BambuStudio/libslic3r/Optimize/NLoptOptimizer.hpp

234 lines
6.6 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#ifndef NLOPTOPTIMIZER_HPP
#define NLOPTOPTIMIZER_HPP
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <nlopt.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <utility>
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
namespace detail {
// Helper types for NLopt algorithm selection in template contexts
template<nlopt_algorithm alg> struct NLoptAlg {};
// NLopt can combine multiple algorithms if one is global an other is a local
// method. This is how template specializations can be informed about this fact.
template<nlopt_algorithm gl_alg, nlopt_algorithm lc_alg = NLOPT_LN_NELDERMEAD>
struct NLoptAlgComb {};
template<class M> struct IsNLoptAlg {
static const constexpr bool value = false;
};
template<nlopt_algorithm a> struct IsNLoptAlg<NLoptAlg<a>> {
static const constexpr bool value = true;
};
template<nlopt_algorithm a1, nlopt_algorithm a2>
struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
static const constexpr bool value = true;
};
template<class M, class T = void>
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
enum class OptDir { MIN, MAX }; // Where to optimize
struct NLopt { // Helper RAII class for nlopt_opt
nlopt_opt ptr = nullptr;
template<class...A> explicit NLopt(A&&...a)
{
ptr = nlopt_create(std::forward<A>(a)...);
}
NLopt(const NLopt&) = delete;
NLopt(NLopt&&) = delete;
NLopt& operator=(const NLopt&) = delete;
NLopt& operator=(NLopt&&) = delete;
~NLopt() { nlopt_destroy(ptr); }
};
template<class Method> class NLoptOpt {};
// Optimizers based on NLopt.
template<nlopt_algorithm alg> class NLoptOpt<NLoptAlg<alg>> {
protected:
StopCriteria m_stopcr;
OptDir m_dir;
template<class Fn> using TOptData =
std::tuple<std::remove_reference_t<Fn>*, NLoptOpt*, nlopt_opt>;
template<class Fn, size_t N>
static double optfunc(unsigned n, const double *params,
double *gradient,
void *data)
{
assert(n >= N);
auto tdata = static_cast<TOptData<Fn>*>(data);
if (std::get<1>(*tdata)->m_stopcr.stop_condition())
nlopt_force_stop(std::get<2>(*tdata));
auto fnptr = std::get<0>(*tdata);
auto funval = to_arr<N>(params);
double scoreval = 0.;
using RetT = decltype((*fnptr)(funval));
if constexpr (std::is_convertible_v<RetT, ScoreGradient<N>>) {
ScoreGradient<N> score = (*fnptr)(funval);
for (size_t i = 0; i < n; ++i) gradient[i] = (*score.gradient)[i];
scoreval = score.score;
} else {
scoreval = (*fnptr)(funval);
}
return scoreval;
}
template<size_t N>
void set_up(NLopt &nl, const Bounds<N>& bounds)
{
std::array<double, N> lb, ub;
for (size_t i = 0; i < N; ++i) {
lb[i] = bounds[i].min();
ub[i] = bounds[i].max();
}
nlopt_set_lower_bounds(nl.ptr, lb.data());
nlopt_set_upper_bounds(nl.ptr, ub.data());
double abs_diff = m_stopcr.abs_score_diff();
double rel_diff = m_stopcr.rel_score_diff();
double stopval = m_stopcr.stop_score();
if(!std::isnan(abs_diff)) nlopt_set_ftol_abs(nl.ptr, abs_diff);
if(!std::isnan(rel_diff)) nlopt_set_ftol_rel(nl.ptr, rel_diff);
if(!std::isnan(stopval)) nlopt_set_stopval(nl.ptr, stopval);
if(m_stopcr.max_iterations() > 0)
nlopt_set_maxeval(nl.ptr, m_stopcr.max_iterations());
}
template<class Fn, size_t N>
Result<N> optimize(NLopt &nl, Fn &&fn, const Input<N> &initvals)
{
Result<N> r;
TOptData<Fn> data = std::make_tuple(&fn, this, nl.ptr);
switch(m_dir) {
case OptDir::MIN:
nlopt_set_min_objective(nl.ptr, optfunc<Fn, N>, &data); break;
case OptDir::MAX:
nlopt_set_max_objective(nl.ptr, optfunc<Fn, N>, &data); break;
}
r.optimum = initvals;
r.resultcode = nlopt_optimize(nl.ptr, r.optimum.data(), &r.score);
return r;
}
public:
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
NLopt nl{alg, N};
set_up(nl, bounds);
return optimize(nl, std::forward<Func>(func), initvals);
}
explicit NLoptOpt(StopCriteria stopcr = {}) : m_stopcr(stopcr) {}
void set_criteria(const StopCriteria &cr) { m_stopcr = cr; }
const StopCriteria &get_criteria() const noexcept { return m_stopcr; }
void set_dir(OptDir dir) noexcept { m_dir = dir; }
void seed(long s) { nlopt_srand(s); }
};
template<nlopt_algorithm glob, nlopt_algorithm loc>
class NLoptOpt<NLoptAlgComb<glob, loc>>: public NLoptOpt<NLoptAlg<glob>>
{
using Base = NLoptOpt<NLoptAlg<glob>>;
public:
template<class Fn, size_t N>
Result<N> optimize(Fn&& f,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
NLopt nl_glob{glob, N}, nl_loc{loc, N};
Base::set_up(nl_glob, bounds);
Base::set_up(nl_loc, bounds);
nlopt_set_local_optimizer(nl_glob.ptr, nl_loc.ptr);
return Base::optimize(nl_glob, std::forward<Fn>(f), initvals);
}
explicit NLoptOpt(StopCriteria stopcr = {}) : Base{stopcr} {}
};
} // namespace detail;
// Optimizers based on NLopt.
template<class M> class Optimizer<M, detail::NLoptOnly<M>> {
detail::NLoptOpt<M> m_opt;
public:
Optimizer& to_max() { m_opt.set_dir(detail::OptDir::MAX); return *this; }
Optimizer& to_min() { m_opt.set_dir(detail::OptDir::MIN); return *this; }
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
return m_opt.optimize(std::forward<Func>(func), initvals, bounds);
}
explicit Optimizer(StopCriteria stopcr = {}) : m_opt(stopcr) {}
Optimizer &set_criteria(const StopCriteria &cr)
{
m_opt.set_criteria(cr); return *this;
}
const StopCriteria &get_criteria() const { return m_opt.get_criteria(); }
void seed(long s) { m_opt.seed(s); }
};
// Predefinded NLopt algorithms
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
}} // namespace Slic3r::opt
#endif // NLOPTOPTIMIZER_HPP