}
|
||
|
}
|
||
|
//if (mesh_merged.is_empty() == false) {
|
||
|
// CGAL::Polygon_mesh_processing::stitch_borders(mesh_merged);
|
||
|
// dst.emplace_back(std::move(CGALMesh(mesh_merged)));
|
||
|
//}
|
||
|
}
|
||
|
|
||
|
std::vector<TriangleMesh> segment(const TriangleMesh& src, double smoothing_alpha, int segment_number)
|
||
|
{
|
||
|
CGALMesh in_cgal_mesh;
|
||
|
MeshBoolean::cgal::triangle_mesh_to_cgal(src, in_cgal_mesh.m);
|
||
|
std::vector<CGALMesh> out_cgal_meshes;
|
||
|
segment(in_cgal_mesh, out_cgal_meshes, smoothing_alpha, segment_number);
|
||
|
|
||
|
std::vector<TriangleMesh> out_meshes;
|
||
|
for (auto& outf_cgal_mesh: out_cgal_meshes)
|
||
|
{
|
||
|
out_meshes.emplace_back(std::move(cgal_to_triangle_mesh(outf_cgal_mesh.m)));
|
||
|
}
|
||
|
|
||
|
return out_meshes;
|
||
|
}
|
||
|
|
||
|
void merge(std::vector<_EpicMesh>& srcs, _EpicMesh& dst)
|
||
|
{
|
||
|
_EpicMesh mesh_merged;
|
||
|
for (size_t i = 0; i < srcs.size(); i++)
|
||
|
{
|
||
|
mesh_merged.join(srcs[i]);
|
||
|
}
|
||
|
if (mesh_merged.is_empty() == false) {
|
||
|
CGAL::Polygon_mesh_processing::stitch_borders(mesh_merged);
|
||
|
dst = std::move(mesh_merged);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TriangleMesh merge(std::vector<TriangleMesh> meshes)
|
||
|
{
|
||
|
std::vector<_EpicMesh> srcs(meshes.size());
|
||
|
for (size_t i = 0; i < meshes.size(); i++)
|
||
|
{
|
||
|
MeshBoolean::cgal::triangle_mesh_to_cgal(meshes[i], srcs[i]);
|
||
|
}
|
||
|
_EpicMesh dst;
|
||
|
merge(srcs, dst);
|
||
|
return cgal_to_triangle_mesh(dst);
|
||
|
}
|
||
|
|
||
|
template<class Op> void _mesh_boolean_do(Op &&op, indexed_triangle_set &A, const indexed_triangle_set &B)
|
||
|
{
|
||
|
CGALMesh meshA;
|
||
|
CGALMesh meshB;
|
||
|
triangle_mesh_to_cgal(A.vertices, A.indices, meshA.m);
|
||
|
triangle_mesh_to_cgal(B.vertices, B.indices, meshB.m);
|
||
|
|
||
|
_cgal_do(op, meshA, meshB);
|
||
|
|
||
|
A = cgal_to_indexed_triangle_set(meshA.m);
|
||
|
}
|
||
|
|
||
|
template<class Op> void _mesh_boolean_do(Op &&op, TriangleMesh &A, const TriangleMesh &B)
|
||
|
{
|
||
|
CGALMesh meshA;
|
||
|
CGALMesh meshB;
|
||
|
triangle_mesh_to_cgal(A.its.vertices, A.its.indices, meshA.m);
|
||
|
triangle_mesh_to_cgal(B.its.vertices, B.its.indices, meshB.m);
|
||
|
|
||
|
_cgal_do(op, meshA, meshB);
|
||
|
|
||
|
A = cgal_to_triangle_mesh(meshA);
|
||
|
}
|
||
|
|
||
|
void minus(TriangleMesh &A, const TriangleMesh &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_diff, A, B);
|
||
|
}
|
||
|
|
||
|
void plus(TriangleMesh &A, const TriangleMesh &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_union, A, B);
|
||
|
}
|
||
|
|
||
|
void intersect(TriangleMesh &A, const TriangleMesh &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_intersection, A, B);
|
||
|
}
|
||
|
|
||
|
void minus(indexed_triangle_set &A, const indexed_triangle_set &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_diff, A, B);
|
||
|
}
|
||
|
|
||
|
void plus(indexed_triangle_set &A, const indexed_triangle_set &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_union, A, B);
|
||
|
}
|
||
|
|
||
|
void intersect(indexed_triangle_set &A, const indexed_triangle_set &B)
|
||
|
{
|
||
|
_mesh_boolean_do(_cgal_intersection, A, B);
|
||
|
}
|
||
|
|
||
|
bool does_self_intersect(const TriangleMesh &mesh)
|
||
|
{
|
||
|
