BambuStudio/libslic3r/SLA/Rotfinder.cpp

477 lines
15 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include <limits>
#include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/Execution/ExecutionTBB.hpp>
#include <libslic3r/Execution/ExecutionSeq.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <libslic3r/Geometry.hpp>
#include <thread>
namespace Slic3r { namespace sla {
namespace {
inline const Vec3f DOWN = {0.f, 0.f, -1.f};
constexpr double POINTS_PER_UNIT_AREA = 1.f;
// Get the vertices of a triangle directly in an array of 3 points
std::array<Vec3f, 3> get_triangle_vertices(const TriangleMesh &mesh,
size_t faceidx)
{
const auto &face = mesh.its.indices[faceidx];
return {mesh.its.vertices[face(0)],
mesh.its.vertices[face(1)],
mesh.its.vertices[face(2)]};
}
std::array<Vec3f, 3> get_transformed_triangle(const TriangleMesh &mesh,
const Transform3f & tr,
size_t faceidx)
{
const auto &tri = get_triangle_vertices(mesh, faceidx);
return {tr * tri[0], tr * tri[1], tr * tri[2]};
}
template<class T> Vec<3, T> normal(const std::array<Vec<3, T>, 3> &tri)
{
Vec<3, T> U = tri[1] - tri[0];
Vec<3, T> V = tri[2] - tri[0];
return U.cross(V).normalized();
}
template<class T, class AccessFn>
T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{
T initv = 0.;
auto mergefn = [](T a, T b) { return a + b; };
size_t grainsize = facecount / Nthreads;
size_t from = 0, to = facecount;
return execution::reduce(ex_tbb, from, to, initv, mergefn, accessfn, grainsize);
}
// Get area and normal of a triangle
struct Facestats {
Vec3f normal;
double area;
explicit Facestats(const std::array<Vec3f, 3> &triangle)
{
Vec3f U = triangle[1] - triangle[0];
Vec3f V = triangle[2] - triangle[0];
Vec3f C = U.cross(V);
normal = C.normalized();
area = 0.5 * C.norm();
}
};
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
float score = fc.area
* (std::abs(fc.normal.dot(Vec3f::UnitX()))
+ std::abs(fc.normal.dot(Vec3f::UnitY()))
+ std::abs(fc.normal.dot(Vec3f::UnitZ())));
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(score);
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// The score function for a particular face
inline double get_supportedness_score(const Facestats &fc)
{
// Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector.
float cosphi = fc.normal.dot(DOWN);
float phi = 1.f - std::acos(cosphi) / float(PI);
// Make the huge slopes more significant than the smaller slopes
phi = phi * phi * phi;
// Multiply with the square root of face area of the current face,
// the area is less important as it grows.
// This makes many smaller overhangs a bigger impact.
return std::sqrt(fc.area) * POINTS_PER_UNIT_AREA * phi;
}
// Try to guess the number of support points needed to support a mesh
double get_supportedness_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return scaled<int_fast64_t>(get_supportedness_score(fc));
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// Find transformed mesh ground level without copy and with parallel reduce.
