BambuStudio/libslic3r/Optimize/BruteforceOptimizer.hpp

141 lines
4.3 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#ifndef BRUTEFORCEOPTIMIZER_HPP
#define BRUTEFORCEOPTIMIZER_HPP
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
namespace detail {
// Implementing a bruteforce optimizer
// Return the number of iterations needed to reach a specific grid position (idx)
template<size_t N>
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
{
long ret = 0;
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
return ret;
}
// Implementation of a grid search where the search interval is sampled in
// equidistant points for each dimension. Grid size determines the number of
// samples for one dimension so the number of function calls is gridsize ^ dimension.
struct AlgBurteForce {
bool to_min;
StopCriteria stc;
size_t gridsz;
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
// This function is called recursively for each dimension and generates
// the grid values for the particular dimension. If D is less than zero,
// the object function input values are generated for each dimension and it
// can be evaluated. The current best score is compared with the newly
// returned score and changed appropriately.
template<int D, size_t N, class Fn, class Cmp>
bool run(std::array<size_t, N> &idx,
Result<N> &result,
const Bounds<N> &bounds,
Fn &&fn,
Cmp &&cmp)
{
if (stc.stop_condition()) return false;
if constexpr (D < 0) { // Let's evaluate fn
Input<N> inp;
auto max_iter = stc.max_iterations();
if (max_iter && num_iter(idx, gridsz) >= max_iter)
return false;
for (size_t d = 0; d < N; ++d) {
const Bound &b = bounds[d];
double step = (b.max() - b.min()) / (gridsz - 1);
inp[d] = b.min() + idx[d] * step;
}
auto score = fn(inp);
if (cmp(score, result.score)) { // Change current score to the new
double absdiff = std::abs(score - result.score);
result.score = score;
result.optimum = inp;
// Check if the required precision is reached.
if (absdiff < stc.abs_score_diff() ||
absdiff < stc.rel_score_diff() * std::abs(score))
return false;
}
} else {
for (size_t i = 0; i < gridsz; ++i) {
idx[D] = i; // Mark the current grid position and dig down
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::forward<Cmp>(cmp)))
return false;
}
}
return true;
}
template<class Fn, size_t N>
Result<N> optimize(Fn&& fn,
const Input<N> &/*initvals*/,
const Bounds<N>& bounds)
{
std::array<size_t, N> idx = {};
Result<N> result;
if (to_min) {
result.score = std::numeric_limits<double>::max();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::less<double>{});
}
else {
result.score = std::numeric_limits<double>::lowest();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::greater<double>{});
}
return result;
}
};
} // namespace detail
using AlgBruteForce = detail::AlgBurteForce;
template<>
class Optimizer<AlgBruteForce> {
AlgBruteForce m_alg;
public:
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
: m_alg{cr, gridsz}
{}
Optimizer& to_max() { m_alg.to_min = false; return *this; }
Optimizer& to_min() { m_alg.to_min = true; return *this; }
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
}
Optimizer &set_criteria(const StopCriteria &cr)
{
m_alg.stc = cr; return *this;
}
const StopCriteria &get_criteria() const { return m_alg.stc; }
};
}} // namespace Slic3r::opt
#endif // BRUTEFORCEOPTIMIZER_HPP