BambuStudio/slic3r/GUI/GLModel.cpp

1486 lines
54 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include "libslic3r/libslic3r.h"
#include "GLModel.hpp"
#include "3DScene.hpp"
#include "GUI_App.hpp"
#include "GLShader.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Polygon.hpp"
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
void GLModel::Geometry::add_vertex(const Vec2f &position)
{
assert(format.vertex_layout == EVertexLayout::P2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
}
void GLModel::Geometry::add_vertex(const Vec2f &position, const Vec2f &tex_coord)
{
assert(format.vertex_layout == EVertexLayout::P2T2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(tex_coord.x());
vertices.emplace_back(tex_coord.y());
}
void GLModel::Geometry::add_vertex(const Vec3f &position)
{
assert(format.vertex_layout == EVertexLayout::P3);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
}
void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec2f &tex_coord)
{
assert(format.vertex_layout == EVertexLayout::P3T2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
vertices.emplace_back(tex_coord.x());
vertices.emplace_back(tex_coord.y());
}
void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec3f &normal)
{
assert(format.vertex_layout == EVertexLayout::P3N3);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
vertices.emplace_back(normal.x());
vertices.emplace_back(normal.y());
vertices.emplace_back(normal.z());
}
void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec3f &normal, const Vec2f &tex_coord)
{
assert(format.vertex_layout == EVertexLayout::P3N3T2);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
vertices.emplace_back(normal.x());
vertices.emplace_back(normal.y());
vertices.emplace_back(normal.z());
vertices.emplace_back(tex_coord.x());
vertices.emplace_back(tex_coord.y());
}
void GLModel::Geometry::add_vertex(const Vec4f &position)
{
assert(format.vertex_layout == EVertexLayout::P4);
vertices.emplace_back(position.x());
vertices.emplace_back(position.y());
vertices.emplace_back(position.z());
vertices.emplace_back(position.w());
}
void GLModel::Geometry::add_index(unsigned int id) { indices.emplace_back(id); }
void GLModel::Geometry::add_line(unsigned int id1, unsigned int id2)
{
indices.emplace_back(id1);
indices.emplace_back(id2);
}
void GLModel::Geometry::add_triangle(unsigned int id1, unsigned int id2, unsigned int id3)
{
indices.emplace_back(id1);
indices.emplace_back(id2);
indices.emplace_back(id3);
}
Vec2f GLModel::Geometry::extract_position_2(size_t id) const
{
const size_t p_stride = position_stride_floats(format);
if (p_stride != 2) {
assert(false);
return {FLT_MAX, FLT_MAX};
}
if (vertices_count() <= id) {
assert(false);
return {FLT_MAX, FLT_MAX};
}
const float *start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)];
return {*(start + 0), *(start + 1)};
}
Vec3f GLModel::Geometry::extract_position_3(size_t id) const
{
const size_t p_stride = position_stride_floats(format);
if (p_stride != 3) {
assert(false);
return {FLT_MAX, FLT_MAX, FLT_MAX};
}
if (vertices_count() <= id) {
assert(false);
return {FLT_MAX, FLT_MAX, FLT_MAX};
}
const float *start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)];
return {*(start + 0), *(start + 1), *(start + 2)};
}
Vec3f GLModel::Geometry::extract_normal_3(size_t id) const
{
const size_t n_stride = normal_stride_floats(format);
if (n_stride != 3) {
assert(false);
return {FLT_MAX, FLT_MAX, FLT_MAX};
}
if (vertices_count() <= id) {
assert(false);
return {FLT_MAX, FLT_MAX, FLT_MAX};
}
const float *start = &vertices[id * vertex_stride_floats(format) + normal_offset_floats(format)];
return {*(start + 0), *(start + 1), *(start + 2)};
}
Vec2f GLModel::Geometry::extract_tex_coord_2(size_t id) const
{
const size_t t_stride = tex_coord_stride_floats(format);
if (t_stride != 2) {
assert(false);
return {FLT_MAX, FLT_MAX};
}
if (vertices_count() <= id) {
assert(false);
return {FLT_MAX, FLT_MAX};
}
const float *start = &vertices[id * vertex_stride_floats(format) + tex_coord_offset_floats(format)];
return {*(start + 0), *(start + 1)};
}
void GLModel::Geometry::set_vertex(size_t id, const Vec3f &position, const Vec3f &normal)
{
assert(format.vertex_layout == EVertexLayout::P3N3);
assert(id < vertices_count());
if (id < vertices_count()) {
float *start = &vertices[id * vertex_stride_floats(format)];
*(start + 0) = position.x();
*(start + 1) = position.y();
*(start + 2) = position.z();
*(start + 3) = normal.x();
*(start + 4) = normal.y();
*(start + 5) = normal.z();
}
}
void GLModel::Geometry::set_index(size_t id, unsigned int index)
{
assert(id < indices_count());
if (id < indices_count()) indices[id] = index;
}
