650 lines
30 KiB
C++
650 lines
30 KiB
C++
|
#ifndef slic3r_ExtrusionEntity_hpp_
|
||
|
#define slic3r_ExtrusionEntity_hpp_
|
||
|
|
||
|
#include "libslic3r.h"
|
||
|
#include "Polygon.hpp"
|
||
|
#include "Polyline.hpp"
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <string_view>
|
||
|
#include <numeric>
|
||
|
|
||
|
namespace Slic3r {
|
||
|
|
||
|
class ExPolygon;
|
||
|
using ExPolygons = std::vector<ExPolygon>;
|
||
|
class ExtrusionEntityCollection;
|
||
|
class Extruder;
|
||
|
|
||
|
// Each ExtrusionRole value identifies a distinct set of { extruder, speed }
|
||
|
enum ExtrusionRole : uint8_t {
|
||
|
erNone,
|
||
|
erPerimeter,
|
||
|
erExternalPerimeter,
|
||
|
erOverhangPerimeter,
|
||
|
erInternalInfill,
|
||
|
erSolidInfill,
|
||
|
erTopSolidInfill,
|
||
|
erBottomSurface,
|
||
|
erIroning,
|
||
|
erBridgeInfill,
|
||
|
erGapFill,
|
||
|
erSkirt,
|
||
|
erBrim,
|
||
|
erSupportMaterial,
|
||
|
erSupportMaterialInterface,
|
||
|
erSupportTransition,
|
||
|
erWipeTower,
|
||
|
erCustom,
|
||
|
// Extrusion role for a collection with multiple extrusion roles.
|
||
|
erMixed,
|
||
|
erCount
|
||
|
};
|
||
|
|
||
|
// Special flags describing loop
|
||
|
enum ExtrusionLoopRole {
|
||
|
elrDefault,
|
||
|
elrContourInternalPerimeter,
|
||
|
elrSkirt,
|
||
|
elrPerimeterHole,
|
||
|
};
|
||
|
|
||
|
|
||
|
inline bool is_perimeter(ExtrusionRole role)
|
||
|
{
|
||
|
return role == erPerimeter
|
||
|
|| role == erExternalPerimeter
|
||
|
|| role == erOverhangPerimeter;
|
||
|
}
|
||
|
|
||
|
inline bool is_infill(ExtrusionRole role)
|
||
|
{
|
||
|
return role == erBridgeInfill
|
||
|
|| role == erInternalInfill
|
||
|
|| role == erSolidInfill
|
||
|
|| role == erTopSolidInfill
|
||
|
|| role == erBottomSurface
|
||
|
|| role == erIroning;
|
||
|
}
|
||
|
|
||
|
inline bool is_top_surface(ExtrusionRole role)
|
||
|
{
|
||
|
return role == erTopSolidInfill;
|
||
|
}
|
||
|
|
||
|
inline bool is_solid_infill(ExtrusionRole role)
|
||
|
{
|
||
|
return role == erBridgeInfill
|
||
|
|| role == erSolidInfill
|
||
|
|| role == erTopSolidInfill
|
||
|
|| role == erBottomSurface
|
||
|
|| role == erIroning;
|
||
|
}
|
||
|
|
||
|
inline bool is_bridge(ExtrusionRole role) {
|
||
|
return role == erBridgeInfill
|
||
|
|| role == erOverhangPerimeter;
|
||
|
}
|
||
|
|
||
|
class ExtrusionEntity
|
||
|
{
|
||
|
public:
|
||
|
virtual ExtrusionRole role() const = 0;
|
||
|
virtual bool is_collection() const { return false; }
|
||
|
virtual bool is_loop() const { return false; }
|
||
|
virtual bool can_reverse() const { return true; }
|
||
|
virtual bool can_sort() const { return true; }//BBS: only used in ExtrusionEntityCollection
|
||
|
virtual void set_reverse() {}
|
||
|
virtual ExtrusionEntity* clone() const = 0;
|
||
|
// Create a new object, initialize it with this object using the move semantics.
