BambuStudio/libslic3r/Arrange.cpp

1148 lines
46 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include "Arrange.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include <libnest2d/backends/libslic3r/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
#include <libnest2d/utils/rotcalipers.hpp>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
#if defined(_MSC_VER) && defined(__clang__)
#define BOOST_NO_CXX17_HDR_STRING_VIEW
#endif
#include <boost/log/trivial.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/rational.hpp>
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
template<> struct _NumTag<LargeInt>
{
using Type = ScalarTag;
};
#endif
template<class T> struct _NumTag<boost::rational<T>>
{
using Type = RationalTag;
};
namespace nfp {
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
} // namespace nfp
} // namespace libnest2d
namespace Slic3r {
template<class Tout = double, class = FloatingOnly<Tout>, int...EigenArgs>
inline constexpr Eigen::Matrix<Tout, 2, EigenArgs...> unscaled(
const Slic3r::ClipperLib::IntPoint &v) noexcept
{
return Eigen::Matrix<Tout, 2, EigenArgs...>{unscaled<Tout>(v.x()),
unscaled<Tout>(v.y())};
}
namespace arrangement {
using namespace libnest2d;
// Get the libnest2d types for clipper backend
using Item = _Item<ExPolygon>;
using Box = _Box<Point>;
using Circle = _Circle<Point>;
using Segment = _Segment<Point>;
using MultiPolygon = ExPolygons;
// Summon the spatial indexing facilities from boost
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
// A coefficient used in separating bigger items and smaller items.
const double BIG_ITEM_TRESHOLD = 0.02;
#define VITRIFY_TEMP_DIFF_THRSH 15 // bed temp can be higher than vitrify temp, but not higher than this thresh
void update_arrange_params(ArrangeParams& params, const DynamicPrintConfig* print_cfg, const ArrangePolygons& selected)
{
double skirt_distance = get_real_skirt_dist(*print_cfg);
// Note: skirt_distance is now defined between outermost brim and skirt, not the object and skirt.
// So we can't do max but do adding instead.
params.brim_skirt_distance = skirt_distance;
params.bed_shrink_x += params.brim_skirt_distance;
params.bed_shrink_y += params.brim_skirt_distance;
if (params.is_seq_print) {
// set obj distance for auto seq_print
bool all_objects_are_short = std::all_of(selected.begin(), selected.end(), [&params](auto& ap) { return ap.height < params.nozzle_height; });
if (all_objects_are_short) {
params.min_obj_distance = std::max(params.min_obj_distance, scaled(MAX_OUTER_NOZZLE_RADIUS + 0.001));
}
else
params.min_obj_distance = std::max(params.min_obj_distance, scaled(params.cleareance_radius + 0.001)); // +0.001mm to avoid clearance check fail due to rounding error
// for sequential print, we need to inflate the bed because cleareance_radius is so large
params.bed_shrink_x -= unscale_(params.min_obj_distance / 2);
params.bed_shrink_y -= unscale_(params.min_obj_distance / 2);
}
}
void update_selected_items_inflation(ArrangePolygons& selected, const DynamicPrintConfig* print_cfg, ArrangeParams& params) {
// do not inflate brim_width. Objects are allowed to have overlapped brim.
Points bedpts = get_shrink_bedpts(print_cfg, params);
BoundingBox bedbb = Polygon(bedpts).bounding_box();
double brim_max = 0;
bool plate_has_tree_support = false;
std::for_each(selected.begin(), selected.end(), [&](ArrangePolygon& ap) {
brim_max = std::max(brim_max, ap.brim_width);
if (ap.has_tree_support) plate_has_tree_support = true; });
std::for_each(selected.begin(), selected.end(), [&](ArrangePolygon& ap) {
// 1. if user input a distance, use it
// 2. if there is an object with tree support, all objects use the max tree branch radius (brim_max=branch diameter)
// 3. otherwise, use each object's own brim width
ap.inflation = params.min_obj_distance != 0 ? params.min_obj_distance / 2 :
plate_has_tree_support ? scaled(brim_max / 2) : scaled(ap.brim_width);
});
}
void update_unselected_items_inflation(ArrangePolygons& unselected, const DynamicPrintConfig* print_cfg, const ArrangeParams& params)
{
coord_t exclusion_gap = scale_(1.f);
if (params.is_seq_print) {
// bed_shrink_x is typically (-params.min_obj_distance / 2+5) for seq_print
exclusion_gap = std::max(exclusion_gap, params.min_obj_distance / 2 + scaled<coord_t>(params.bed_shrink_x + 1.f)); // +1mm gap so the exclusion region is not too close
// dont forget to move the excluded region
for (auto& region : unselected) {
if (region.is_virt_object) region.poly.translate(scaled(params.bed_shrink_x), scaled(params.bed_shrink_y));
}
}
// For occulusion regions, inflation should be larger to prevent genrating brim on them.
// However, extrusion cali regions are exceptional, since we can allow brim overlaps them.
