BambuStudio/libslic3r/Model.hpp

1758 lines
82 KiB
C++
Raw Permalink Normal View History

2024-12-20 06:44:50 +00:00
#ifndef slic3r_Model_hpp_
#define slic3r_Model_hpp_
#include "libslic3r.h"
#include "enum_bitmask.hpp"
#include "Geometry.hpp"
#include "ObjectID.hpp"
#include "Point.hpp"
#include "PrintConfig.hpp"
#include "Slicing.hpp"
#include "SLA/SupportPoint.hpp"
#include "SLA/Hollowing.hpp"
#include "TriangleMesh.hpp"
#include "CustomGCode.hpp"
#include "enum_bitmask.hpp"
//BBS: add bbs 3mf
#include "Format/bbs_3mf.hpp"
//BBS: add step
#include "Format/STEP.hpp"
//BBS: add stl
#include "Format/STL.hpp"
#include "Format/OBJ.hpp"
#include "Calib.hpp"
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <algorithm>
#include <functional>
namespace cereal {
class BinaryInputArchive;
class BinaryOutputArchive;
template <class T> void load_optional(BinaryInputArchive &ar, std::shared_ptr<const T> &ptr);
template <class T> void save_optional(BinaryOutputArchive &ar, const std::shared_ptr<const T> &ptr);
template <class T> void load_by_value(BinaryInputArchive &ar, T &obj);
template <class T> void save_by_value(BinaryOutputArchive &ar, const T &obj);
}
namespace Slic3r {
enum class ConversionType;
class BuildVolume;
class Model;
class ModelInstance;
class ModelMaterial;
class ModelObject;
class ModelVolume;
class ModelWipeTower;
class Print;
class SLAPrint;
class TriangleSelector;
//BBS: add Preset
class Preset;
class BBLProject;
class KeyStore;
namespace UndoRedo {
class StackImpl;
}
class ModelConfigObject : public ObjectBase, public ModelConfig
{
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
friend class ModelObject;
friend class ModelVolume;
friend class ModelMaterial;
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit ModelConfigObject() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit ModelConfigObject(int) : ObjectBase(-1) {}
// Copy constructor copies the ID.
explicit ModelConfigObject(const ModelConfigObject &cfg) = default;
// Move constructor copies the ID.
explicit ModelConfigObject(ModelConfigObject &&cfg) = default;
Timestamp timestamp() const throw() override { return this->ModelConfig::timestamp(); }
bool object_id_and_timestamp_match(const ModelConfigObject &rhs) const throw() { return this->id() == rhs.id() && this->timestamp() == rhs.timestamp(); }
// called by ModelObject::assign_copy()
ModelConfigObject& operator=(const ModelConfigObject &rhs) = default;
ModelConfigObject& operator=(ModelConfigObject &&rhs) = default;
template<class Archive> void serialize(Archive &ar) {
ar(cereal::base_class<ModelConfig>(this));
}
};
namespace Internal {
template<typename T>
class StaticSerializationWrapper
{
public:
StaticSerializationWrapper(T &wrap) : wrapped(wrap) {}
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void load(Archive &ar) { cereal::load_by_value(ar, wrapped); }
template<class Archive> void save(Archive &ar) const { cereal::save_by_value(ar, wrapped); }
T& wrapped;
};
}
typedef std::string t_model_material_id;
typedef std::string t_model_material_attribute;
typedef std::map<t_model_material_attribute, std::string> t_model_material_attributes;
typedef std::map<t_model_material_id, ModelMaterial*> ModelMaterialMap;
typedef std::vector<ModelObject*> ModelObjectPtrs;
typedef std::vector<ModelVolume*> ModelVolumePtrs;
typedef std::vector<ModelInstance*> ModelInstancePtrs;
#define OBJECTBASE_DERIVED_COPY_MOVE_CLONE(TYPE) \
/* Copy a model, copy the IDs. The Print::apply() will call the TYPE::copy() method */ \
/* to make a private copy for background processing. */ \
static TYPE* new_copy(const TYPE &rhs) { auto *ret = new TYPE(rhs); assert(ret->id() == rhs.id()); return ret; } \
static TYPE* new_copy(TYPE &&rhs) { auto *ret = new TYPE(std::move(rhs)); assert(ret->id() == rhs.id()); return ret; } \
static TYPE make_copy(const TYPE &rhs) { TYPE ret(rhs); assert(ret.id() == rhs.id()); return ret; } \
static TYPE make_copy(TYPE &&rhs) { TYPE ret(std::move(rhs)); assert(ret.id() == rhs.id()); return ret; } \
TYPE& assign_copy(const TYPE &rhs); \
TYPE& assign_copy(TYPE &&rhs); \
/* Copy a TYPE, generate new IDs. The front end will use this call. */ \
static TYPE* new_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
auto obj = new TYPE(-1); \
obj->assign_clone(rhs); \
assert(obj->id().valid() && obj->id() != rhs.id()); \
return obj; \
} \
TYPE make_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
TYPE obj(-1); \
obj.assign_clone(rhs); \
assert(obj.id().valid() && obj.id() != rhs.id()); \
return obj; \
} \
TYPE& assign_clone(const TYPE &rhs) { \
this->assign_copy(rhs); \
assert(this->id().valid() && this->id() == rhs.id()); \
this->assign_new_unique_ids_recursive(); \
assert(this->id().valid() && this->id() != rhs.id()); \
return *this; \
}
// Material, which may be shared across multiple ModelObjects of a single Model.
class ModelMaterial final : public ObjectBase
{
public:
// Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose.
t_model_material_attributes attributes;
// Dynamic configuration storage for the object specific configuration values, overriding the global configuration.
ModelConfigObject config;
Model* get_model() const { return m_model; }
void apply(const t_model_material_attributes &attributes)
{ this->attributes.insert(attributes.begin(), attributes.end()); }
private:
// Parent, owning this material.
Model *m_model;
// To be accessed by the Model.
friend class Model;
// Constructor, which assigns a new unique ID to the material and to its config.
ModelMaterial(Model *model) : m_model(model) { assert(this->id().valid()); }
// Copy constructor copies the IDs of the ModelMaterial and its config, and m_model!
ModelMaterial(const ModelMaterial &rhs) = default;
void set_model(Model *model) { m_model = model; }
void set_new_unique_id() { ObjectBase::set_new_unique_id(); this->config.set_new_unique_id(); }
// To be accessed by the serialization and Undo/Redo code.
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Create an object for deserialization, don't allocate IDs for ModelMaterial and its config.
ModelMaterial() : ObjectBase(-1), config(-1), m_model(nullptr) { assert(this->id().invalid()); assert(this->config.id().invalid()); }
template<class Archive> void serialize(Archive &ar) {
assert(this->id().invalid()); assert(this->config.id().invalid());
Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
ar(attributes, config_wrapper);
// assert(this->id().valid()); assert(this->config.id().valid());
}
// Disabled methods.