CGALMesh cgalm;
|
||
|
triangle_mesh_to_cgal(mesh.its.vertices, mesh.its.indices, cgalm.m);
|
||
|
return CGALProc::does_self_intersect(cgalm.m);
|
||
|
}
|
||
|
|
||
|
void CGALMeshDeleter::operator()(CGALMesh *ptr) { delete ptr; }
|
||
|
|
||
|
bool does_bound_a_volume(const CGALMesh &mesh)
|
||
|
{
|
||
|
return CGAL::is_closed(mesh.m) && CGALProc::does_bound_a_volume(mesh.m);
|
||
|
}
|
||
|
|
||
|
bool empty(const CGALMesh &mesh)
|
||
|
{
|
||
|
return mesh.m.is_empty();
|
||
|
}
|
||
|
|
||
|
CGALMeshPtr clone(const CGALMesh &m)
|
||
|
{
|
||
|
return CGALMeshPtr{new CGALMesh{m}};
|
||
|
}
|
||
|
|
||
|
} // namespace cgal
|
||
|
|
||
|
|
||
|
namespace mcut {
|
||
|
/* BBS: MusangKing
|
||
|
* mcut mesh array format for Boolean Opts calculation
|
||
|
*/
|
||
|
struct McutMesh
|
||
|
{
|
||
|
// variables for mesh data in a format suited for mcut
|
||
|
std::vector<uint32_t> faceSizesArray;
|
||
|
std::vector<uint32_t> faceIndicesArray;
|
||
|
std::vector<double> vertexCoordsArray;
|
||
|
};
|
||
|
void McutMeshDeleter::operator()(McutMesh *ptr) { delete ptr; }
|
||
|
|
||
|
bool empty(const McutMesh &mesh) { return mesh.vertexCoordsArray.empty() || mesh.faceIndicesArray.empty(); }
|
||
|
void triangle_mesh_to_mcut(const TriangleMesh &src_mesh, McutMesh &srcMesh, const Transform3d &src_nm = Transform3d::Identity())
|
||
|
{
|
||
|
// vertices precision convention and copy
|
||
|
srcMesh.vertexCoordsArray.reserve(src_mesh.its.vertices.size() * 3);
|
||
|
for (int i = 0; i < src_mesh.its.vertices.size(); ++i) {
|
||
|
const Vec3d v = src_nm * src_mesh.its.vertices[i].cast<double>();
|
||
|
srcMesh.vertexCoordsArray.push_back(v[0]);
|
||
|
srcMesh.vertexCoordsArray.push_back(v[1]);
|
||
|
srcMesh.vertexCoordsArray.push_back(v[2]);
|
||
|
}
|
||
|
|
||
|
// faces copy
|
||
|
srcMesh.faceIndicesArray.reserve(src_mesh.its.indices.size() * 3);
|
||
|
srcMesh.faceSizesArray.reserve(src_mesh.its.indices.size());
|
||
|
for (int i = 0; i < src_mesh.its.indices.size(); ++i) {
|
||
|
const int &f0 = src_mesh.its.indices[i][0];
|
||
|
const int &f1 = src_mesh.its.indices[i][1];
|
||
|
const int &f2 = src_mesh.its.indices[i][2];
|
||
|
srcMesh.faceIndicesArray.push_back(f0);
|
||
|
srcMesh.faceIndicesArray.push_back(f1);
|
||
|
srcMesh.faceIndicesArray.push_back(f2);
|
||
|
|
||
|
srcMesh.faceSizesArray.push_back((uint32_t) 3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
McutMeshPtr triangle_mesh_to_mcut(const indexed_triangle_set &M)
|
||
|
{
|
||
|
std::unique_ptr<McutMesh, McutMeshDeleter> out(new McutMesh{});
|
||
|
TriangleMesh trimesh(M);
|
||
|
triangle_mesh_to_mcut(trimesh, *out.get());
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
TriangleMesh mcut_to_triangle_mesh(const McutMesh &mcutmesh)
|
||
|
{
|
||
|
uint32_t ccVertexCount = mcutmesh.vertexCoordsArray.size() / 3;
|
||
|
auto &ccVertices = mcutmesh.vertexCoordsArray;
|
||
|
auto &ccFaceIndices = mcutmesh.faceIndicesArray;
|
||
|
auto &faceSizes = mcutmesh.faceSizesArray;
|
||
|
uint32_t ccFaceCount = faceSizes.size();
|
||
|
// rearrange vertices/faces and save into result mesh
|
||
|
std::vector<Vec3f> vertices(ccVertexCount);
|
||
|
for (uint32_t i = 0; i < ccVertexCount; i++) {
|
||
|
vertices[i][0] = (float) ccVertices[(uint64_t) i * 3 + 0];
|
||
|
vertices[i][1] = (float) ccVertices[(uint64_t) i * 3 + 1];
|
||
|