unsigned int GLModel::Geometry::extract_index(size_t id) const
{
if (indices_count() <= id) {
assert(false);
return -1;
}
return indices[id];
}
void GLModel::Geometry::remove_vertex(size_t id)
{
assert(id < vertices_count());
if (id < vertices_count()) {
const size_t stride = vertex_stride_floats(format);
std::vector<float>::const_iterator it = vertices.begin() + id * stride;
vertices.erase(it, it + stride);
}
}
indexed_triangle_set GLModel::Geometry::get_as_indexed_triangle_set() const
{
indexed_triangle_set its;
its.vertices.reserve(vertices_count());
for (size_t i = 0; i < vertices_count(); ++i) { its.vertices.emplace_back(extract_position_3(i)); }
its.indices.reserve(indices_count() / 3);
for (size_t i = 0; i < indices_count() / 3; ++i) {
const size_t tri_id = i * 3;
its.indices.emplace_back(extract_index(tri_id), extract_index(tri_id + 1), extract_index(tri_id + 2));
}
return its;
}
size_t GLModel::Geometry::vertex_stride_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2: {
return 2;
}
case EVertexLayout::P2T2: {
return 4;
}
case EVertexLayout::P3: {
return 3;
}
case EVertexLayout::P3T2: {
return 5;
}
case EVertexLayout::P3N3: {
return 6;
}
case EVertexLayout::P3N3T2: {
return 8;
}
case EVertexLayout::P4: {
return 4;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::position_stride_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2:
case EVertexLayout::P2T2: {
return 2;
}
case EVertexLayout::P3:
case EVertexLayout::P3T2:
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2: {
return 3;
}
case EVertexLayout::P4: {
return 4;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::position_offset_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3:
case EVertexLayout::P3T2:
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2:
case EVertexLayout::P4: {
return 0;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::normal_stride_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2: {
return 3;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::normal_offset_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2: {
return 3;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::tex_coord_stride_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2T2:
case EVertexLayout::P3T2:
case EVertexLayout::P3N3T2: {
return 2;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::tex_coord_offset_floats(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2T2: {
return 2;
}
case EVertexLayout::P3T2: {
return 3;
}
case EVertexLayout::P3N3T2: {
return 6;
}
default: {
assert(false);
return 0;
}
};
}
size_t GLModel::Geometry::index_stride_bytes(const Geometry &data)
{
switch (data.index_type) {
case EIndexType::UINT: {
return sizeof(unsigned int);
}
case EIndexType::USHORT: {
return sizeof(unsigned short);
}
case EIndexType::UBYTE: {
return sizeof(unsigned char);
}
default: {
assert(false);
return 0;
}
};
}
bool GLModel::Geometry::has_position(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3:
case EVertexLayout::P3T2:
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2:
case EVertexLayout::P4: {
return true;
}
default: {
assert(false);
return false;
}
};
}
bool GLModel::Geometry::has_normal(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2:
case EVertexLayout::P2T2:
case EVertexLayout::P3:
case EVertexLayout::P3T2:
case EVertexLayout::P4: {
return false;
}
case EVertexLayout::P3N3:
case EVertexLayout::P3N3T2: {
return true;
}
default: {
assert(false);
return false;
}
};
}
bool GLModel::Geometry::has_tex_coord(const Format &format)
{
switch (format.vertex_layout) {
case EVertexLayout::P2T2:
case EVertexLayout::P3T2:
case EVertexLayout::P3N3T2: {
return true;
}
case EVertexLayout::P2:
case EVertexLayout::P3:
case EVertexLayout::P3N3:
case EVertexLayout::P4: {
return false;
}
default: {
assert(false);
return false;
}
};
}
size_t GLModel::InitializationData::vertices_count() const
{
size_t ret = 0;
for (const Entity& entity : entities) {
ret += entity.positions.size();
}
return ret;
}
size_t GLModel::InitializationData::indices_count() const
{
size_t ret = 0;
for (const Entity& entity : entities) {
ret += entity.indices.size();
}
return ret;
}
GLModel::~GLModel()
{
reset();
if (mesh) { delete mesh; }
}
void GLModel::init_from(Geometry &&data, bool generate_mesh)
{
if (is_initialized()) {
// call reset() if you want to reuse this model
assert(false);
return;
}
if (data.vertices.empty() || data.indices.empty()) {
assert(false);
return;
}
m_render_data.clear();
m_render_data.push_back(RenderData());
m_render_data.back().indices_count = data.indices.size();
m_render_data.back().type = data.format.type;
m_render_data.back().color = data.color.get_data();
if (generate_mesh) {
if (!mesh) { mesh = new TriangleMesh(); }