|
||
|
virtual ExtrusionEntity* clone_move() = 0;
|
||
|
virtual ~ExtrusionEntity() {}
|
||
|
virtual void reverse() = 0;
|
||
|
virtual const Point& first_point() const = 0;
|
||
|
virtual const Point& last_point() const = 0;
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||
|
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
|
||
|
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||
|
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||
|
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||
|
virtual double min_mm3_per_mm() const = 0;
|
||
|
virtual Polyline as_polyline() const = 0;
|
||
|
virtual void collect_polylines(Polylines &dst) const = 0;
|
||
|
virtual void collect_points(Points &dst) const = 0;
|
||
|
virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
|
||
|
virtual double length() const = 0;
|
||
|
virtual double total_volume() const = 0;
|
||
|
|
||
|
static std::string role_to_string(ExtrusionRole role);
|
||
|
static ExtrusionRole string_to_role(const std::string_view role);
|
||
|
};
|
||
|
|
||
|
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
|
||
|
|
||
|
class ExtrusionPath : public ExtrusionEntity
|
||
|
{
|
||
|
public:
|
||
|
Polyline polyline;
|
||
|
double overhang_degree = 0;
|
||
|
int curve_degree = 0;
|
||
|
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
|
||
|
double mm3_per_mm;
|
||
|
// Width of the extrusion, used for visualization purposes.
|
||
|
float width;
|
||
|
// Height of the extrusion, used for visualization purposes.
|
||
|
float height;
|
||
|
double smooth_speed = 0;
|
||
|
|
||
|
ExtrusionPath() : mm3_per_mm(-1), width(-1), height(-1), m_role(erNone), m_no_extrusion(false) {}
|
||
|
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role), m_no_extrusion(false) {}
|
||
|
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height, bool no_extrusion = false) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role), m_no_extrusion(no_extrusion) {}
|
||
|
ExtrusionPath(double overhang_degree, int curve_degree, ExtrusionRole role, double mm3_per_mm, float width, float height) : overhang_degree(overhang_degree), curve_degree(curve_degree), mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {}
|
||
|
|
||
|
ExtrusionPath(const ExtrusionPath &rhs)
|
||
|
: polyline(rhs.polyline)
|
||
|
, overhang_degree(rhs.overhang_degree)
|
||
|
, curve_degree(rhs.curve_degree)
|
||
|
, mm3_per_mm(rhs.mm3_per_mm)
|
||
|
, width(rhs.width)
|
||
|
, height(rhs.height)
|
||
|
, smooth_speed(rhs.smooth_speed)
|
||
|
, m_can_reverse(rhs.m_can_reverse)
|
||
|
, m_role(rhs.m_role)
|
||
|
, m_no_extrusion(rhs.m_no_extrusion)
|
||
|
{}
|
||
|
ExtrusionPath(ExtrusionPath &&rhs)
|
||
|
: polyline(std::move(rhs.polyline))
|
||
|
, overhang_degree(rhs.overhang_degree)
|
||
|
, curve_degree(rhs.curve_degree)
|
||
|
, mm3_per_mm(rhs.mm3_per_mm)
|
||
|
, width(rhs.width)
|
||
|
, height(rhs.height)
|
||
|
, smooth_speed(rhs.smooth_speed)
|
||
|
, m_can_reverse(rhs.m_can_reverse)