ModelMaterial(ModelMaterial &&rhs) = delete;
ModelMaterial& operator=(const ModelMaterial &rhs) = delete;
ModelMaterial& operator=(ModelMaterial &&rhs) = delete;
};
class LayerHeightProfile final : public ObjectWithTimestamp {
public:
// Assign the content if the timestamp differs, don't assign an ObjectID.
void assign(const LayerHeightProfile &rhs) { if (! this->timestamp_matches(rhs)) { m_data = rhs.m_data; this->copy_timestamp(rhs); } }
void assign(LayerHeightProfile &&rhs) { if (! this->timestamp_matches(rhs)) { m_data = std::move(rhs.m_data); this->copy_timestamp(rhs); } }
std::vector<coordf_t> get() const throw() { return m_data; }
bool empty() const throw() { return m_data.empty(); }
void set(const std::vector<coordf_t> &data) { if (m_data != data) { m_data = data; this->touch(); } }
void set(std::vector<coordf_t> &&data) { if (m_data != data) { m_data = std::move(data); this->touch(); } }
void clear() { m_data.clear(); this->touch(); }
template<class Archive> void serialize(Archive &ar)
{
ar(cereal::base_class<ObjectWithTimestamp>(this), m_data);
}
private:
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit LayerHeightProfile() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit LayerHeightProfile(int) : ObjectWithTimestamp(-1) {}
// Copy constructor copies the ID.
explicit LayerHeightProfile(const LayerHeightProfile &rhs) = default;
// Move constructor copies the ID.
explicit LayerHeightProfile(LayerHeightProfile &&rhs) = default;
// called by ModelObject::assign_copy()
LayerHeightProfile& operator=(const LayerHeightProfile &rhs) = default;
LayerHeightProfile& operator=(LayerHeightProfile &&rhs) = default;
std::vector<coordf_t> m_data;
// to access set_new_unique_id() when copy / pasting an object
friend class ModelObject;
};
enum class CutMode : int {
cutPlanar,
cutTongueAndGroove
};
enum class CutConnectorType : int {
Plug,
Dowel,
Snap,
Undef
};
enum class CutConnectorStyle : int {
Prizm,
Frustum,
Undef
//,Claw
};
enum class CutConnectorShape : int {
Triangle,
Square,
Hexagon,
Circle,
Undef
//,D-shape
};
struct CutConnectorParas
{
float snap_space_proportion{0.3};
float snap_bulge_proportion{0.15};
};
struct CutConnectorAttributes
{
CutConnectorType type{CutConnectorType::Plug};
CutConnectorStyle style{CutConnectorStyle::Prizm};
CutConnectorShape shape{CutConnectorShape::Circle};
CutConnectorAttributes() {}
CutConnectorAttributes(CutConnectorType t, CutConnectorStyle st, CutConnectorShape sh) : type(t), style(st), shape(sh) {}
CutConnectorAttributes(const CutConnectorAttributes &rhs) : CutConnectorAttributes(rhs.type, rhs.style, rhs.shape) {}
bool operator==(const CutConnectorAttributes &other) const;
bool operator!=(const CutConnectorAttributes &other) const { return !(other == (*this)); }
bool operator<(const CutConnectorAttributes &other) const
{
return this->type < other.type || (this->type == other.type && this->style < other.style) ||
(this->type == other.type && this->style == other.style && this->shape < other.shape);
}
template<class Archive> inline void serialize(Archive &ar) { ar(type, style, shape); }
};
struct CutConnector
{
Vec3d pos;
Transform3d rotation_m;
float radius;
float height;
float radius_tolerance; // [0.f : 1.f]
float height_tolerance; // [0.f : 1.f]
CutConnectorAttributes attribs;
CutConnectorParas paras;
CutConnector() : pos(Vec3d::Zero()), rotation_m(Transform3d::Identity()), radius(5.f), height(10.f), radius_tolerance(0.f), height_tolerance(0.1f) {}
CutConnector(Vec3d p, Transform3d rot, float r, float h, float rt, float ht, CutConnectorAttributes attributes)
: pos(p), rotation_m(rot), radius(r), height(h), radius_tolerance(rt), height_tolerance(ht), attribs(attributes)
{}
CutConnector(const CutConnector &rhs) : CutConnector(rhs.pos, rhs.rotation_m, rhs.radius, rhs.height, rhs.radius_tolerance, rhs.height_tolerance, rhs.attribs) {}
bool operator==(const CutConnector &other) const;
bool operator!=(const CutConnector &other) const { return !(other == (*this)); }
template<class Archive> inline void serialize(Archive &ar) { ar(pos, rotation_m, radius, height, radius_tolerance, height_tolerance, attribs); }
};
using CutConnectors = std::vector<CutConnector>;
// Declared outside of ModelVolume, so it could be forward declared.
enum class ModelVolumeType : int {
INVALID = -1,
MODEL_PART = 0,
NEGATIVE_VOLUME,
PARAMETER_MODIFIER,
SUPPORT_BLOCKER,
SUPPORT_ENFORCER
};
enum class ModelObjectCutAttribute : int { KeepUpper, KeepLower, FlipUpper, FlipLower, PlaceOnCutUpper, PlaceOnCutLower, CreateDowels, CutToParts, InvalidateCutInfo };
using ModelObjectCutAttributes = enum_bitmask<ModelObjectCutAttribute>;
ENABLE_ENUM_BITMASK_OPERATORS(ModelObjectCutAttribute);
// A printable object, possibly having multiple print volumes (each with its own set of parameters and materials),
// and possibly having multiple modifier volumes, each modifier volume with its set of parameters and materials.
// Each ModelObject may be instantiated mutliple times, each instance having different placement on the print bed,
// different rotation and different uniform scaling.
class ModelObject final : public ObjectBase
{
public:
std::string name;
//BBS: add module name for assemble
std::string module_name;
std::string input_file; // XXX: consider fs::path
// Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
// Instances are owned by this ModelObject.
ModelInstancePtrs instances;
// Printable and modifier volumes, each with its material ID and a set of override parameters.
// ModelVolumes are owned by this ModelObject.
ModelVolumePtrs volumes;
// Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
ModelConfigObject config;
// Variation of a layer thickness for spans of Z coordinates + optional parameter overrides.
t_layer_config_ranges layer_config_ranges;
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
// The pairs of <z, layer_height> are packed into a 1D array.
LayerHeightProfile layer_height_profile;
// Whether or not this object is printable
bool printable;
// This vector holds position of selected support points for SLA. The data are
// saved in mesh coordinates to allow using them for several instances.