// 屏蔽区域只需要膨胀brim宽度防止brim长过去挤出标定区域不需要膨胀brim可以长过去。
// 以前我们认为还需要膨胀clearance_radius/2这其实是不需要的因为这些区域并不会真的摆放物体
// 其他物体的膨胀轮廓是可以跟它们重叠的。
std::for_each(unselected.begin(), unselected.end(),
[&](auto& ap) { ap.inflation = !ap.is_virt_object ? (params.min_obj_distance == 0 ? scaled(ap.brim_width) : params.min_obj_distance / 2)
: (ap.is_extrusion_cali_object ? 0 : exclusion_gap); });
}
void update_selected_items_axis_align(ArrangePolygons& selected, const DynamicPrintConfig* print_cfg, const ArrangeParams& params)
{
// now only need to consider "Align to x axis"
if (!params.align_to_y_axis)
return;
for (ArrangePolygon& ap : selected) {
bool validResult = false;
double angle = 0.0;
{
const auto& pts = ap.transformed_poly().contour;
int lpt = pts.size();
double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0;
double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
xi_1 = pts.back().x();
yi_1 = pts.back().y();
xi_12 = xi_1 * xi_1;
yi_12 = yi_1 * yi_1;
for (int i = 0; i < lpt; i++) {
xi = pts[i].x();
yi = pts[i].y();
xi2 = xi * xi;
yi2 = yi * yi;
dxy = xi_1 * yi - xi * yi_1;
xii_1 = xi_1 + xi;
yii_1 = yi_1 + yi;
a00 += dxy;
a10 += dxy * xii_1;
a01 += dxy * yii_1;
a20 += dxy * (xi_1 * xii_1 + xi2);
a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
a02 += dxy * (yi_1 * yii_1 + yi2);
a30 += dxy * xii_1 * (xi_12 + xi2);
a03 += dxy * yii_1 * (yi_12 + yi2);
a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 + xi2 * (yi_1 + 3 * yi));
a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 + yi2 * (xi_1 + 3 * xi));
xi_1 = xi;
yi_1 = yi;
xi_12 = xi2;
yi_12 = yi2;
}
if (std::abs(a00) > EPSILON) {
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
if (a00 > 0) {
db1_2 = 0.5;
db1_6 = 0.16666666666666666666666666666667;
db1_12 = 0.083333333333333333333333333333333;
db1_24 = 0.041666666666666666666666666666667;
db1_20 = 0.05;
db1_60 = 0.016666666666666666666666666666667;
}
else {
db1_2 = -0.5;
db1_6 = -0.16666666666666666666666666666667;
db1_12 = -0.083333333333333333333333333333333;
db1_24 = -0.041666666666666666666666666666667;
db1_20 = -0.05;
db1_60 = -0.016666666666666666666666666666667;
}
m00 = a00 * db1_2;
m10 = a10 * db1_6;
m01 = a01 * db1_6;
m20 = a20 * db1_12;
m11 = a11 * db1_24;
m02 = a02 * db1_12;
m30 = a30 * db1_20;
m21 = a21 * db1_60;
m12 = a12 * db1_60;
m03 = a03 * db1_20;
double cx = m10 / m00;
double cy = m01 / m00;
double a = m20 / m00 - cx * cx;
double b = m11 / m00 - cx * cy;
double c = m02 / m00 - cy * cy;
//if a and c are close, there is no dominant axis, then do not rotate
// ratio is always no more than 1
double ratio = std::abs(a) > std::abs(c) ? std::abs(c / a) :
std::abs(c) > 0 ? std::abs(a / c) : 0;
if (ratio>0.66) {
validResult = false;
}
else {
angle = std::atan2(2 * b, (a - c)) / 2;
angle = PI / 2 - angle;
// if the angle is close to PI or -PI, it means the object is vertical, then do not rotate
if (std::abs(std::abs(angle) - PI) < 0.01)
angle = 0;
validResult = true;
}
}
}
if (validResult) { ap.rotation += angle; }
}
}
//it will bed accurate after call update_params
Points get_shrink_bedpts(const DynamicPrintConfig* print_cfg, const ArrangeParams& params)
{
Points bedpts = get_bed_shape(*print_cfg);
// shrink bed by moving to center by dist
auto shrinkFun = [](Points& bedpts, double dist, int direction) {
#define SGN(x) ((x) >= 0 ? 1 : -1)
Point center = Polygon(bedpts).bounding_box().center();
for (auto& pt : bedpts) pt[direction] += dist * SGN(center[direction] - pt[direction]);
};
shrinkFun(bedpts, scaled(params.bed_shrink_x), 0);
shrinkFun(bedpts, scaled(params.bed_shrink_y), 1);
return bedpts;
}
// Fill in the placer algorithm configuration with values carefully chosen for
// Slic3r.