|
||
|
, m_role(rhs.m_role)
|
||
|
, m_no_extrusion(rhs.m_no_extrusion)
|
||
|
{}
|
||
|
ExtrusionPath(const Polyline &polyline, const ExtrusionPath &rhs)
|
||
|
: polyline(polyline)
|
||
|
, overhang_degree(rhs.overhang_degree)
|
||
|
, curve_degree(rhs.curve_degree)
|
||
|
, mm3_per_mm(rhs.mm3_per_mm)
|
||
|
, width(rhs.width)
|
||
|
, height(rhs.height)
|
||
|
, smooth_speed(rhs.smooth_speed)
|
||
|
, m_can_reverse(rhs.m_can_reverse)
|
||
|
, m_role(rhs.m_role)
|
||
|
, m_no_extrusion(rhs.m_no_extrusion)
|
||
|
{}
|
||
|
ExtrusionPath(Polyline &&polyline, const ExtrusionPath &rhs)
|
||
|
: polyline(std::move(polyline))
|
||
|
, overhang_degree(rhs.overhang_degree)
|
||
|
, curve_degree(rhs.curve_degree)
|
||
|
, mm3_per_mm(rhs.mm3_per_mm)
|
||
|
, width(rhs.width)
|
||
|
, height(rhs.height)
|
||
|
, smooth_speed(rhs.smooth_speed)
|
||
|
, m_can_reverse(rhs.m_can_reverse)
|
||
|
, m_role(rhs.m_role)
|
||
|
, m_no_extrusion(rhs.m_no_extrusion)
|
||
|
{}
|
||
|
|
||
|
ExtrusionPath& operator=(const ExtrusionPath& rhs) {
|
||
|
m_can_reverse = rhs.m_can_reverse;
|
||
|
m_role = rhs.m_role;
|
||
|
m_no_extrusion = rhs.m_no_extrusion;
|
||
|
this->mm3_per_mm = rhs.mm3_per_mm;
|
||
|
this->width = rhs.width;
|
||
|
this->height = rhs.height;
|
||
|
this->smooth_speed = rhs.smooth_speed;
|
||
|
this->overhang_degree = rhs.overhang_degree;
|
||
|
this->curve_degree = rhs.curve_degree;
|
||
|
this->polyline = rhs.polyline;
|
||
|
return *this;
|
||
|
}
|
||
|
ExtrusionPath& operator=(ExtrusionPath&& rhs) {
|
||
|
m_can_reverse = rhs.m_can_reverse;
|
||
|
m_role = rhs.m_role;
|
||
|
m_no_extrusion = rhs.m_no_extrusion;
|
||
|
this->mm3_per_mm = rhs.mm3_per_mm;
|
||
|
this->width = rhs.width;
|
||
|
this->height = rhs.height;
|
||
|
this->smooth_speed = rhs.smooth_speed;
|
||
|
this->overhang_degree = rhs.overhang_degree;
|
||
|
this->curve_degree = rhs.curve_degree;
|
||
|
this->polyline = std::move(rhs.polyline);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
ExtrusionEntity* clone() const override { return new ExtrusionPath(*this); }
|
||
|
// Create a new object, initialize it with this object using the move semantics.
|
||
|
ExtrusionEntity* clone_move() override { return new ExtrusionPath(std::move(*this)); }
|
||
|
void reverse() override { this->polyline.reverse(); }
|
||
|
const Point& first_point() const override { return this->polyline.points.front(); }
|
||
|
const Point& last_point() const override { return this->polyline.points.back(); }
|
||
|
size_t size() const { return this->polyline.size(); }
|
||
|
bool empty() const { return this->polyline.empty(); }
|
||
|
bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
|
||
|
// Produce a list of extrusion paths into retval by clipping this path by ExPolygons.
|
||
|
// Currently not used.
|
||
|
void intersect_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const;
|
||
|
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygons.
|
||
|
// Currently not used.