// The format is (x, y, z, point_size, supports_island)
sla::SupportPoints sla_support_points;
// To keep track of where the points came from (used for synchronization between
// the SLA gizmo and the backend).
sla::PointsStatus sla_points_status = sla::PointsStatus::NoPoints;
// Holes to be drilled into the object so resin can flow out
sla::DrainHoles sla_drain_holes;
/* This vector accumulates the total translation applied to the object by the
center_around_origin() method. Callers might want to apply the same translation
to new volumes before adding them to this object in order to preserve alignment
when user expects that. */
Vec3d origin_translation;
// BBS: save for compare with new load volumes
std::vector<ObjectID> volume_ids;
// Connectors to be added into the object before cut and are used to create a solid/negative volumes during a cut perform
CutConnectors cut_connectors;
CutObjectBase cut_id;
Model* get_model() { return m_model; }
const Model* get_model() const { return m_model; }
// BBS: production extension
int get_backup_id() const;
template<typename T> const T* get_config_value(const DynamicPrintConfig& global_config, const std::string& config_option) {
if (config.has(config_option))
return static_cast<const T*>(config.option(config_option));
else
return global_config.option<T>(config_option);
}
ModelVolume* add_volume(const TriangleMesh &mesh);
ModelVolume* add_volume(TriangleMesh &&mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART);
ModelVolume* add_volume(const ModelVolume &volume, ModelVolumeType type = ModelVolumeType::INVALID);
ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
ModelVolume* add_volume_with_shared_mesh(const ModelVolume &other, ModelVolumeType type = ModelVolumeType::MODEL_PART);
void delete_volume(size_t idx);
void clear_volumes();
void sort_volumes(bool full_sort);
bool is_multiparts() const { return volumes.size() > 1; }
// Checks if any of object volume is painted using the fdm support painting gizmo.
bool is_fdm_support_painted() const;
// Checks if any of object volume is painted using the seam painting gizmo.
bool is_seam_painted() const;
// Checks if any of object volume is painted using the multi-material painting gizmo.
bool is_mm_painted() const;
// This object may have a varying layer height by painting or by a table.
// Even if true is returned, the layer height profile may be "flat" with no difference to default layering.
bool has_custom_layering() const
{ return ! this->layer_config_ranges.empty() || ! this->layer_height_profile.empty(); }
ModelInstance* add_instance();
ModelInstance* add_instance(const ModelInstance &instance);
ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror);
void delete_instance(size_t idx);
void delete_last_instance();
void clear_instances();
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
// This bounding box is being cached.
const BoundingBoxf3& bounding_box() const;
void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }
// A mesh containing all transformed instances of this object.
TriangleMesh mesh() const;
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D plater.
TriangleMesh raw_mesh() const;
// The same as above, but producing a lightweight indexed_triangle_set.
indexed_triangle_set raw_indexed_triangle_set() const;
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
const BoundingBoxf3& raw_bounding_box() const;
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
BoundingBoxf3 instance_bounding_box(const ModelInstance& instance, bool dont_translate = false) const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
const BoundingBoxf3& raw_mesh_bounding_box() const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
BoundingBoxf3 full_raw_mesh_bounding_box() const;
//BBS: add instance convex hull bounding box
BoundingBoxf3 instance_convex_hull_bounding_box(size_t instance_idx, bool dont_translate = false) const;
BoundingBoxf3 instance_convex_hull_bounding_box(const ModelInstance* instance, bool dont_translate = false) const;
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon convex_hull_2d(const Transform3d &trafo_instance) const;
void center_around_origin(bool include_modifiers = true);
void ensure_on_bed(bool allow_negative_z = false);
void translate_instances(const Vec3d& vector);
void translate_instance(size_t instance_idx, const Vec3d& vector);
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
void translate(double x, double y, double z);
void scale(const Vec3d &versor);
void scale(const double s) { this->scale(Vec3d(s, s, s)); }
void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
/// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances.
/// It operates on the total size by duplicating the object according to all the instances.
/// \param size Sizef3 the size vector
void scale_to_fit(const Vec3d &size);
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_mesh_after_creation(const float scale);
void convert_units(ModelObjectPtrs&new_objects, ConversionType conv_type, std::vector<int> volume_idxs);
size_t materials_count() const;
size_t facets_count() const;
size_t parts_count() const;
bool is_cut() const { return cut_id.id().valid(); }
bool has_connectors() const;
static indexed_triangle_set get_connector_mesh(CutConnectorAttributes connector_attributes, CutConnectorParas para);
void apply_cut_connectors(const std::string &name);
// invalidate cut state for this object and its connectors/volumes
void invalidate_cut();
// delete volumes which are marked as connector for this object
void delete_connectors();
void synchronize_model_after_cut();
void apply_cut_attributes(ModelObjectCutAttributes attributes);
void clone_for_cut(ModelObject **obj);
Transform3d calculate_cut_plane_inverse_matrix(const std::array<Vec3d, 4> &plane_points);
void process_connector_cut(ModelVolume *volume,
const Transform3d & instance_matrix,
const Transform3d& cut_matrix,
ModelObjectCutAttributes attributes,
ModelObject *upper, ModelObject *lower,
std::vector<ModelObject *> &dowels,
Vec3d &local_dowels_displace);
void process_modifier_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & inverse_cut_matrix,
ModelObjectCutAttributes attributes,
ModelObject * upper,
ModelObject * lower);
void process_volume_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & cut_matrix,
ModelObjectCutAttributes attributes,
TriangleMesh & upper_mesh,
TriangleMesh & lower_mesh);
void process_solid_part_cut(ModelVolume * volume,
const Transform3d & instance_matrix,
const Transform3d & cut_matrix,
const std::array<Vec3d, 4> &plane_points,
ModelObjectCutAttributes attributes,
ModelObject * upper,
ModelObject * lower,
Vec3d & local_displace);
// BBS: replace z with plane_points
ModelObjectPtrs cut(size_t instance, std::array<Vec3d, 4> plane_points, ModelObjectCutAttributes attributes);
// BBS
ModelObjectPtrs segment(size_t instance, unsigned int max_extruders, double smoothing_alpha = 0.5, int segment_number = 5);
void split(ModelObjectPtrs* new_objects);
void merge();
// BBS: Boolean opts - Musang King
bool make_boolean(ModelObject *cut_object, const std::string &boolean_opts);
ModelObjectPtrs merge_volumes(std::vector<int>& vol_indeces);//BBS
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
// Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
void bake_xy_rotation_into_meshes(size_t instance_idx);
double get_min_z() const;
double get_max_z() const;
double get_instance_min_z(size_t instance_idx) const;
double get_instance_max_z(size_t instance_idx) const;
// Print object statistics to console.
void print_info() const;
std::string get_export_filename() const;
// Get full stl statistics for all object's meshes
TriangleMeshStats get_object_stl_stats() const;
// Get count of errors in the mesh( or all object's meshes, if volume index isn't defined)
int get_repaired_errors_count(const int vol_idx = -1) const;
private:
friend class Model;
// This constructor assigns new ID to this ModelObject and its config.
explicit ModelObject(Model* model) : m_model(model), printable(true), origin_translation(Vec3d::Zero()),
m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
}
explicit ModelObject(int) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(nullptr), printable(true), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
~ModelObject();
void assign_new_unique_ids_recursive() override;
// To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision"
// (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics).