template<class PConf>
void fill_config(PConf& pcfg, const ArrangeParams &params) {
if (params.is_seq_print) {
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::BOTTOM_LEFT;
}
else {
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::TOP_RIGHT;
}
if (params.do_final_align) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
}else
pcfg.alignment = PConf::Alignment::DONT_ALIGN;
// Try 4 angles (45 degree step) and find the one with min cost
if (params.allow_rotations)
pcfg.rotations = {0., PI / 4., PI/2, 3. * PI / 4. };
else
pcfg.rotations = {0.};
pcfg.bed_shrink = { scale_(params.bed_shrink_x), scale_(params.bed_shrink_y) };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = params.accuracy;
// Allow parallel execution.
pcfg.parallel = params.parallel;
// BBS: excluded regions in BBS bed
for (auto& poly : params.excluded_regions)
process_arrangeable(poly, pcfg.m_excluded_regions);
// BBS: nonprefered regions in BBS bed
for (auto& poly : params.nonprefered_regions)
process_arrangeable(poly, pcfg.m_nonprefered_regions);
for (auto& itm : pcfg.m_excluded_regions) {
itm.markAsFixedInBin(0);
itm.inflate(scaled(-2. * EPSILON));
}
}
// Apply penalty to object function result. This is used only when alignment
// after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN)
// Also, this will only work well for Box shaped beds.
static double fixed_overfit(const std::tuple<double, Box>& result, const Box &binbb)
{
double score = std::get<0>(result);
Box pilebb = std::get<1>(result);
Box fullbb = sl::boundingBox(pilebb, binbb);
auto diff = double(fullbb.area()) - binbb.area();
if(diff > 0) score += diff;
return score;
}
// useful for arranging big circle objects
static double fixed_overfit_topright_sliding(const std::tuple<double, Box> &result, const Box &binbb, const std::vector<Box> &excluded_boxes)
{
double score = std::get<0>(result);
Box pilebb = std::get<1>(result);
auto shift = binbb.maxCorner() - pilebb.maxCorner();
shift.x() = std::max(0, shift.x()); // do not allow left shift
shift.y() = std::max(0, shift.y()); // do not allow bottom shift
pilebb.minCorner() += shift;
pilebb.maxCorner() += shift;
Box fullbb = sl::boundingBox(pilebb, binbb);
auto diff = double(fullbb.area()) - binbb.area();
if (diff > 0) score += diff;
// excluded regions and nonprefered regions should not intersect the translated pilebb
for (auto &bb : excluded_boxes) {
auto area_ = pilebb.intersection(bb).area();
if (area_ > 0) score += area_;
}
return score;
}
// A class encapsulating the libnest2d Nester class and extending it with other
// management and spatial index structures for acceleration.
template<class TBin>
class AutoArranger {
public:
// Useful type shortcuts...
using Placer = typename placers::_NofitPolyPlacer<ExPolygon, TBin>;
using Selector = selections::_FirstFitSelection<ExPolygon>;
using Packer = _Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
std::vector<Item> m_excluded_items_in_each_plate; // for V4 bed there are excluded regions at bottom left corner
protected:
Packer m_pck;
PConfig m_pconf; // Placement configuration
TBin m_bin;
double m_bin_area;
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
SpatIndex m_smallsrtree; // spatial index for only the smaller items
#ifdef _MSC_VER
#pragma warning(pop)
#endif
double m_norm; // A coefficient to scale distances
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
Box m_pilebb; // The bounding box of the merged pile.
ItemGroup m_remaining; // Remaining items
ItemGroup m_items; // allready packed items
std::vector<Box> m_excluded_and_extruCali_regions; // excluded and extrusion calib regions
size_t m_item_count = 0; // Number of all items to be packed
ArrangeParams params;
template<class T> ArithmeticOnly<T, double> norm(T val)
{
return double(val) / m_norm;
}
// dist function for sequential print (starting_point=BOTTOM_LEFT) which is composed of
// 1) Y distance of item corner to bed corner. Must be put above bed corner. (high weight)
// 2) X distance of item corner to bed corner (low weight)
// 3) item row occupancy (useful when rotation is enabled)
// 4需要允许往屏蔽区域的左边或下边去一点不然很多物体可能认为摆不进去实际上我们最后是可以做平移的
double dist_for_BOTTOM_LEFT(Box ibb, const ClipperLib::IntPoint& origin_pack)
{
double dist_corner_y = ibb.minCorner().y() - origin_pack.y();
double dist_corner_x = ibb.minCorner().x() - origin_pack.x();
// occupy as few rows as possible if we have rotations
double bindist = double(ibb.maxCorner().y() - ibb.minCorner().y());
if (dist_corner_x >= 0 && dist_corner_y >= 0)
bindist += dist_corner_y + 1 * dist_corner_x;
else {
if (dist_corner_x < 0) bindist += 10 * (-dist_corner_x);
if (dist_corner_y < 0) bindist += 10 * (-dist_corner_y);
}
bindist = norm(bindist);
return bindist;
}
double dist_to_bin(const Box& ibb, const ClipperLib::IntPoint& origin_pack, typename Packer::PlacementConfig::Alignment starting_point_alignment)
{
double bindist = 0;
if (starting_point_alignment == PConfig::Alignment::BOTTOM_LEFT)
bindist = norm(pl::distance(ibb.minCorner(), origin_pack));
else if (starting_point_alignment == PConfig::Alignment::TOP_RIGHT)
bindist = norm(pl::distance(ibb.maxCorner(), origin_pack));
else
bindist = norm(pl::distance(ibb.center(), origin_pack));
return bindist;
}
// This is "the" object function which is evaluated many times for each
// vertex (decimated with the accuracy parameter) of each object.