vertices[i][2] = (float) ccVertices[(uint64_t) i * 3 + 2];
|
||
|
}
|
||
|
|
||
|
// output faces
|
||
|
int faceVertexOffsetBase = 0;
|
||
|
|
||
|
// for each face in CC
|
||
|
std::vector<Vec3i> faces(ccFaceCount);
|
||
|
for (uint32_t f = 0; f < ccFaceCount; ++f) {
|
||
|
int faceSize = faceSizes.at(f);
|
||
|
|
||
|
// for each vertex in face
|
||
|
for (int v = 0; v < faceSize; v++) { faces[f][v] = ccFaceIndices[(uint64_t) faceVertexOffsetBase + v]; }
|
||
|
faceVertexOffsetBase += faceSize;
|
||
|
}
|
||
|
|
||
|
TriangleMesh out(vertices, faces);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
void merge_mcut_meshes(McutMesh& src, const McutMesh& cut) {
|
||
|
indexed_triangle_set all_its;
|
||
|
TriangleMesh tri_src = mcut_to_triangle_mesh(src);
|
||
|
TriangleMesh tri_cut = mcut_to_triangle_mesh(cut);
|
||
|
its_merge(all_its, tri_src.its);
|
||
|
its_merge(all_its, tri_cut.its);
|
||
|
src = *triangle_mesh_to_mcut(all_its);
|
||
|
}
|
||
|
|
||
|
MCAPI_ATTR void MCAPI_CALL mcDebugOutput(McDebugSource source,
|
||
|
McDebugType type,
|
||
|
unsigned int id,
|
||
|
McDebugSeverity severity,
|
||
|
size_t length,
|
||
|
const char* message,
|
||
|
const void* userParam)
|
||
|
{
|
||
|
BOOST_LOG_TRIVIAL(debug)<<Slic3r::format("mcut mcDebugOutput message ( %d ): %s ", id, message);
|
||
|
|
||
|
switch (source) {
|
||
|
case MC_DEBUG_SOURCE_API:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Source: API");
|
||
|
break;
|
||
|
case MC_DEBUG_SOURCE_KERNEL:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Source: Kernel");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case MC_DEBUG_TYPE_ERROR:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Type: Error");
|
||
|
break;
|
||
|
case MC_DEBUG_TYPE_DEPRECATED_BEHAVIOR:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Type: Deprecated Behaviour");
|
||
|
break;
|
||
|
case MC_DEBUG_TYPE_OTHER:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Type: Other");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
switch (severity) {
|
||
|
case MC_DEBUG_SEVERITY_HIGH:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Severity: high");
|
||
|
break;
|
||
|
case MC_DEBUG_SEVERITY_MEDIUM:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Severity: medium");
|
||
|
break;
|
||
|
case MC_DEBUG_SEVERITY_LOW:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Severity: low");
|
||
|
break;
|
||
|
case MC_DEBUG_SEVERITY_NOTIFICATION:
|
||
|
BOOST_LOG_TRIVIAL(debug)<<("Severity: notification");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool do_boolean_single(McutMesh &srcMesh, const McutMesh &cutMesh, const std::string &boolean_opts)
|
||
|
{
|
||
|
// create context
|
||
|
McContext context = MC_NULL_HANDLE;
|
||
|
McResult err = mcCreateContext(&context, 0);
|
||
|
// add debug callback according to https://cutdigital.github.io/mcut.site/tutorials/debugging/
|
||
|
mcDebugMessageCallback(context, mcDebugOutput, nullptr);
|
||
|
mcDebugMessageControl(
|
||
|
context,
|
||
|
MC_DEBUG_SOURCE_ALL,
|
||
|
MC_DEBUG_TYPE_ERROR,
|
||
|
MC_DEBUG_SEVERITY_MEDIUM,
|
||
|
true);
|
||
|
// We can either let MCUT compute all possible meshes (including patches etc.), or we can
|
||
|
// constrain the library to compute exactly the boolean op mesh we want. This 'constrained' case
|
||
|
// is done with the following flags.