|
||
|
void subtract_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const;
|
||
|
void clip_end(double distance);
|
||
|
void simplify(double tolerance);
|
||
|
double length() const override;
|
||
|
ExtrusionRole role() const override { return m_role; }
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||
|
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
|
||
|
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||
|
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||
|
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||
|
double min_mm3_per_mm() const override { return this->mm3_per_mm; }
|
||
|
Polyline as_polyline() const override { return this->polyline; }
|
||
|
void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
|
||
|
void collect_points(Points &dst) const override { append(dst, this->polyline.points); }
|
||
|
double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
|
||
|
|
||
|
void set_overhang_degree(int overhang) {
|
||
|
if (is_perimeter(m_role))
|
||
|
overhang_degree = (overhang < 0)?0:(overhang > 10 ? 10 : overhang);
|
||
|
};
|
||
|
int get_overhang_degree() const {
|
||
|
// only perimeter has overhang degree. Other return 0;
|
||
|
if (is_perimeter(m_role))
|
||
|
return (int)overhang_degree;
|
||
|
return 0;
|
||
|
};
|
||
|
void set_curve_degree(int curve) {
|
||
|
curve_degree = (curve < 0)?0:(curve > 10 ? 10 : curve);
|
||
|
};
|
||
|
int get_curve_degree() const {
|
||
|
return curve_degree;
|
||
|
};
|
||
|
//BBS: add new simplifing method by fitting arc
|
||
|
void simplify_by_fitting_arc(double tolerance);
|
||
|
//BBS:
|
||
|
bool is_force_no_extrusion() const { return m_no_extrusion; }
|
||
|
void set_force_no_extrusion(bool no_extrusion) { m_no_extrusion = no_extrusion; }
|
||
|
void set_extrusion_role(ExtrusionRole extrusion_role) { m_role = extrusion_role; }
|
||
|
void set_reverse() override { m_can_reverse = false; }
|
||
|
bool can_reverse() const override { return m_can_reverse; }
|
||
|
|
||
|
bool can_merge(const ExtrusionPath& other);
|
||
|
|
||
|
private:
|
||
|
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
|
||
|
bool m_can_reverse = true;
|
||
|
ExtrusionRole m_role;
|
||
|
//BBS
|
||
|
bool m_no_extrusion = false;
|
||
|
};
|
||
|
|
||
|
class ExtrusionPathSloped : public ExtrusionPath
|
||
|
{
|
||
|
public:
|
||
|
struct Slope
|
||
|
{
|
||
|
double z_ratio{1.};
|
||
|
double e_ratio{1.};
|
||
|
double speed_record{0.0};
|
||
|
};
|
||
|
|
||
|
Slope slope_begin;
|
||
|
Slope slope_end;
|
||
|
ExtrusionPathSloped(const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(rhs), slope_begin(begin), slope_end(end) {}
|
||
|
ExtrusionPathSloped(ExtrusionPath &&rhs, const Slope &begin, const Slope &end) : ExtrusionPath(std::move(rhs)), slope_begin(begin), slope_end(end) {}
|
||
|
ExtrusionPathSloped(const Polyline &polyline, const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(polyline, rhs), slope_begin(begin), slope_end(end)
|
||
|
{}
|
||
|
ExtrusionPathSloped(Polyline &&polyline, const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(std::move(polyline), rhs), slope_begin(begin), slope_end(end)
|
||
|
{}
|
||
|
|
||
|
Slope interpolate(const double ratio) const {
|
||
|
return {
|
||
|
lerp(slope_begin.z_ratio, slope_end.z_ratio, ratio),
|
||
|
lerp(slope_begin.e_ratio, slope_end.e_ratio, ratio),
|
||
|
lerp(slope_begin.speed_record, slope_end.speed_record, ratio),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
bool is_flat() const { return is_approx(slope_begin.z_ratio, slope_end.z_ratio); }
|
||
|
};
|
||
|
|
||
|
class ExtrusionPathOriented : public ExtrusionPath
|
||
|
{
|
||
|
public:
|
||
|
ExtrusionPathOriented(ExtrusionRole role, double mm3_per_mm, float width, float height) : ExtrusionPath(role, mm3_per_mm, width, height) {}
|
||
|
ExtrusionEntity* clone() const override { return new ExtrusionPathOriented(*this); }
|
||
|
// Create a new object, initialize it with this object using the move semantics.