float find_ground_level(const TriangleMesh &mesh,
const Transform3f & tr,
size_t threads)
{
size_t vsize = mesh.its.vertices.size();
auto minfn = [](float a, float b) { return std::min(a, b); };
auto accessfn = [&mesh, &tr] (size_t vi) {
return (tr * mesh.its.vertices[vi]).z();
};
auto zmin = std::numeric_limits<float>::max();
size_t granularity = vsize / threads;
return execution::reduce(ex_tbb, size_t(0), vsize, zmin, minfn, accessfn, granularity);
}
float get_supportedness_onfloor_score(const TriangleMesh &mesh,
const Transform3f & tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
size_t Nthreads = std::thread::hardware_concurrency();
float zmin = find_ground_level(mesh, tr, Nthreads);
float zlvl = zmin + 0.1f; // Set up a slight tolerance from z level
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
std::array<Vec3f, 3> tri = get_transformed_triangle(mesh, tr, fi);
Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -2 * fc.area * POINTS_PER_UNIT_AREA;
return get_supportedness_score(fc);
};
size_t facecount = mesh.its.indices.size();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
using XYRotation = std::array<double, 2>;
// prepare the rotation transformation
Transform3f to_transform3f(const XYRotation &rot)
{
Transform3f rt = Transform3f::Identity();
rt.rotate(Eigen::AngleAxisf(float(rot[1]), Vec3f::UnitY()));
rt.rotate(Eigen::AngleAxisf(float(rot[0]), Vec3f::UnitX()));
return rt;
}
XYRotation from_transform3f(const Transform3f &tr)
{
Vec3d rot3 = Geometry::Transformation{tr.cast<double>()}.get_rotation();
return {rot3.x(), rot3.y()};
}
inline bool is_on_floor(const SLAPrintObjectConfig &cfg)
{
auto opt_elevation = cfg.support_object_elevation.getFloat();
auto opt_padaround = cfg.pad_around_object.getBool();
return opt_elevation < EPSILON || opt_padaround;
}
// collect the rotations for each face of the convex hull
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
{
TriangleMesh chull = mesh.convex_hull_3d();
double chull2d_area = chull.convex_hull().area();
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
size_t facecount = chull.its.indices.size();
struct RotArea { XYRotation rot; double area; };
auto inputs = reserve_vector<RotArea>(facecount);
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < facecount; ++fi) {
Facestats fc{get_triangle_vertices(chull, fi)};
if (fc.area > area_threshold) {
auto q = Eigen::Quaternionf{}.FromTwoVectors(fc.normal, DOWN);
XYRotation rot = from_transform3f(Transform3f::Identity() * q);
RotArea ra = {rot, fc.area};
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
if (it == inputs.end() || !eqcmp(it->rot, rot))
inputs.insert(it, ra);
}
}
inputs.shrink_to_fit();
if (!max_count) max_count = inputs.size();
std::sort(inputs.begin(), inputs.end(),
[](const RotArea &ra, const RotArea &rb) {
return ra.area > rb.area;
});
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
return ret;
}
// Find the best score from a set of function inputs. Evaluate for every point.
template<size_t N, class Fn, class It, class StopCond>
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
{
std::array<double, N> ret = {};
double score = std::numeric_limits<double>::max();
size_t Nthreads = std::thread::hardware_concurrency();
size_t dist = std::distance(from, to);
std::vector<double> scores(dist, score);
execution::for_each(
ex_tbb, size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
if (stopfn()) return;
scores[i] = fn(*(from + i));
},
dist / Nthreads);
auto it = std::min_element(scores.begin(), scores.end());
if (it != scores.end())
ret = *(from + std::distance(scores.begin(), it));
return ret;
}
} // namespace
template<unsigned MAX_ITER>
struct RotfinderBoilerplate {
static constexpr unsigned MAX_TRIES = MAX_ITER;
int status = 0;
TriangleMesh mesh;
unsigned max_tries;
const RotOptimizeParams &params;
// Assemble the mesh with the correct transformation to be used in rotation
// optimization.
static TriangleMesh get_mesh_to_rotate(const ModelObject &mo)
{
TriangleMesh mesh = mo.raw_mesh();
ModelInstance *mi = mo.instances[0];
auto rotation = Vec3d::Zero();
auto offset = Vec3d::Zero();
Transform3d trafo_instance =
Geometry::assemble_transform(offset, rotation,
mi->get_scaling_factor(),
mi->get_mirror());
mesh.transform(trafo_instance);
return mesh;
}
RotfinderBoilerplate(const ModelObject &mo, const RotOptimizeParams &p)
: mesh{get_mesh_to_rotate(mo)}
, params{p}
, max_tries(p.accuracy() * MAX_TRIES)
{
}
void statusfn() { params.statuscb()(++status * 100.0 / max_tries); }
bool stopcond() { return ! params.statuscb()(-1); }
};
Vec2d find_best_misalignment_rotation(const ModelObject & mo,
const RotOptimizeParams &params)
{
RotfinderBoilerplate<1000> bp{mo, params};
// Preparing the optimizer.