|
||
|
// NOTE#1: you can extend these flags by bitwise ORing with additional flags (see `McDispatchFlags' in mcut.h)
|
||
|
// NOTE#2: below order of columns MATTERS
|
||
|
const std::map<std::string, McFlags> booleanOpts = {
|
||
|
{"A_NOT_B", MC_DISPATCH_FILTER_FRAGMENT_SEALING_INSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_ABOVE},
|
||
|
{"B_NOT_A", MC_DISPATCH_FILTER_FRAGMENT_SEALING_OUTSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_BELOW},
|
||
|
{"UNION", MC_DISPATCH_FILTER_FRAGMENT_SEALING_OUTSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_ABOVE},
|
||
|
{"INTERSECTION", MC_DISPATCH_FILTER_FRAGMENT_SEALING_INSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_BELOW},
|
||
|
};
|
||
|
|
||
|
std::map<std::string, McFlags>::const_iterator it = booleanOpts.find(boolean_opts);
|
||
|
McFlags boolOpFlags = it->second;
|
||
|
|
||
|
if (srcMesh.vertexCoordsArray.empty() && (boolean_opts == "UNION" || boolean_opts == "B_NOT_A")) {
|
||
|
srcMesh = cutMesh;
|
||
|
mcReleaseContext(context);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
err = mcDispatch(context,
|
||
|
MC_DISPATCH_VERTEX_ARRAY_DOUBLE | // vertices are in array of doubles
|
||
|
MC_DISPATCH_ENFORCE_GENERAL_POSITION | // perturb if necessary
|
||
|
boolOpFlags, // filter flags which specify the type of output we want
|
||
|
// source mesh
|
||
|
reinterpret_cast<const void *>(srcMesh.vertexCoordsArray.data()), reinterpret_cast<const uint32_t *>(srcMesh.faceIndicesArray.data()),
|
||
|
srcMesh.faceSizesArray.data(), static_cast<uint32_t>(srcMesh.vertexCoordsArray.size() / 3), static_cast<uint32_t>(srcMesh.faceSizesArray.size()),
|
||
|
// cut mesh
|
||
|
reinterpret_cast<const void *>(cutMesh.vertexCoordsArray.data()), cutMesh.faceIndicesArray.data(), cutMesh.faceSizesArray.data(),
|
||
|
static_cast<uint32_t>(cutMesh.vertexCoordsArray.size() / 3), static_cast<uint32_t>(cutMesh.faceSizesArray.size()));
|
||
|
if (err != MC_NO_ERROR) {
|
||
|
BOOST_LOG_TRIVIAL(debug) << "MCUT mcDispatch fails! err=" << err;
|
||
|
mcReleaseContext(context);
|
||
|
if (boolean_opts == "UNION") {
|
||
|
merge_mcut_meshes(srcMesh, cutMesh);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// query the number of available connected component
|
||
|
uint32_t numConnComps;
|
||
|
err = mcGetConnectedComponents(context, MC_CONNECTED_COMPONENT_TYPE_FRAGMENT, 0, NULL, &numConnComps);
|
||
|
if (err != MC_NO_ERROR || numConnComps==0) {
|
||
|
BOOST_LOG_TRIVIAL(debug) << "MCUT mcGetConnectedComponents fails! err=" << err << ", numConnComps" << numConnComps;
|
||
|
mcReleaseContext(context);
|
||
|
if (numConnComps == 0 && boolean_opts == "UNION") {
|
||
|
merge_mcut_meshes(srcMesh, cutMesh);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
std::vector<McConnectedComponent> connectedComponents(numConnComps, MC_NULL_HANDLE);
|
||
|
err = mcGetConnectedComponents(context, MC_CONNECTED_COMPONENT_TYPE_FRAGMENT, (uint32_t) connectedComponents.size(), connectedComponents.data(), NULL);