ModelObject(const ModelObject &rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(rhs.m_model) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(rhs);
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
explicit ModelObject(ModelObject &&rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(std::move(rhs));
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
ModelObject& operator=(const ModelObject &rhs) {
this->assign_copy(rhs);
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
ModelObject& operator=(ModelObject &&rhs) {
this->assign_copy(std::move(rhs));
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->layer_height_profile.set_new_unique_id();
}
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)
// Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
Model *m_model = nullptr;
// Bounding box, cached.
mutable BoundingBoxf3 m_bounding_box;
mutable bool m_bounding_box_valid;
mutable BoundingBoxf3 m_raw_bounding_box;
mutable bool m_raw_bounding_box_valid;
mutable BoundingBoxf3 m_raw_mesh_bounding_box;
mutable bool m_raw_mesh_bounding_box_valid;
// Called by Print::apply() to set the model pointer after making a copy.
friend class Print;
friend class SLAPrint;
void set_model(Model *model) { m_model = model; }
// Undo / Redo through the cereal serialization library
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization -> Don't allocate any IDs for the ModelObject or its config.
ModelObject() :
ObjectBase(-1), config(-1), layer_height_profile(-1),
m_model(nullptr), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
template<class Archive> void save(Archive& ar) const {
ar(cereal::base_class<ObjectBase>(this));
Internal::StaticSerializationWrapper<ModelConfigObject const> config_wrapper(config);
Internal::StaticSerializationWrapper<LayerHeightProfile const> layer_heigth_profile_wrapper(layer_height_profile);
ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
cut_connectors, cut_id);
}
template<class Archive> void load(Archive& ar) {
ar(cereal::base_class<ObjectBase>(this));
Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
Internal::StaticSerializationWrapper<LayerHeightProfile> layer_heigth_profile_wrapper(layer_height_profile);
// BBS: add backup, check modify
SaveObjectGaurd gaurd(*this);
ar(name, module_name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid,
cut_connectors, cut_id);
std::vector<ObjectID> volume_ids2;
std::transform(volumes.begin(), volumes.end(), std::back_inserter(volume_ids2), std::mem_fn(&ObjectBase::id));
if (volume_ids != volume_ids2)
Slic3r::save_object_mesh(*this);
volume_ids.clear();
}
// Called by Print::validate() from the UI thread.
unsigned int update_instances_print_volume_state(const BuildVolume &build_volume);
};
enum class EnforcerBlockerType : int8_t {
// Maximum is 3. The value is serialized in TriangleSelector into 2 bits.
NONE = 0,
ENFORCER = 1,
BLOCKER = 2,
// Maximum is 15. The value is serialized in TriangleSelector into 6 bits using a 2 bit prefix code.
Extruder1 = ENFORCER,
Extruder2 = BLOCKER,
Extruder3,
Extruder4,
Extruder5,
Extruder6,
Extruder7,
Extruder8,
Extruder9,
Extruder10,
Extruder11,
Extruder12,
Extruder13,
Extruder14,
Extruder15,
Extruder16,
ExtruderMax = Extruder16
};
enum class ConversionType : int {
CONV_TO_INCH,
CONV_FROM_INCH,
CONV_TO_METER,
CONV_FROM_METER,
};
enum class En3mfType : int {
From_BBS,
From_Prusa,
From_Other
};
class FacetsAnnotation final : public ObjectWithTimestamp {
public:
// Assign the content if the timestamp differs, don't assign an ObjectID.
void assign(const FacetsAnnotation& rhs) { if (! this->timestamp_matches(rhs)) { m_data = rhs.m_data; this->copy_timestamp(rhs); } }
void assign(FacetsAnnotation&& rhs) { if (! this->timestamp_matches(rhs)) { m_data = std::move(rhs.m_data); this->copy_timestamp(rhs); } }
const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>>& get_data() const throw() { return m_data; }
bool set(const TriangleSelector& selector);
indexed_triangle_set get_facets(const ModelVolume& mv, EnforcerBlockerType type) const;
// BBS
void get_facets(const ModelVolume& mv, std::vector<indexed_triangle_set>& facets_per_type) const;
void set_enforcer_block_type_limit(const ModelVolume& mv, EnforcerBlockerType max_type);
indexed_triangle_set get_facets_strict(const ModelVolume& mv, EnforcerBlockerType type) const;
bool has_facets(const ModelVolume& mv, EnforcerBlockerType type) const;
bool empty() const { return m_data.first.empty(); }
// Following method clears the config and increases its timestamp, so the deleted
// state is considered changed from perspective of the undo/redo stack.
void reset();
// Serialize triangle into string, for serialization into 3MF/AMF.
std::string get_triangle_as_string(int i) const;
// Before deserialization, reserve space for n_triangles.
void reserve(int n_triangles) { m_data.first.reserve(n_triangles); }
// Deserialize triangles one by one, with strictly increasing triangle_id.
void set_triangle_from_string(int triangle_id, const std::string& str);
// After deserializing the last triangle, shrink data to fit.
void shrink_to_fit() { m_data.first.shrink_to_fit(); m_data.second.shrink_to_fit(); }
bool equals(const FacetsAnnotation &other) const;
private:
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit FacetsAnnotation() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit FacetsAnnotation(int) : ObjectWithTimestamp(-1) {}
// Copy constructor copies the ID.
explicit FacetsAnnotation(const FacetsAnnotation &rhs) = default;
// Move constructor copies the ID.
explicit FacetsAnnotation(FacetsAnnotation &&rhs) = default;
// called by ModelVolume::assign_copy()
FacetsAnnotation& operator=(const FacetsAnnotation &rhs) = default;
FacetsAnnotation& operator=(FacetsAnnotation &&rhs) = default;
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void serialize(Archive &ar)
{
ar(cereal::base_class<ObjectWithTimestamp>(this), m_data);
}
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> m_data;
// To access set_new_unique_id() when copy / pasting a ModelVolume.
friend class ModelVolume;
};
struct RaycastResult
{
Vec2d mouse_position = Vec2d::Zero();
int mesh_id = -1;
Vec3f hit = Vec3f::Zero();
Vec3f normal = Vec3f::Zero();
template<typename Archive> void serialize(Archive &ar) { ar(mouse_position, mesh_id, hit, normal); }
};
struct TextInfo
{
std::string m_font_name;
float m_font_size = 16.f;
int m_curr_font_idx = 0;
bool m_bold = true;
bool m_italic = false;
float m_thickness = 2.f;
float m_embeded_depth = 0.f;
float m_rotate_angle = 0;
float m_text_gap = 0.f;
bool m_is_surface_text = false;
bool m_keep_horizontal = false;
std::string m_text;
RaycastResult m_rr;
template<typename Archive> void serialize(Archive &ar) {
ar(m_font_name, m_font_size, m_curr_font_idx, m_bold, m_italic, m_thickness, m_embeded_depth, m_rotate_angle, m_text_gap, m_is_surface_text, m_keep_horizontal, m_text, m_rr);
}
};
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
// ModelVolume instances are owned by a ModelObject.
class ModelVolume final : public ObjectBase
{
public:
std::string name;
// struct used by reload from disk command to recover data from disk
struct Source
{
std::string input_file;
int object_idx{ -1 };
int volume_idx{ -1 };
Vec3d mesh_offset{ Vec3d::Zero() };
Geometry::Transformation transform;
bool is_converted_from_inches{ false };
bool is_converted_from_meters{ false };
bool is_from_builtin_objects{ false };
template<class Archive> void serialize(Archive& ar) {
//FIXME Vojtech: Serialize / deserialize only if the Source is set.