|
||
|
ExtrusionEntity* clone_move() override { return new ExtrusionPathOriented(std::move(*this)); }
|
||
|
virtual bool can_reverse() const override { return false; }
|
||
|
};
|
||
|
|
||
|
typedef std::vector<ExtrusionPath> ExtrusionPaths;
|
||
|
|
||
|
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
|
||
|
class ExtrusionMultiPath : public ExtrusionEntity
|
||
|
{
|
||
|
public:
|
||
|
ExtrusionPaths paths;
|
||
|
|
||
|
ExtrusionMultiPath() {}
|
||
|
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths), m_can_reverse(rhs.m_can_reverse) {}
|
||
|
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)), m_can_reverse(rhs.m_can_reverse) {}
|
||
|
ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {}
|
||
|
ExtrusionMultiPath(const ExtrusionPath &path) {this->paths.push_back(path); m_can_reverse = path.can_reverse(); }
|
||
|
|
||
|
ExtrusionMultiPath &operator=(const ExtrusionMultiPath &rhs)
|
||
|
{
|
||
|
this->paths = rhs.paths;
|
||
|
m_can_reverse = rhs.m_can_reverse;
|
||
|
return *this;
|
||
|
}
|
||
|
ExtrusionMultiPath &operator=(ExtrusionMultiPath &&rhs)
|
||
|
{
|
||
|
this->paths = std::move(rhs.paths);
|
||
|
m_can_reverse = rhs.m_can_reverse;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
bool is_loop() const override { return false; }
|
||
|
bool can_reverse() const override { return m_can_reverse; }
|
||
|
void set_reverse() override { m_can_reverse = false; }
|
||
|
ExtrusionEntity* clone() const override { return new ExtrusionMultiPath(*this); }
|
||
|
// Create a new object, initialize it with this object using the move semantics.
|
||
|
ExtrusionEntity* clone_move() override { return new ExtrusionMultiPath(std::move(*this)); }
|
||
|
void reverse() override;
|
||
|
const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
|
||
|
const Point& last_point() const override { return this->paths.back().polyline.points.back(); }
|
||
|
size_t size() const { return this->paths.size(); }
|
||
|
bool empty() const { return this->paths.empty(); }
|
||
|
double length() const override;
|
||
|
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||
|
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
|
||
|
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||
|
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||
|
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||
|
double min_mm3_per_mm() const override;
|
||
|
Polyline as_polyline() const override;
|
||
|
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
|
||
|
void collect_points(Points &dst) const override {
|
||
|
size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
|
||
|
dst.reserve(dst.size() + n);
|
||
|
for (const ExtrusionPath &p : this->paths)
|
||
|
append(dst, p.polyline.points);
|
||
|
}
|
||
|
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||
|
|
||
|
private:
|
||
|
bool m_can_reverse = true;
|
||
|
};
|
||
|
|
||
|
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
|
||
|
class ExtrusionLoop : public ExtrusionEntity
|
||
|
{
|
||
|
public:
|
||
|
ExtrusionPaths paths;
|
||
|
|
||
|
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {}
|
||
|
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {}
|
||
|
ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {}
|
||
|
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
|
||
|
{ this->paths.push_back(path); }
|
||
|
ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
|
||
|
{ this->paths.emplace_back(std::move(path)); }
|
||
|
bool is_loop() const override{ return true; }
|
||
|
bool can_reverse() const override { return false; }
|
||
|
ExtrusionEntity* clone() const override{ return new ExtrusionLoop (*this); }
|
||
|
// Create a new object, initialize it with this object using the move semantics.