|
||
|
|
||
|
McutMesh outMesh;
|
||
|
int N_vertices = 0;
|
||
|
// traversal of all connected components
|
||
|
for (int n = 0; n < numConnComps; ++n) {
|
||
|
// query the data of each connected component from MCUT
|
||
|
McConnectedComponent connComp = connectedComponents[n];
|
||
|
|
||
|
// query the vertices
|
||
|
McSize numBytes = 0;
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_VERTEX_DOUBLE, 0, NULL, &numBytes);
|
||
|
uint32_t ccVertexCount = (uint32_t) (numBytes / (sizeof(double) * 3));
|
||
|
std::vector<double> ccVertices((uint64_t) ccVertexCount * 3u, 0);
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_VERTEX_DOUBLE, numBytes, (void *) ccVertices.data(), NULL);
|
||
|
|
||
|
// query the faces
|
||
|
numBytes = 0;
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FACE_TRIANGULATION, 0, NULL, &numBytes);
|
||
|
std::vector<uint32_t> ccFaceIndices(numBytes / sizeof(uint32_t), 0);
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FACE_TRIANGULATION, numBytes, ccFaceIndices.data(), NULL);
|
||
|
std::vector<uint32_t> faceSizes(ccFaceIndices.size() / 3, 3);
|
||
|
|
||
|
const uint32_t ccFaceCount = static_cast<uint32_t>(faceSizes.size());
|
||
|
|
||
|
// Here we show, how to know when connected components, pertain particular boolean operations.
|
||
|
McPatchLocation patchLocation = (McPatchLocation) 0;
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_PATCH_LOCATION, sizeof(McPatchLocation), &patchLocation, NULL);
|
||
|
|
||
|
McFragmentLocation fragmentLocation = (McFragmentLocation) 0;
|
||
|
err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FRAGMENT_LOCATION, sizeof(McFragmentLocation), &fragmentLocation, NULL);
|
||
|
|
||
|
outMesh.vertexCoordsArray.insert(outMesh.vertexCoordsArray.end(), ccVertices.begin(), ccVertices.end());
|
||
|
|
||
|
// add offset to face index
|
||
|
for (size_t i = 0; i < ccFaceIndices.size(); i++) {
|
||
|
ccFaceIndices[i] += N_vertices;
|
||
|
}
|
||
|
|
||
|
int faceVertexOffsetBase = 0;
|
||
|
|
||
|
// for each face in CC
|
||
|
std::vector<Vec3i> faces(ccFaceCount);
|
||
|
for (uint32_t f = 0; f < ccFaceCount; ++f) {
|
||
|
bool reverseWindingOrder = (fragmentLocation == MC_FRAGMENT_LOCATION_BELOW) && (patchLocation == MC_PATCH_LOCATION_OUTSIDE);
|
||
|
int faceSize = faceSizes.at(f);
|
||
|
if (reverseWindingOrder) {
|
||
|
std::vector<uint32_t> faceIndex(faceSize);
|
||
|
// for each vertex in face
|
||
|
for (int v = faceSize - 1; v >= 0; v--) { faceIndex[v] = ccFaceIndices[(uint64_t) faceVertexOffsetBase + v]; }
|
||
|
std::copy(faceIndex.begin(), faceIndex.end(), ccFaceIndices.begin() + faceVertexOffsetBase);
|
||
|
}
|
||
|
faceVertexOffsetBase += faceSize;
|
||
|
}
|
||
|
|
||
|
outMesh.faceIndicesArray.insert(outMesh.faceIndicesArray.end(), ccFaceIndices.begin(), ccFaceIndices.end());
|
||
|
outMesh.faceSizesArray.insert(outMesh.faceSizesArray.end(), faceSizes.begin(), faceSizes.end());