size_t gridsize = std::sqrt(bp.max_tries);
opt::Optimizer<opt::AlgBruteForce> solver(
opt::StopCriteria{}.max_iterations(bp.max_tries)
.stop_condition([&bp] { return bp.stopcond(); }),
gridsize
);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_max().optimize(
[&bp] (const XYRotation &rot)
{
bp.statusfn();
return get_misalginment_score(bp.mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds);
return {result.optimum[0], result.optimum[1]};
}
Vec2d find_least_supports_rotation(const ModelObject & mo,
const RotOptimizeParams &params)
{
RotfinderBoilerplate<1000> bp{mo, params};
SLAPrintObjectConfig pocfg;
if (params.print_config())
pocfg.apply(*params.print_config(), true);
pocfg.apply(mo.config.get());
XYRotation rot;
// Different search methods have to be used depending on the model elevation
if (is_on_floor(pocfg)) {
std::vector<XYRotation> inputs = get_chull_rotations(bp.mesh, bp.max_tries);
bp.max_tries = inputs.size();
// If the model can be placed on the bed directly, we only need to
// check the 3D convex hull face rotations.
auto objfn = [&bp](const XYRotation &rot) {
bp.statusfn();
Transform3f tr = to_transform3f(rot);
return get_supportedness_onfloor_score(bp.mesh, tr);
};
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), [&bp] {
return bp.stopcond();
});
} else {
// Preparing the optimizer.
size_t gridsize = std::sqrt(bp.max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(
opt::StopCriteria{}.max_iterations(bp.max_tries)
.stop_condition([&bp] { return bp.stopcond(); }),
gridsize
);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_min().optimize(
[&bp] (const XYRotation &rot)
{
bp.statusfn();
return get_supportedness_score(bp.mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds);
// Save the result
rot = result.optimum;
}
return {rot[0], rot[1]};
}
inline BoundingBoxf3 bounding_box_with_tr(const indexed_triangle_set &its,
const Transform3f &tr)
{
if (its.vertices.empty())
return {};
Vec3f bmin = tr * its.vertices.front(), bmax = tr * its.vertices.front();
for (const Vec3f &p : its.vertices) {
Vec3f pp = tr * p;
bmin = pp.cwiseMin(bmin);
bmax = pp.cwiseMax(bmax);
}
return {bmin.cast<double>(), bmax.cast<double>()};
}
Vec2d find_min_z_height_rotation(const ModelObject &mo,
const RotOptimizeParams &params)
{
RotfinderBoilerplate<1000> bp{mo, params};
TriangleMesh chull = bp.mesh.convex_hull_3d();
auto inputs = reserve_vector<XYRotation>(chull.its.indices.size());
auto rotcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < chull.its.indices.size(); ++fi) {
Facestats fc{get_triangle_vertices(chull, fi)};
auto q = Eigen::Quaternionf{}.FromTwoVectors(fc.normal, DOWN);
XYRotation rot = from_transform3f(Transform3f::Identity() * q);
auto it = std::lower_bound(inputs.begin(), inputs.end(), rot, rotcmp);
if (it == inputs.end() || !eqcmp(*it, rot))
inputs.insert(it, rot);
}
inputs.shrink_to_fit();
bp.max_tries = inputs.size();
auto objfn = [&bp, &chull](const XYRotation &rot) {
bp.statusfn();
Transform3f tr = to_transform3f(rot);
return bounding_box_with_tr(chull.its, tr).size().z();
};
XYRotation rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), [&bp] {
return bp.stopcond();
});
return {rot[0], rot[1]};
}
}} // namespace Slic3r::sla