// Therefore it is upmost crucial for this function to be as efficient
// as it possibly can be but at the same time, it has to provide
// reasonable results.
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const Item &item, const ClipperLib::IntPoint &origin_pack)
{
const double bin_area = m_bin_area;
const SpatIndex& spatindex = m_rtree;
const SpatIndex& smalls_spatindex = m_smallsrtree;
// We will treat big items (compared to the print bed) differently
auto isBig = [bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
};
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
auto fullbb = sl::boundingBox(m_pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
// Density is the pack density: how big is the arranged pile
double density = 0;
// Distinction of cases for the arrangement scene
enum e_cases {
// This branch is for big items in a mixed (big and small) scene
// OR for all items in a small-only scene.
BIG_ITEM,
// This branch is for the last big item in a mixed scene
LAST_BIG_ITEM,
// For small items in a mixed scene.
SMALL_ITEM
} compute_case;
bool bigitems = isBig(item.area()) || spatindex.empty();
if(!params.is_seq_print && bigitems && !m_remaining.empty()) compute_case = BIG_ITEM; // do not use so complicated logic for sequential printing
else if (bigitems && m_remaining.empty()) compute_case = LAST_BIG_ITEM;
else compute_case = SMALL_ITEM;
switch (compute_case) {
case BIG_ITEM: {
const Point& minc = ibb.minCorner(); // bottom left corner
const Point& maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
Point top_left{getX(minc), getY(maxc)};
Point bottom_right{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
double dist = norm(*(std::min_element(dists.begin(), dists.end())));
if (m_pconf.starting_point == PConfig::Alignment::BOTTOM_LEFT) {
double bindist = dist_for_BOTTOM_LEFT(ibb, origin_pack);
score = 0.2 * dist + 0.8 * bindist;
}
else {
double bindist = dist_to_bin(ibb, origin_pack, m_pconf.starting_point);
dist = 0.8 * dist + 0.2 * bindist;
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item
// aligned with its neighbors. We will check the alignment
// with all neighbors and return the score for the best
// alignment. So it is enough for the candidate to be
// aligned with only one item.
auto alignment_score = 1.0;
auto query = bgi::intersects(ibb);
auto& index = isBig(item.area()) ? spatindex : smalls_spatindex;
// Query the spatial index for the neighbors
std::vector<SpatElement> result;
result.reserve(index.size());
index.query(query, std::back_inserter(result));
// now get the score for the best alignment
for (auto& e : result) {
auto idx = e.second;
Item& p = m_items[idx];
auto parea = p.area();
if (std::abs(1.0 - parea / item.area()) < 1e-6) {
auto bb = sl::boundingBox(p.boundingBox(), ibb);
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea) / bbarea;
if (ascore < alignment_score) alignment_score = ascore;
}
}
density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height()));
double R = double(m_remaining.size()) / m_item_count;
// alighment score is more important for rectangle items
double alignment_weight = std::max(0.3, 0.6 * item.area() / ibb.area());
// The final mix of the score is the balance between the
// distance from the full pile center, the pack density and
// the alignment with the neighbors
if (result.empty())
score = 0.50 * dist + 0.50 * density;
else
// Let the density matter more when fewer objects remain
score = (1 - 0.2 - alignment_weight) * dist + (1.0 - R) * 0.20 * density +
alignment_weight * alignment_score;
}
break;
}
case LAST_BIG_ITEM: {
if (m_pconf.starting_point == PConfig::Alignment::BOTTOM_LEFT) {
score = dist_for_BOTTOM_LEFT(ibb, origin_pack);
}
else {
if (m_pilebb.defined)
score = 0.5 * norm(pl::distance(ibb.center(), m_pilebb.center()));
else
score = 0.5 * norm(pl::distance(ibb.center(), origin_pack));
}
break;
}
case SMALL_ITEM: {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
if (m_pconf.starting_point == PConfig::Alignment::BOTTOM_LEFT)
score = dist_for_BOTTOM_LEFT(ibb, origin_pack);
else {
// Align mainly around existing items
score = 0.8 * norm(pl::distance(ibb.center(), bigbb.center()))+ 0.2*norm(pl::distance(ibb.center(), origin_pack));
// Align to 135 degree line {calc distance to the line x+y-(xc+yc)=0}
//auto ic = ibb.center(), bigbbc = origin_pack;// bigbb.center();
//score = norm(std::abs(ic.x() + ic.y() - bigbbc.x() - bigbbc.y()));
}
break;
}
}
if (params.is_seq_print) {
double clearance_height_to_lid = params.clearance_height_to_lid;
double clearance_height_to_rod = params.clearance_height_to_rod;
bool hasRowHeightConflict = false;
bool hasLidHeightConflict = false;
auto iy1 = item.boundingBox().minCorner().y();
auto iy2 = item.boundingBox().maxCorner().y();