// likely testing input_file or object_idx would be sufficient.
ar(input_file, object_idx, volume_idx, mesh_offset, transform, is_converted_from_inches, is_converted_from_meters, is_from_builtin_objects);
}
};
Source source;
// struct used by cut command
// It contains information about connetors
struct CutInfo
{
bool is_from_upper{true};
bool is_connector{false};
bool is_processed{true};
CutConnectorType connector_type{CutConnectorType::Plug};
float radius{0.f};
float height{0.f};
float radius_tolerance{0.f}; // [0.f : 1.f]
float height_tolerance{0.f}; // [0.f : 1.f]
CutInfo() = default;
CutInfo(CutConnectorType type, float radius_, float height_, float rad_tolerance, float h_tolerance, bool processed = false)
: is_connector(true), is_processed(processed), connector_type(type)
, radius(radius_), height(height_), radius_tolerance(rad_tolerance), height_tolerance(h_tolerance)
{}
void set_processed() { is_processed = true; }
void invalidate() { is_connector = false; }
void reset_from_upper() { is_from_upper = true; }
template<class Archive> inline void serialize(Archive &ar) { ar(is_connector, is_processed, connector_type, radius_tolerance, height_tolerance); }
};
CutInfo cut_info;
bool is_from_upper() const { return cut_info.is_from_upper; }
void reset_from_upper() { cut_info.reset_from_upper(); }
bool is_cut_connector() const { return cut_info.is_processed && cut_info.is_connector; }
void invalidate_cut_info() { cut_info.invalidate(); }
// The triangular model.
const TriangleMesh& mesh() const { return *m_mesh.get(); }
const TriangleMesh* mesh_ptr() const { return m_mesh.get(); }
void set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
void set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
void set_mesh(const indexed_triangle_set &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
void set_mesh(indexed_triangle_set &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
void set_mesh(std::shared_ptr<const TriangleMesh> &mesh) { m_mesh = mesh; }
void set_mesh(std::unique_ptr<const TriangleMesh> &&mesh) { m_mesh = std::move(mesh); }
void reset_mesh() { m_mesh = std::make_shared<const TriangleMesh>(); }
// Configuration parameters specific to an object model geometry or a modifier volume,
// overriding the global Slic3r settings and the ModelObject settings.
ModelConfigObject config;
// List of mesh facets to be supported/unsupported.
FacetsAnnotation supported_facets;
// List of seam enforcers/blockers.
FacetsAnnotation seam_facets;
// List of mesh facets painted for MMU segmentation.
FacetsAnnotation mmu_segmentation_facets;
// BBS: quick access for volume extruders, 1 based
mutable std::vector<int> mmuseg_extruders;
mutable Timestamp mmuseg_ts;
// List of exterior faces
FacetsAnnotation exterior_facets;
// A parent object owning this modifier volume.
ModelObject* get_object() const { return this->object; }
ModelVolumeType type() const { return m_type; }
void set_type(const ModelVolumeType t) { m_type = t; }
bool is_model_part() const { return m_type == ModelVolumeType::MODEL_PART; }
bool is_negative_volume() const { return m_type == ModelVolumeType::NEGATIVE_VOLUME; }
bool is_modifier() const { return m_type == ModelVolumeType::PARAMETER_MODIFIER; }
bool is_support_enforcer() const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; }
bool is_support_blocker() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; }
bool is_support_modifier() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; }
t_model_material_id material_id() const { return m_material_id; }
void set_material_id(t_model_material_id material_id);
void reset_extra_facets();
ModelMaterial* material() const;
void set_material(t_model_material_id material_id, const ModelMaterial &material);
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
// Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes).
int extruder_id() const;
bool is_splittable() const;
void apply_tolerance();
// BBS
std::vector<int> get_extruders() const;
void update_extruder_count(size_t extruder_count);
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t split(unsigned int max_extruders);
void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
void translate(const Vec3d& displacement);
void scale(const Vec3d& scaling_factors);
void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
void scale(double s) { scale(Vec3d(s, s, s)); }
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_geometry_after_creation(const Vec3f &versor);
void scale_geometry_after_creation(const float scale) { this->scale_geometry_after_creation(Vec3f(scale, scale, scale)); }
// Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box.
// Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared!
void center_geometry_after_creation(bool update_source_offset = true);
void calculate_convex_hull();
const TriangleMesh& get_convex_hull() const;
const std::shared_ptr<const TriangleMesh>& get_convex_hull_shared_ptr() const { return m_convex_hull; }
//BBS: add convex_hell_2d related logic
const Polygon& get_convex_hull_2d(const Transform3d &trafo_instance) const;
void invalidate_convex_hull_2d()
{
m_convex_hull_2d.clear();
}
// Get count of errors in the mesh
int get_repaired_errors_count() const;
// Helpers for loading / storing into AMF / 3MF files.
static ModelVolumeType type_from_string(const std::string &s);
static std::string type_to_string(const ModelVolumeType t);
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
void set_transformation(const Transform3d &trafo) { m_transformation.set_from_transform(trafo); }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
void convert_from_imperial_units();
void convert_from_meters();
void set_text_info(const TextInfo& text_info) { m_text_info = text_info; }
const TextInfo& get_text_info() const { return m_text_info; }
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->supported_facets.set_new_unique_id();
this->seam_facets.set_new_unique_id();
this->mmu_segmentation_facets.set_new_unique_id();
}
bool is_fdm_support_painted() const { return !this->supported_facets.empty(); }
bool is_seam_painted() const { return !this->seam_facets.empty(); }
bool is_mm_painted() const { return !this->mmu_segmentation_facets.empty(); }
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
friend void model_volume_list_update_supports(ModelObject& model_object_dst, const ModelObject& model_object_new);
// Copies IDs of both the ModelVolume and its config.
explicit ModelVolume(const ModelVolume &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
void assign_new_unique_ids_recursive() override;
void transform_this_mesh(const Transform3d& t, bool fix_left_handed);
void transform_this_mesh(const Matrix3d& m, bool fix_left_handed);
private:
// Parent object owning this ModelVolume.
ModelObject* object;
// The triangular model.
std::shared_ptr<const TriangleMesh> m_mesh;
// Is it an object to be printed, or a modifier volume?