|
||
|
|
||
|
N_vertices += ccVertexCount;
|
||
|
}
|
||
|
|
||
|
// free connected component data
|
||
|
err = mcReleaseConnectedComponents(context, 0, NULL);
|
||
|
// destroy context
|
||
|
err = mcReleaseContext(context);
|
||
|
|
||
|
srcMesh = outMesh;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void do_boolean(McutMesh& srcMesh, const McutMesh& cutMesh, const std::string& boolean_opts)
|
||
|
{
|
||
|
TriangleMesh tri_src = mcut_to_triangle_mesh(srcMesh);
|
||
|
std::vector<indexed_triangle_set> src_parts = its_split(tri_src.its);
|
||
|
|
||
|
TriangleMesh tri_cut = mcut_to_triangle_mesh(cutMesh);
|
||
|
std::vector<indexed_triangle_set> cut_parts = its_split(tri_cut.its);
|
||
|
|
||
|
if (src_parts.empty() && boolean_opts == "UNION") {
|
||
|
srcMesh = cutMesh;
|
||
|
return;
|
||
|
}
|
||
|
if(cut_parts.empty()) return;
|
||
|
|
||
|
// when src mesh has multiple connected components, mcut refuses to work.
|
||
|
// But we can force it to work by spliting the src mesh into disconnected components,
|
||
|
// and do booleans seperately, then merge all the results.
|
||
|
indexed_triangle_set all_its;
|
||
|
if (boolean_opts == "UNION" || boolean_opts == "A_NOT_B") {
|
||
|
for (size_t i = 0; i < src_parts.size(); i++) {
|
||
|
auto src_part = triangle_mesh_to_mcut(src_parts[i]);
|
||
|
for (size_t j = 0; j < cut_parts.size(); j++) {
|
||
|
auto cut_part = triangle_mesh_to_mcut(cut_parts[j]);
|
||
|
do_boolean_single(*src_part, *cut_part, boolean_opts);
|
||
|
}
|
||
|
TriangleMesh tri_part = mcut_to_triangle_mesh(*src_part);
|
||
|
its_merge(all_its, tri_part.its);
|
||
|
}
|
||
|
}
|
||
|
else if (boolean_opts == "INTERSECTION") {
|
||
|
for (size_t i = 0; i < src_parts.size(); i++) {
|
||
|
for (size_t j = 0; j < cut_parts.size(); j++) {
|
||
|
auto src_part = triangle_mesh_to_mcut(src_parts[i]);
|
||
|
auto cut_part = triangle_mesh_to_mcut(cut_parts[j]);
|
||
|
bool success = do_boolean_single(*src_part, *cut_part, boolean_opts);
|
||
|
if (success) {
|
||
|
TriangleMesh tri_part = mcut_to_triangle_mesh(*src_part);
|
||
|
its_merge(all_its, tri_part.its);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
srcMesh = *triangle_mesh_to_mcut(all_its);
|
||
|
}
|
||
|
|
||
|
void make_boolean(const TriangleMesh &src_mesh, const TriangleMesh &cut_mesh, std::vector<TriangleMesh> &dst_mesh, const std::string &boolean_opts)
|
||
|
{
|
||
|
McutMesh srcMesh, cutMesh;
|
||
|
triangle_mesh_to_mcut(src_mesh, srcMesh);
|
||
|
triangle_mesh_to_mcut(cut_mesh, cutMesh);
|
||
|
//dst_mesh = make_boolean(srcMesh, cutMesh, boolean_opts);
|
||
|
do_boolean(srcMesh, cutMesh, boolean_opts);
|
||
|
TriangleMesh tri_src = mcut_to_triangle_mesh(srcMesh);
|
||
|
if (!tri_src.empty())
|
||
|
dst_mesh.push_back(std::move(tri_src));
|
||
|
}
|
||
|
|
||
|
} // namespace mcut
|
||
|
|
||
|
|
||
|
} // namespace MeshBoolean
|
||
|
} // namespace Slic3r
|