|
||
|
ExtrusionEntity* clone_move() override { return new ExtrusionLoop(std::move(*this)); }
|
||
|
bool make_clockwise();
|
||
|
bool make_counter_clockwise();
|
||
|
bool is_clockwise() { return this->polygon().is_clockwise(); }
|
||
|
bool is_counter_clockwise() { return this->polygon().is_counter_clockwise(); }
|
||
|
void reverse() override;
|
||
|
const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
|
||
|
const Point& last_point() const override { assert(this->first_point() == this->paths.back().polyline.points.back()); return this->first_point(); }
|
||
|
Polygon polygon() const;
|
||
|
double length() const override;
|
||
|
bool split_at_vertex(const Point &point, const double scaled_epsilon = scaled<double>(0.001));
|
||
|
void split_at(const Point &point, bool prefer_non_overhang, const double scaled_epsilon = scaled<double>(0.001));
|
||
|
struct ClosestPathPoint
|
||
|
{
|
||
|
size_t path_idx;
|
||
|
size_t segment_idx;
|
||
|
Point foot_pt;
|
||
|
};
|
||
|
ClosestPathPoint get_closest_path_and_point(const Point &point, bool prefer_non_overhang) const;
|
||
|
void clip_end(double distance, ExtrusionPaths* paths) const;
|
||
|
// Test, whether the point is extruded by a bridging flow.
|
||
|
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
|
||
|
bool has_overhang_point(const Point &point) const;
|
||
|
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
|
||
|
ExtrusionLoopRole loop_role() const { return m_loop_role; }
|
||
|
void set_loop_role(ExtrusionLoopRole role) { m_loop_role = role; }
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
|
||
|
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
|
||
|
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
|
||
|
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
|
||
|
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
|
||
|
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
|
||
|
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
|
||
|
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
|
||
|
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||
|
double min_mm3_per_mm() const override;
|
||
|
Polyline as_polyline() const override { return this->polygon().split_at_first_point(); }
|
||
|
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
|
||
|
void collect_points(Points &dst) const override {
|
||
|
size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
|
||
|
dst.reserve(dst.size() + n);
|
||
|
for (const ExtrusionPath &p : this->paths)
|
||
|
append(dst, p.polyline.points);
|
||
|
}
|
||
|
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||
|
// check if the loop is smooth, angle_threshold is in radians, default is 10 degrees
|
||
|
bool check_seam_point_angle(double angle_threshold = 0.174, double min_arm_length = 0.025) const;
|
||
|
//static inline std::string role_to_string(ExtrusionLoopRole role);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
bool validate() const {
|
||
|
assert(this->first_point() == this->paths.back().polyline.points.back());
|
||
|
for (size_t i = 1; i < paths.size(); ++ i)
|
||
|
assert(this->paths[i - 1].polyline.points.back() == this->paths[i].polyline.points.front());
|
||
|
return true;
|
||
|
}
|
||
|
#endif /* NDEBUG */
|
||
|
|
||
|
private:
|
||
|
ExtrusionLoopRole m_loop_role;
|
||
|
};
|
||
|
|
||
|
class ExtrusionLoopSloped : public ExtrusionLoop
|
||
|
{
|
||
|
public:
|
||
|
std::vector<ExtrusionPathSloped> starts;
|
||
|
std::vector<ExtrusionPathSloped> ends;
|
||
|
double target_speed{0.0};
|
||
|
|
||
|
ExtrusionLoopSloped(
|
||
|
ExtrusionPaths &original_paths, double seam_gap, double slope_min_length, double slope_max_segment_length, double start_slope_ratio, ExtrusionLoopRole role = elrDefault);
|
||
|
|
||
|
[[nodiscard]] std::vector<const ExtrusionPath *> get_all_paths() const;
|
||
|
void clip_slope(double distance, bool inter_perimeter = false );
|
||
|
void clip_end(const double distance);
|
||
|
void clip_front(const double distance);
|
||
|
double slope_path_length();
|
||