auto ix1 = item.boundingBox().minCorner().x();
for (int i = 0; i < m_items.size(); i++) {
Item& p = m_items[i];
if (p.is_virt_object) continue;
auto px1 = p.boundingBox().minCorner().x();
auto py1 = p.boundingBox().minCorner().y();
auto py2 = p.boundingBox().maxCorner().y();
auto inter_min = std::max(iy1, py1); // min y of intersection
auto inter_max = std::min(iy2, py2); // max y of intersection. length=max_y-min_y>0 means intersection exists
// if this item is lower than existing ones, this item will be printed first, so should not exceed height_to_rod
if (iy2 < py1) { hasRowHeightConflict |= (item.height > clearance_height_to_rod); }
else if (inter_max - inter_min > 0) {
// if they inter, the one on the left will be printed first
double h = ix1 < px1 ? item.height : p.height;
hasRowHeightConflict |= (h > clearance_height_to_rod);
}
// only last item can be heigher than clearance_height_to_lid, so if the existing items are higher than clearance_height_to_lid, there is height conflict
hasLidHeightConflict |= (p.height > clearance_height_to_lid);
}
double lambda3 = LARGE_COST_TO_REJECT*1.1;
double lambda4 = LARGE_COST_TO_REJECT*1.2;
for (int i = 0; i < m_items.size(); i++) {
Item& p = m_items[i];
if (p.is_virt_object) continue;
//score += lambda3 * (item.bed_temp - p.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
if (!Print::is_filaments_compatible({item.filament_temp_type,p.filament_temp_type}))
score += lambda3;
}
//score += lambda3 * (item.bed_temp - item.vitrify_temp > VITRIFY_TEMP_DIFF_THRSH);
score += lambda4 * hasRowHeightConflict + lambda4 * hasLidHeightConflict;
}
else {
int valid_items_cnt = 0;
double height_score = 0;
for (int i = 0; i < m_items.size(); i++) {
Item& p = m_items[i];
if (!p.is_virt_object) {
valid_items_cnt++;
// 高度接近的件尽量摆到一起
height_score += (1- std::abs(item.height - p.height) / params.printable_height)
* norm(pl::distance(ibb.center(), p.boundingBox().center()));
//score += LARGE_COST_TO_REJECT * (item.bed_temp - p.bed_temp != 0);
if (!Print::is_filaments_compatible({ item.filament_temp_type,p.filament_temp_type })) {
score += LARGE_COST_TO_REJECT;
break;
}
}
}
if (valid_items_cnt > 0)
score += height_score / valid_items_cnt;
}
std::set<int> extruder_ids;
for (int i = 0; i < m_items.size(); i++) {
Item& p = m_items[i];
if (p.is_virt_object) continue;
extruder_ids.insert(p.extrude_ids.begin(),p.extrude_ids.end());
}
// add a large cost if not multi materials on same plate is not allowed
if (!params.allow_multi_materials_on_same_plate) {
// it's the first object, which can be multi-color
bool first_object = extruder_ids.empty();
// the two objects (previously packed items and the current item) are considered having same color if either one's colors are a subset of the other
std::set<int> item_extruder_ids(item.extrude_ids.begin(), item.extrude_ids.end());
bool same_color_with_previous_items = std::includes(extruder_ids.begin(), extruder_ids.end(), item_extruder_ids.begin(), item_extruder_ids.end());
if (!(first_object || same_color_with_previous_items)) score += LARGE_COST_TO_REJECT * 1.3;
}
// for layered printing, we want extruder change as few as possible
// this has very weak effect, CAN NOT use a large weight
int last_extruder_cnt = extruder_ids.size();
extruder_ids.insert(item.extrude_ids.begin(), item.extrude_ids.end());
int new_extruder_cnt= extruder_ids.size();
if (!params.is_seq_print) {
score += 1 * (new_extruder_cnt-last_extruder_cnt);
}
return std::make_tuple(score, fullbb);
}
std::function<double(const Item&, const ItemGroup&)> get_objfn();
public:
AutoArranger(const TBin & bin,
const ArrangeParams &params,
std::function<void(unsigned,std::string)> progressind,
std::function<bool(void)> stopcond)
: m_pck(bin, params.min_obj_distance)
, m_bin(bin)
{
m_bin_area = abs(sl::area(bin)); // due to clockwise or anti-clockwise, the result of sl::area may be negative
m_norm = std::sqrt(m_bin_area);
fill_config(m_pconf, params);
this->params = params;
// if best object center is not bed center, specify starting point here
if (std::abs(this->params.align_center.x() - 0.5) > 0.001 || std::abs(this->params.align_center.y() - 0.5) > 0.001) {
auto binbb = sl::boundingBox(m_bin);
m_pconf.best_object_pos = binbb.minCorner() + Point{ binbb.width() * this->params.align_center.x(), binbb.height() * this->params.align_center.y() };
m_pconf.alignment = PConfig::Alignment::USER_DEFINED;
}
for (auto& region : m_pconf.m_excluded_regions) {
Box bb = region.boundingBox();
m_excluded_and_extruCali_regions.emplace_back(bb);
}
for (auto& region : m_pconf.m_nonprefered_regions) {
Box bb = region.boundingBox();
m_excluded_and_extruCali_regions.emplace_back(bb);
}
// Set up a callback that is called just before arranging starts
// This functionality is provided by the Nester class (m_pack).