ModelVolumeType m_type;
t_model_material_id m_material_id;
// The convex hull of this model's mesh.
std::shared_ptr<const TriangleMesh> m_convex_hull;
//BBS: add convex hull 2d related logic
mutable Polygon m_convex_hull_2d; //BBS, used for convex_hell_2d acceleration
mutable Transform3d m_cached_trans_matrix; //BBS, used for convex_hell_2d acceleration
mutable Polygon m_cached_2d_polygon; //BBS, used for convex_hell_2d acceleration
Geometry::Transformation m_transformation;
TextInfo m_text_info;
//BBS: add convex_hell_2d related logic
void calculate_convex_hull_2d(const Geometry::Transformation &transformation) const;
// flag to optimize the checking if the volume is splittable
// -1 -> is unknown value (before first cheking)
// 0 -> is not splittable
// 1 -> is splittable
mutable int m_is_splittable{ -1 };
ModelVolume(ModelObject *object, const TriangleMesh &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(new TriangleMesh(mesh)), m_type(type), object(object)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
if (mesh.facets_count() > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, const std::shared_ptr<const TriangleMesh> &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(mesh), m_type(type), object(object)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull, ModelVolumeType type = ModelVolumeType::MODEL_PART) :
m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(type), object(object) {
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
}
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other) :
ObjectBase(other),
name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull),
config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets),
m_text_info(other.m_text_info)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() == other.id());
assert(this->config.id() == other.config.id());
assert(this->supported_facets.id() == other.supported_facets.id());
assert(this->seam_facets.id() == other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() == other.mmu_segmentation_facets.id());
this->set_material_id(other.material_id());
}
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
name(other.name), source(other.source), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() != other.id());
assert(this->config.id() == other.config.id());
this->set_material_id(other.material_id());
this->config.set_new_unique_id();
if (mesh.facets_count() > 1)
calculate_convex_hull();
assert(this->config.id().valid());
assert(this->config.id() != other.config.id());
assert(this->supported_facets.id() != other.supported_facets.id());
assert(this->seam_facets.id() != other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() != other.mmu_segmentation_facets.id());
assert(this->id() != this->config.id());
assert(this->supported_facets.empty());
assert(this->seam_facets.empty());
assert(this->mmu_segmentation_facets.empty());
}
ModelVolume& operator=(ModelVolume &rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelVolume() : ObjectBase(-1), config(-1), supported_facets(-1), seam_facets(-1), mmu_segmentation_facets(-1), object(nullptr) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->supported_facets.id().invalid());
assert(this->seam_facets.id().invalid());
assert(this->mmu_segmentation_facets.id().invalid());
}
template<class Archive> void load(Archive &ar) {
bool has_convex_hull;
// BBS: add backup, check modify
bool mesh_changed = false;
auto tr = m_transformation;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
mesh_changed |= !(tr == m_transformation);
if (mesh_changed) m_transformation.get_matrix(true, true, true, true); // force dirty
auto t = supported_facets.timestamp();
cereal::load_by_value(ar, supported_facets);
mesh_changed |= t != supported_facets.timestamp();
t = seam_facets.timestamp();
cereal::load_by_value(ar, seam_facets);
mesh_changed |= t != seam_facets.timestamp();
t = mmu_segmentation_facets.timestamp();
cereal::load_by_value(ar, mmu_segmentation_facets);
mesh_changed |= t != mmu_segmentation_facets.timestamp();
cereal::load_by_value(ar, config);
assert(m_mesh);
if (has_convex_hull) {
cereal::load_optional(ar, m_convex_hull);
if (! m_convex_hull && ! m_mesh->empty())
// The convex hull was released from the Undo / Redo stack to conserve memory. Recalculate it.
this->calculate_convex_hull();
} else
m_convex_hull.reset();
if (mesh_changed && object)
Slic3r::save_object_mesh(*object);
}
template<class Archive> void save(Archive &ar) const {
bool has_convex_hull = m_convex_hull.get() != nullptr;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull, m_text_info, cut_info);
cereal::save_by_value(ar, supported_facets);
cereal::save_by_value(ar, seam_facets);
cereal::save_by_value(ar, mmu_segmentation_facets);
cereal::save_by_value(ar, config);
if (has_convex_hull)
cereal::save_optional(ar, m_convex_hull);
}
};
inline void model_volumes_sort_by_id(ModelVolumePtrs &model_volumes)
{
std::sort(model_volumes.begin(), model_volumes.end(), [](const ModelVolume *l, const ModelVolume *r) { return l->id() < r->id(); });
}
inline const ModelVolume* model_volume_find_by_id(const ModelVolumePtrs &model_volumes, const ObjectID id)
{
auto it = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [id](const ModelVolume *mv) { return mv->id() < id; });
return it != model_volumes.end() && (*it)->id() == id ? *it : nullptr;
}
enum ModelInstanceEPrintVolumeState : unsigned char
{
ModelInstancePVS_Inside,
ModelInstancePVS_Partly_Outside,
ModelInstancePVS_Fully_Outside,
ModelInstanceNum_BedStates
};
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance final : public ObjectBase
{
private:
Geometry::Transformation m_transformation;
Geometry::Transformation m_assemble_transformation;
Vec3d m_offset_to_assembly{ 0.0, 0.0, 0.0 };
bool m_assemble_initialized;
public:
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
ModelInstanceEPrintVolumeState print_volume_state;
// Whether or not this instance is printable
bool printable;
bool use_loaded_id_for_label {false};
int arrange_order = 0; // BBS
size_t loaded_id = 0; // BBS
size_t get_labeled_id() const
{
if (use_loaded_id_for_label && (loaded_id > 0))
return loaded_id;
else
return id().id;
}
ModelObject* get_object() const { return this->object; }
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
const Geometry::Transformation& get_assemble_transformation() const { return m_assemble_transformation; }
void set_assemble_transformation(const Geometry::Transformation& transformation) {
m_assemble_initialized = true;
m_assemble_transformation = transformation;
}
void set_assemble_from_transform(Transform3d& transform) {
m_assemble_initialized = true;
m_assemble_transformation.set_from_transform(transform);
}
const Vec3d& get_assemble_offset() {return m_assemble_transformation.get_offset(); }
void set_assemble_offset(const Vec3d& offset) { m_assemble_transformation.set_offset(offset); }
void set_assemble_rotation(const Vec3d &rotation) { m_assemble_transformation.set_rotation(rotation); }
void rotate_assemble(double angle, const Vec3d& axis) {
m_assemble_transformation.set_rotation(m_assemble_transformation.get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix()));
}
// BBS
void set_offset_to_assembly(const Vec3d& offset) { m_offset_to_assembly = offset; }
const Vec3d& get_offset_to_assembly() const { return m_offset_to_assembly; }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
// BBS
void rotate(Matrix3d rotation_matrix) {
// note: must remove scaling from transformation, otherwise auto-orientation with scaled objects will have problem
auto R = get_matrix(true,false,true).matrix().block<3, 3>(0, 0);
auto R_new = rotation_matrix * R;
auto euler_angles = Geometry::extract_euler_angles(R_new);
set_rotation(euler_angles);
}
const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
// To be called on an external mesh
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
// Calculate a bounding box of a transformed mesh. To be called on an external mesh.
BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
// Transform an external bounding box.
BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
// Transform an external vector.
Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
// To be called on an external polygon. It does not translate the polygon, only rotates and scales.
void transform_polygon(Polygon* polygon) const;
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
bool is_printable() const { return object->printable && printable && (print_volume_state == ModelInstancePVS_Inside); }
bool is_assemble_initialized() { return m_assemble_initialized; }
//BBS
double get_auto_brim_width(double deltaT, double adhension) const;
double get_auto_brim_width() const;
// BBS
Polygon convex_hull_2d();
void invalidate_convex_hull_2d();
// Getting the input polygon for arrange
// We use void* as input type to avoid including Arrange.hpp in Model.hpp.
void get_arrange_polygon(void *arrange_polygon, const Slic3r::DynamicPrintConfig &config = Slic3r::DynamicPrintConfig()) const;
// Apply the arrange result on the ModelInstance
void apply_arrange_result(const Vec2d& offs, double rotation)
{
// write the transformation data into the model instance
set_rotation(Z, rotation);
set_offset(X, unscale<double>(offs(X)));
set_offset(Y, unscale<double>(offs(Y)));
this->object->invalidate_bounding_box();
}
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
explicit ModelInstance(const ModelInstance &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
private:
// Parent object, owning this instance.
ModelObject* object;
Polygon convex_hull; // BBS
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject* object) : print_volume_state(ModelInstancePVS_Inside), printable(true), object(object), m_assemble_initialized(false) { assert(this->id().valid()); }
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
m_transformation(other.m_transformation)
, m_assemble_transformation(other.m_assemble_transformation)
, m_offset_to_assembly(other.m_offset_to_assembly)
, print_volume_state(ModelInstancePVS_Inside)
, printable(other.printable)
, object(object)
, m_assemble_initialized(false) { assert(this->id().valid() && this->id() != other.id()); }
explicit ModelInstance(ModelInstance &&rhs) = delete;
ModelInstance& operator=(const ModelInstance &rhs) = delete;
ModelInstance& operator=(ModelInstance &&rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelInstance() : ObjectBase(-1), object(nullptr) { assert(this->id().invalid()); }
// BBS. Add added members to archive.
template<class Archive> void serialize(Archive& ar) {
ar(m_transformation, print_volume_state, printable, m_assemble_transformation, m_offset_to_assembly, m_assemble_initialized);
}
};
class ModelWipeTower final : public ObjectBase
{
public:
// BBS: add partplate logic
std::vector<Vec2d> positions;
double rotation;
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
friend class Model;
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit ModelWipeTower() {}
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit ModelWipeTower(int) : ObjectBase(-1) {}
// Copy constructor copies the ID.
explicit ModelWipeTower(const ModelWipeTower &cfg) = default;
// Disabled methods.
ModelWipeTower(ModelWipeTower &&rhs) = delete;
ModelWipeTower& operator=(const ModelWipeTower &rhs) = delete;
ModelWipeTower& operator=(ModelWipeTower &&rhs) = delete;
// For serialization / deserialization of ModelWipeTower composed into another class into the Undo / Redo stack as a separate object.
template<typename Archive> void serialize(Archive &ar) { ar(positions, rotation); }
};
// BBS structure stores extruder parameters and speed map of all models
struct ExtruderParams
{
std::string materialName;
//std::array<double, BedType::btCount> bedTemp;
int bedTemp;
double heatEndTemp;
};
struct GlobalSpeedMap
{
double perimeterSpeed;
double externalPerimeterSpeed;
double infillSpeed;
double solidInfillSpeed;
double topSolidInfillSpeed;
double supportSpeed;
double smallPerimeterSpeed;
double maxSpeed;
Polygon bed_poly;
};
/* Profile data */
class ModelProfileInfo
{
public:
std::string ProfileTile;
std::string ProfileCover;
std::string ProfileDescription;
std::string ProfileUserId;
std::string ProfileUserName;
};
/* info in ModelDesignInfo can not changed after initialization */
class ModelDesignInfo
{
public:
std::string DesignerId; // DisignId for Model
std::string Designer; // Designer nickname in utf8
std::string DesignerUserId; // Designer user_id string
};
/* info in ModelInfo can be changed after initialization */
class ModelInfo
{
public:
std::string cover_file; // utf8 format
std::string license; // utf8 format
std::string description; // utf8 format
std::string copyright; // utf8 format
std::string model_name; // utf8 format
std::string origin; // utf8 format
std::map<std::string, std::string> metadata_items; // other meta data items
void load(ModelInfo &info) {
this->cover_file = info.cover_file;
this->license = info.license;
this->description = info.description;
this->copyright = info.copyright;
this->model_name = info.model_name;
this->origin = info.origin;
this->metadata_items = info.metadata_items;
}
};
// The print bed content.
// Description of a triangular model with multiple materials, multiple instances with various affine transformations
// and with multiple modifier meshes.
// A model groups multiple objects, each object having possibly multiple instances,
// all objects may share mutliple materials.
class Model final : public ObjectBase
{
public:
// Materials are owned by a model and referenced by objects through t_model_material_id.
// Single material may be shared by multiple models.
ModelMaterialMap materials;
// Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
ModelObjectPtrs objects;
// Wipe tower object.
ModelWipeTower wipe_tower;
// BBS static members store extruder parameters and speed map of all models
static std::map<size_t, ExtruderParams> extruderParamsMap;
static GlobalSpeedMap printSpeedMap;
// DesignInfo of Model
std::string stl_design_id;
std::string design_id;
std::string stl_design_country;
std::shared_ptr<ModelDesignInfo> design_info = nullptr;
std::shared_ptr<ModelInfo> model_info = nullptr;
std::shared_ptr<ModelProfileInfo> profile_info = nullptr;
//makerlab information
std::string mk_name;
std::string mk_version;
std::vector<std::string> md_name;
std::vector<std::string> md_value;
void SetDesigner(std::string designer, std::string designer_user_id) {
if (design_info == nullptr) {
design_info = std::make_shared<ModelDesignInfo>();
}
design_info->Designer = designer;
//BBS tips: clean design user id when set designer
design_info->DesignerUserId = designer_user_id;
}
// Extensions for color print
// CustomGCode::Info custom_gcode_per_print_z;
//BBS: replace model custom gcode with current plate custom gcode
int curr_plate_index{ 0 };
std::map<int, CustomGCode::Info> plates_custom_gcodes; //map<plate_index, CustomGCode::Info>
const CustomGCode::Info get_curr_plate_custom_gcodes() const {
if (plates_custom_gcodes.find(curr_plate_index) != plates_custom_gcodes.end()) {
return plates_custom_gcodes.at(curr_plate_index);
}
return CustomGCode::Info();
}
// Default constructor assigns a new ID to the model.