|
void slowdown_slope_speed();
|
||
|
};
|
||
|
|
||
|
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
|
||
|
dst.back().polyline = polyline;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
|
||
|
dst.back().polyline = polyline;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
|
||
|
dst.back().polyline = std::move(polyline);
|
||
|
}
|
||
|
polylines.clear();
|
||
|
}
|
||
|
|
||
|
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
|
||
|
dst.back().polyline = std::move(polyline);
|
||
|
}
|
||
|
polylines.clear();
|
||
|
}
|
||
|
|
||
|
inline void extrusion_paths_append(ExtrusionPaths &dst, Polyline &&polyline, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + 1);
|
||
|
if (polyline.is_valid()) {
|
||
|
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
|
||
|
dst.back().polyline = std::move(polyline);
|
||
|
}
|
||
|
polyline.clear();
|
||
|
}
|
||
|
|
||
|
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
|
||
|
dst.push_back(extrusion_path);
|
||
|
extrusion_path->polyline = polyline;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height, bool can_reverse = true)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines)
|
||
|
if (polyline.is_valid()) {
|
||
|
ExtrusionPath *extrusion_path = can_reverse ? new ExtrusionPath(role, mm3_per_mm, width, height) : new ExtrusionPathOriented(role, mm3_per_mm, width, height);
|
||
|
dst.push_back(extrusion_path);
|
||
|
extrusion_path->polyline = std::move(polyline);
|
||
|
}
|
||
|
polylines.clear();
|
||
|
}
|
||
|
|
||
|
//BBS: a kind of special extrusion path has start and end wiping for half spacing
|
||
|
inline void extrusion_entities_append_paths_with_wipe(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
Point new_start, new_end, last_end_point;
|
||
|
bool last_end_point_valid = false;
|
||
|
Vec2d temp;
|
||
|
ExtrusionMultiPath* multi_path = new ExtrusionMultiPath();
|
||
|
for (Polyline& polyline : polylines) {
|
||
|
if (polyline.is_valid()) {
|
||
|
|
||
|
if (last_end_point_valid) {
|
||
|
Point temp = polyline.first_point() - last_end_point;
|
||
|
if (Vec2d(temp.x(), temp.y()).norm() <= 3 * scaled(width)) {
|
||
|
multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height, true));
|
||
|
multi_path->paths.back().polyline = std::move(Polyline(last_end_point, polyline.first_point()));
|
||
|
} else {
|
||
|
dst.push_back(multi_path);
|
||
|
multi_path = new ExtrusionMultiPath();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
|
||
|
multi_path->paths.back().polyline = std::move(polyline);
|
||
|
last_end_point_valid = true;
|
||
|
last_end_point = multi_path->paths.back().polyline.last_point();
|
||
|
}
|
||
|
}
|
||
|
if (!multi_path->empty())
|
||
|
dst.push_back(multi_path);
|
||
|
polylines.clear();
|
||
|
dst.shrink_to_fit();
|
||
|
}
|
||
|
|
||
|
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + loops.size());
|
||
|
for (Polygon &poly : loops) {
|
||
|
if (poly.is_valid()) {
|
||
|
ExtrusionPath path(role, mm3_per_mm, width, height);
|
||
|
path.polyline.points = std::move(poly.points);
|
||
|
path.polyline.points.push_back(path.polyline.points.front());
|
||
|
dst.emplace_back(new ExtrusionLoop(std::move(path)));
|
||
|
}
|
||
|
}
|
||
|
loops.clear();
|
||
|
}
|
||
|
|
||
|
inline void extrusion_entities_append_loops_and_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
||
|
{
|
||
|
dst.reserve(dst.size() + polylines.size());
|
||
|
for (Polyline &polyline : polylines) {
|
||
|
if (polyline.is_valid()) {
|
||
|
if (polyline.is_closed()) {
|
||
|
ExtrusionPath extrusion_path(role, mm3_per_mm, width, height);
|
||
|
extrusion_path.polyline = std::move(polyline);
|
||
|
dst.emplace_back(new ExtrusionLoop(std::move(extrusion_path)));
|
||
|
} else {
|
||
|
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
|
||
|
extrusion_path->polyline = std::move(polyline);
|
||
|
dst.emplace_back(extrusion_path);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
polylines.clear();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|