m_pconf.before_packing =
[this](const MultiPolygon& merged_pile, // merged pile
const ItemGroup& items, // packed items
const ItemGroup& remaining) // future items to be packed
{
m_items = items;
m_merged_pile = merged_pile;
m_remaining = remaining;
m_pilebb.defined = false;
if (!merged_pile.empty())
{
m_pilebb = sl::boundingBox(merged_pile);
m_pilebb.defined = true;
}
m_rtree.clear();
m_smallsrtree.clear();
// We will treat big items (compared to the print bed) differently
auto isBig = [this](double a) {
return a / m_bin_area > BIG_ITEM_TRESHOLD ;
};
for(unsigned idx = 0; idx < items.size(); ++idx) {
Item& itm = items[idx];
if (itm.is_virt_object) continue;
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx});
}
};
m_pconf.object_function = get_objfn();
// preload fixed items (and excluded regions) on plate
m_pconf.on_preload = [this](const ItemGroup &items, PConfig &cfg) {
if (items.empty()) return;
auto binbb = sl::boundingBox(m_bin);
auto starting_point = cfg.starting_point == PConfig::Alignment::BOTTOM_LEFT ? binbb.minCorner() :
cfg.starting_point == PConfig::Alignment::TOP_RIGHT ? binbb.maxCorner() : binbb.center();
cfg.object_function = [this, binbb, starting_point](const Item &item, const ItemGroup &packed_items) {
return fixed_overfit(objfunc(item, starting_point), binbb);
};
};
auto on_packed = params.on_packed;
if (progressind || on_packed)
m_pck.progressIndicator(
[this, progressind, on_packed](unsigned num_finished) {
int last_bed = m_pck.lastPackedBinId();
if (last_bed >= 0) {
Item& last_packed = m_pck.lastResult()[last_bed].back();
ArrangePolygon ap;
ap.bed_idx = last_packed.binId();
ap.priority = last_packed.priority();
if (progressind) progressind(num_finished, last_packed.name);
if (on_packed)
on_packed(ap);
BOOST_LOG_TRIVIAL(debug) << "arrange " + last_packed.name + " succeed!"
<< ", plate id=" << ap.bed_idx << ", pos=" << last_packed.translation()
<< ", temp_type=" << last_packed.filament_temp_type;
}
});
m_pck.unfitIndicator([this](std::string name) {
BOOST_LOG_TRIVIAL(debug) << "arrange progress: " + name;
});
if (stopcond) m_pck.stopCondition(stopcond);
m_pconf.sortfunc= [&params](Item& i1, Item& i2) {
int p1 = i1.priority(), p2 = i2.priority();
if (p1 != p2)
return p1 > p2;
if (params.is_seq_print) {
return i1.bed_temp != i2.bed_temp ? (i1.bed_temp > i2.bed_temp) :
(i1.height != i2.height ? (i1.height < i2.height) : (i1.area() > i2.area()));
}
else {
// single color objects first, then objects with more colors
if (i1.extrude_ids.size() != i2.extrude_ids.size()) {
if (i1.extrude_ids.size() == 1 || i2.extrude_ids.size() == 1)
return i1.extrude_ids.size() == 1;
else
return i1.extrude_ids.size() > i2.extrude_ids.size();
}
else
return i1.bed_temp != i2.bed_temp ? (i1.bed_temp > i2.bed_temp) :
i1.extrude_ids != i2.extrude_ids ? (i1.extrude_ids.front() < i2.extrude_ids.front()) :
std::abs(i1.height/params.printable_height - i2.height/params.printable_height)>0.05 ? i1.height > i2.height:
(i1.area() > i2.area());
}
};
m_pck.configure(m_pconf);
}
template<class It> inline void operator()(It from, It to) {
m_rtree.clear();
m_item_count += size_t(to - from);
m_pck.execute(from, to);
m_item_count = 0;
}
PConfig& config() { return m_pconf; }
const PConfig& config() const { return m_pconf; }
inline void preload(std::vector<Item>& fixeditems) {
for(unsigned idx = 0; idx < fixeditems.size(); ++idx) {
Item& itm = fixeditems[idx];
itm.markAsFixedInBin(itm.binId());
}
m_item_count += fixeditems.size();
}
};
template<> std::function<double(const Item&, const ItemGroup&)> AutoArranger<Box>::get_objfn()
{
auto origin_pack = m_pconf.starting_point == PConfig::Alignment::CENTER ? m_bin.center() :
m_pconf.starting_point == PConfig::Alignment::TOP_RIGHT ? m_bin.maxCorner() : m_bin.minCorner();
return [this, origin_pack](const Item &itm, const ItemGroup&) {