Model() { assert(this->id().valid()); }
~Model();
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
Model(const Model &rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); }
// BBS: remove explicit, prefer use move constructor in function return model
Model(Model &&rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); }
Model& operator=(const Model &rhs) { this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(Model)
//BBS: add part plate related logic
// BBS: backup
//BBS: is_xxx is used for is_bbs_3mf when loading 3mf, is used for is_inches when loading amf
static Model read_from_file(
const std::string& input_file,
DynamicPrintConfig* config = nullptr, ConfigSubstitutionContext* config_substitutions = nullptr,
LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr,
std::vector<Preset*>* project_presets = nullptr, bool* is_xxx = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr,
ImportstlProgressFn stlFn = nullptr,
ImportStepProgressFn stepFn = nullptr,
StepIsUtf8Fn stepIsUtf8Fn = nullptr,
BBLProject * project = nullptr,
int plate_id = 0,
ObjImportColorFn objFn = nullptr
);
// BBS
static bool obj_import_vertex_color_deal(const std::vector<unsigned char> &vertex_filament_ids, const unsigned char &first_extruder_id, Model *model);
static bool obj_import_face_color_deal(const std::vector<unsigned char> &face_filament_ids, const unsigned char &first_extruder_id, Model *model);
static double findMaxSpeed(const ModelObject* object);
static double getThermalLength(const ModelVolume* modelVolumePtr);
static double getThermalLength(const std::vector<ModelVolume*> modelVolumePtrs);
static Polygon getBedPolygon() { return Model::printSpeedMap.bed_poly; }
//BBS static functions that update extruder params and speed table
static void setPrintSpeedTable(const DynamicPrintConfig& config, const PrintConfig& print_config);
static void setExtruderParams(const DynamicPrintConfig& config, int extruders_count);
// BBS: backup
static Model read_from_archive(
const std::string& input_file,
DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, En3mfType& out_file_type,
LoadStrategy options = LoadStrategy::AddDefaultInstances, PlateDataPtrs* plate_data = nullptr, std::vector<Preset*>* project_presets = nullptr, Semver* file_version = nullptr, Import3mfProgressFn proFn = nullptr, BBLProject* project = nullptr);
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
ModelObject* add_object(const ModelObject &other);
void delete_object(size_t idx);
bool delete_object(ObjectID id);
bool delete_object(ModelObject* object);
void clear_objects();
// BBS: backup, reuse objects
void collect_reusable_objects(std::vector<ObjectBase *> & objects);
void set_object_backup_id(ModelObject const & object, int uuid);
int get_object_backup_id(ModelObject const & object); // generate new if needed
int get_object_backup_id(ModelObject const & object) const; // generate new if needed
ModelMaterial* add_material(t_model_material_id material_id);
ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
ModelMaterial* get_material(t_model_material_id material_id) {
ModelMaterialMap::iterator i = this->materials.find(material_id);
return (i == this->materials.end()) ? nullptr : i->second;
}
void delete_material(t_model_material_id material_id);
void clear_materials();
bool add_default_instances();
// Returns approximate axis aligned bounding box of this model
BoundingBoxf3 bounding_box() const;
// Set the print_volume_state of PrintObject::instances,
// return total number of printable objects.
unsigned int update_print_volume_state(const BuildVolume &build_volume);
// Returns true if any ModelObject was modified.
bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
// Croaks if the duplicated objects do not fit the print bed.
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
bool looks_like_multipart_object() const;
void convert_multipart_object(unsigned int max_extruders);
bool looks_like_imperial_units() const;
void convert_from_imperial_units(bool only_small_volumes);
bool looks_like_saved_in_meters() const;
void convert_from_meters(bool only_small_volumes);
int removed_objects_with_zero_volume();
// Ensures that the min z of the model is not negative
void adjust_min_z();
void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }
// Propose an output file name & path based on the first printable object's name and source input file's path.
std::string propose_export_file_name_and_path() const;
// Propose an output path, replace extension. The new_extension shall contain the initial dot.
std::string propose_export_file_name_and_path(const std::string &new_extension) const;
//BBS: add auxiliary files temp path
std::string get_auxiliary_file_temp_path();
// BBS: backup
std::string get_backup_path();
std::string get_backup_path(const std::string &sub_path);
void set_backup_path(const std::string &path);
void load_from(Model & model);
bool is_need_backup() { return need_backup; }
void set_need_backup();
void remove_backup_path_if_exist();
// Checks if any of objects is painted using the fdm support painting gizmo.
bool is_fdm_support_painted() const;
// Checks if any of objects is painted using the seam painting gizmo.
bool is_seam_painted() const;
// Checks if any of objects is painted using the multi-material painting gizmo.
bool is_mm_painted() const;
std::unique_ptr<CalibPressureAdvancePattern> calib_pa_pattern;
private:
explicit Model(int) : ObjectBase(-1)
{
assert(this->id().invalid());
}
void assign_new_unique_ids_recursive();
void update_links_bottom_up_recursive();
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void load(Archive& ar) {
Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper);
}
template<class Archive> void save(Archive& ar) const {
Internal::StaticSerializationWrapper<ModelWipeTower const> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper);
}
//BBS: add aux temp directory
// BBS: backup
std::string backup_path;
bool need_backup = false;
std::map<int, int> object_backup_id_map; // ObjectId -> backup id;
int next_object_backup_id = 1;
};
#undef OBJECTBASE_DERIVED_COPY_MOVE_CLONE
#undef OBJECTBASE_DERIVED_PRIVATE_COPY_MOVE
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new);
// Test whether the new model is just an extension of the old model (new objects were added
// to the end of the original list. In that case it is not necessary to kill the background processing.
bool model_object_list_extended(const Model &model_old, const Model &model_new);
// Test whether the new ModelObject contains a different set of volumes (or sorted in a different order)
// than the old ModelObject.
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type);
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const std::initializer_list<ModelVolumeType> &types);
// Test whether the now ModelObject has newer custom supports data than the old one.
// The function assumes that volumes list is synchronized.
bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// Test whether the now ModelObject has newer custom seam data than the old one.
// The function assumes that volumes list is synchronized.
bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// Test whether the now ModelObject has newer MMU segmentation data than the old one.
// The function assumes that volumes list is synchronized.
extern bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// If the model has multi-part objects, then it is currently not supported by the SLA mode.
// Either the model cannot be loaded, or a SLA printer has to be activated.
bool model_has_multi_part_objects(const Model &model);
// If the model has advanced features, then it cannot be processed in simple mode.
bool model_has_advanced_features(const Model &model);
#ifndef NDEBUG
// Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique.
void check_model_ids_validity(const Model &model);
void check_model_ids_equal(const Model &model1, const Model &model2);
#endif /* NDEBUG */
static const float SINKING_Z_THRESHOLD = -0.001f;
static const double SINKING_MIN_Z_THRESHOLD = 0.05;
} // namespace Slic3r
namespace cereal
{
template <class Archive> struct specialize<Archive, Slic3r::ModelVolume, cereal::specialization::member_load_save> {};
// BBS: backup
template <class Archive> struct specialize<Archive, Slic3r::Model, cereal::specialization::member_load_save> {};
template <class Archive> struct specialize<Archive, Slic3r::ModelObject, cereal::specialization::member_load_save> {};
template <class Archive> struct specialize<Archive, Slic3r::ModelConfigObject, cereal::specialization::member_serialize> {};
}
#endif /* slic3r_Model_hpp_ */