auto result = objfunc(itm, origin_pack);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
//if (m_pconf.starting_point == PConfig::Alignment::BOTTOM_LEFT)
//{
// if (!sl::isInside(fullbb, m_bin))
// score += LARGE_COST_TO_REJECT;
//}
//else
{
double miss = Placer::overfit(fullbb, m_bin);
miss = miss > 0 ? miss : 0;
score += miss * miss;
if (score > LARGE_COST_TO_REJECT)
score = 1.5 * LARGE_COST_TO_REJECT;
}
return score;
};
}
template<> std::function<double(const Item&, const ItemGroup&)> AutoArranger<Circle>::get_objfn()
{
auto bb = sl::boundingBox(m_bin);
auto origin_pack = m_pconf.starting_point == PConfig::Alignment::CENTER ? bb.center() : bb.minCorner();
return [this, origin_pack](const Item &item, const ItemGroup&) {
auto result = objfunc(item, origin_pack);
double score = std::get<0>(result);
auto isBig = [this](const Item& itm) {
return itm.area() / m_bin_area > BIG_ITEM_TRESHOLD ;
};
if(isBig(item)) {
auto mp = m_merged_pile;
mp.push_back(item.transformedShape());
auto chull = sl::convexHull(mp);
double miss = Placer::overfit(chull, m_bin);
if(miss < 0) miss = 0;
score += miss*miss;
}
return score;
};
}
// Specialization for a generalized polygon.
// Warning: this is much slower than with Box bed. Need further speedup.
template<>
std::function<double(const Item &, const ItemGroup&)> AutoArranger<ExPolygon>::get_objfn()
{
auto bb = sl::boundingBox(m_bin);
auto origin_pack = m_pconf.starting_point == PConfig::Alignment::CENTER ? bb.center() : bb.minCorner();
return [this, origin_pack](const Item &itm, const ItemGroup&) {
auto result = objfunc(itm, origin_pack);
double score = std::get<0>(result);
auto mp = m_merged_pile;
mp.emplace_back(itm.transformedShape());
auto chull = sl::convexHull(mp);
if (m_pconf.starting_point == PConfig::Alignment::BOTTOM_LEFT)
{
if (!sl::isInside(chull, m_bin))
score += LARGE_COST_TO_REJECT;
}
else
{
double miss = Placer::overfit(chull, m_bin);
miss = miss > 0 ? miss : 0;
score += miss * miss;
}
return score;
};
}
template<class Bin> void remove_large_items(std::vector<Item> &items, Bin &&bin)
{
auto it = items.begin();
while (it != items.end())
{
//BBS: skip virtual object
if (!it->is_virt_object && !sl::isInside(it->transformedShape(), bin))
it = items.erase(it);
else
it++;
}
}
template<class S> Radians min_area_boundingbox_rotation(const S &sh)
{
try {
return minAreaBoundingBox<S, TCompute<S>, boost::rational<LargeInt>>(sh)
.angleToX();
}
catch (const std::exception& e) {
// min_area_boundingbox_rotation may throw exception of dividing 0 if the object is already perfectly aligned to X
BOOST_LOG_TRIVIAL(error) << "arranging min_area_boundingbox_rotation fails, msg=" << e.what();
return 0.0;
}
}
template<class S>
Radians fit_into_box_rotation(const S &sh, const _Box<TPoint<S>> &box)
{
return fitIntoBoxRotation<S, TCompute<S>, boost::rational<LargeInt>>(sh, box);
}
template<class BinT> // Arrange for arbitrary bin type
void _arrange(
std::vector<Item> & shapes,
std::vector<Item> & excludes,
const BinT & bin,
const ArrangeParams &params,
std::function<void(unsigned,std::string)> progressfn,
std::function<bool()> stopfn)
{
// Integer ceiling the min distance from the bed perimeters
coord_t md = params.min_obj_distance;
md = md / 2;
auto corrected_bin = bin;
//sl::offset(corrected_bin, md);
ArrangeParams mod_params = params;
mod_params.min_obj_distance = 0; // items are already inflated
AutoArranger<BinT> arranger{corrected_bin, mod_params, progressfn, stopfn};
remove_large_items(excludes, corrected_bin);
// If there is something on the plate
if (!excludes.empty()) arranger.preload(excludes);
std::vector<std::reference_wrapper<Item>> inp;
inp.reserve(shapes.size() + excludes.size());
for (auto &itm : shapes ) inp.emplace_back(itm);
for (auto &itm : excludes) inp.emplace_back(itm);
// Use the minimum bounding box rotation as a starting point.
// TODO: This only works for convex hull. If we ever switch to concave
// polygon nesting, a convex hull needs to be calculated.
if (params.allow_rotations) {
for (auto &itm : shapes) {
itm.rotation(min_area_boundingbox_rotation(itm.transformedShape()));
// If the item is too big, try to find a rotation that makes it fit
if constexpr (std::is_same_v<BinT, Box>) {
auto bb = itm.boundingBox();
if (bb.width() >= bin.width() || bb.height() >= bin.height())
itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin));
}
}
}
arranger(inp.begin(), inp.end());
for (Item &itm : inp) itm.inflation(0);
}
inline Box to_nestbin(const BoundingBox &bb) { return Box{{bb.min(X), bb.min(Y)}, {bb.max(X), bb.max(Y)}};}
inline Circle to_nestbin(const CircleBed &c) { return Circle({c.center()(0), c.center()(1)}, c.radius()); }
inline ExPolygon to_nestbin(const Polygon &p) { return ExPolygon{p}; }
inline Box to_nestbin(const InfiniteBed &bed) { return Box::infinite({bed.center.x(), bed.center.y()}); }
inline coord_t width(const BoundingBox& box) { return box.max.x() - box.min.x(); }
inline coord_t height(const BoundingBox& box) { return box.max.y() - box.min.y(); }
inline double area(const BoundingBox& box) { return double(width(box)) * height(box); }
inline double poly_area(const Points &pts) { return std::abs(Polygon::area(pts)); }
inline double distance_to(const Point& p1, const Point& p2)
{
double dx = p2.x() - p1.x();
double dy = p2.y() - p1.y();
return std::sqrt(dx*dx + dy*dy);
}
static CircleBed to_circle(const Point &center, const Points& points) {
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt : points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
ret = {};
break;
}
}
return ret;
}
// Create Item from Arrangeable
static void process_arrangeable(const ArrangePolygon &arrpoly,
std::vector<Item> & outp)
{
Polygon p = arrpoly.poly.contour;
const Vec2crd &offs = arrpoly.translation;
double rotation = arrpoly.rotation;
if (p.is_counter_clockwise()) p.reverse();
if (p.size() < 3)
return;
outp.emplace_back(std::move(p));
Item& item = outp.back();
item.rotation(rotation);
item.translation({offs.x(), offs.y()});
item.binId(arrpoly.bed_idx);
item.priority(arrpoly.priority);
item.itemId(arrpoly.itemid);
item.extrude_ids = arrpoly.extrude_ids;
item.height = arrpoly.height;
item.name = arrpoly.name;
//BBS: add virtual object logic
item.is_virt_object = arrpoly.is_virt_object;
item.is_wipe_tower = arrpoly.is_wipe_tower;
item.bed_temp = arrpoly.first_bed_temp;
item.print_temp = arrpoly.print_temp;
item.vitrify_temp = arrpoly.vitrify_temp;
item.inflation(arrpoly.inflation);
item.filament_temp_type = arrpoly.filament_temp_type;
}
template<class Fn> auto call_with_bed(const Points &bed, Fn &&fn)
{
if (bed.empty())
return fn(InfiniteBed{});
else if (bed.size() == 1)
return fn(InfiniteBed{bed.front()});
else {
auto bb = BoundingBox(bed);
CircleBed circ = to_circle(bb.center(), bed);
auto parea = poly_area(bed);
if ((1.0 - parea / area(bb)) < 1e-3)
return fn(bb);
else if (!std::isnan(circ.radius()))
return fn(circ);
else
return fn(Polygon(bed));
}
}
template<>
void arrange(ArrangePolygons & items,
const ArrangePolygons &excludes,
const Points & bed,
const ArrangeParams & params)
{
call_with_bed(bed, [&](const auto &bin) {
arrange(items, excludes, bin, params);
});
}
template<class BedT>
void arrange(ArrangePolygons & arrangables,
const ArrangePolygons &excludes,
const BedT & bed,
const ArrangeParams & params)
{
namespace clppr = Slic3r::ClipperLib;
std::vector<Item> items, fixeditems;
items.reserve(arrangables.size());
for (ArrangePolygon &arrangeable : arrangables)
process_arrangeable(arrangeable, items);
for (const ArrangePolygon &fixed: excludes)
process_arrangeable(fixed, fixeditems);
for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON));
_arrange(items, fixeditems, to_nestbin(bed), params, params.progressind, params.stopcondition);
for(size_t i = 0; i < items.size(); ++i) {
Point tr = items[i].translation();
arrangables[i].translation = {coord_t(tr.x()), coord_t(tr.y())};
arrangables[i].rotation = items[i].rotation();
arrangables[i].bed_idx = items[i].binId();
arrangables[i].itemid = items[i].itemId(); // arrange order is useful for sequential printing
}
}
template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const BoundingBox &bed, const ArrangeParams &params);
template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const CircleBed &bed, const ArrangeParams &params);
template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const Polygon &bed, const ArrangeParams &params);
template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const InfiniteBed &bed, const ArrangeParams &params);
} // namespace arr
} // namespace Slic3r