mesh->its = std::move(data.get_as_indexed_triangle_set());
}
m_render_data.back().geometry = std::move(data);
// update bounding box
for (size_t i = 0; i < data.vertices_count(); ++i) {
const size_t position_stride = Geometry::position_stride_floats(data.format);
if (position_stride == 3)
m_bounding_box.merge(m_render_data.back().geometry.extract_position_3(i).cast<double>());
else if (position_stride == 2) {
const Vec2f position = m_render_data.back().geometry.extract_position_2(i);
m_bounding_box.merge(Vec3f(position.x(), position.y(), 0.0f).cast<double>());
}
}
}
void GLModel::init_from(const InitializationData& data)
{
if (!m_render_data.empty()) // call reset() if you want to reuse this model
return;
for (const InitializationData::Entity& entity : data.entities) {
if (entity.positions.empty() || entity.indices.empty())
continue;
assert(entity.normals.empty() || entity.normals.size() == entity.positions.size());
RenderData rdata;
rdata.type = entity.type;
rdata.color = entity.color;
// vertices/normals data
std::vector<float> vertices(6 * entity.positions.size());
for (size_t i = 0; i < entity.positions.size(); ++i) {
const size_t offset = i * 6;
::memcpy(static_cast<void*>(&vertices[offset]), static_cast<const void*>(entity.positions[i].data()), 3 * sizeof(float));
if (!entity.normals.empty())
::memcpy(static_cast<void*>(&vertices[3 + offset]), static_cast<const void*>(entity.normals[i].data()), 3 * sizeof(float));
}
// indices data
std::vector<unsigned int> indices = entity.indices;
rdata.indices_count = static_cast<unsigned int>(indices.size());
// update bounding box
for (size_t i = 0; i < entity.positions.size(); ++i) {
m_bounding_box.merge(entity.positions[i].cast<double>());
}
send_to_gpu(rdata, vertices, indices);
m_render_data.emplace_back(rdata);
}
}
void GLModel::init_from(const indexed_triangle_set& its, const BoundingBoxf3 &bbox)
{
if (!m_render_data.empty()) // call reset() if you want to reuse this model
return;
RenderData data;
data.type = PrimitiveType::Triangles;
std::vector<float> vertices = std::vector<float>(18 * its.indices.size());
std::vector<unsigned int> indices = std::vector<unsigned int>(3 * its.indices.size());
unsigned int vertices_count = 0;
for (uint32_t i = 0; i < its.indices.size(); ++i) {
stl_triangle_vertex_indices face = its.indices[i];
stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
stl_vertex n = face_normal_normalized(vertex);
for (size_t j = 0; j < 3; ++ j) {
size_t offset = i * 18 + j * 6;
::memcpy(static_cast<void*>(&vertices[offset]), static_cast<const void*>(vertex[j].data()), 3 * sizeof(float));
::memcpy(static_cast<void*>(&vertices[3 + offset]), static_cast<const void*>(n.data()), 3 * sizeof(float));
}
for (size_t j = 0; j < 3; ++j)
indices[i * 3 + j] = vertices_count + j;
vertices_count += 3;
}
data.indices_count = static_cast<unsigned int>(indices.size());
m_bounding_box = bbox;
send_to_gpu(data, vertices, indices);
m_render_data.emplace_back(data);
}
void GLModel::init_from(const indexed_triangle_set& its)
{
this->init_from(its, bounding_box(its));
}
void GLModel::init_from(const Polygons& polygons, float z)
{
auto append_polygon = [](const Polygon& polygon, float z, GUI::GLModel::InitializationData& data) {
if (!polygon.empty()) {
GUI::GLModel::InitializationData::Entity entity;
entity.type = GUI::GLModel::PrimitiveType::LineLoop;
// contour
entity.positions.reserve(polygon.size() + 1);
entity.indices.reserve(polygon.size() + 1);
unsigned int id = 0;
for (const Point& p : polygon) {
Vec3f position = unscale(p.x(), p.y(), 0.0).cast<float>();
position.z() = z;
entity.positions.emplace_back(position);
entity.indices.emplace_back(id++);
}
data.entities.emplace_back(entity);
}
};
InitializationData init_data;
for (const Polygon& polygon : polygons) {
append_polygon(polygon, z, init_data);
}
init_from(init_data);
}
bool GLModel::init_from_file(const std::string& filename)
{
if (!boost::filesystem::exists(filename))
return false;
if (!boost::algorithm::iends_with(filename, ".stl"))
return false;
Model model;
try
{
model = Model::read_from_file(filename);
}
catch (std::exception&)
{
return false;
}
TriangleMesh mesh = model.mesh();
init_from(mesh.its, mesh.bounding_box());
m_filename = filename;
return true;
}
void GLModel::set_color(int entity_id, const std::array<float, 4>& color)
{
for (size_t i = 0; i < m_render_data.size(); ++i) {
if (entity_id == -1 || static_cast<int>(i) == entity_id)
m_render_data[i].color = color;
}
}
void GLModel::reset()
{
for (RenderData& data : m_render_data) {
// release gpu memory
if (data.ibo_id > 0)
glsafe(::glDeleteBuffers(1, &data.ibo_id));
if (data.vbo_id > 0)
glsafe(::glDeleteBuffers(1, &data.vbo_id));
}
m_render_data.clear();
m_bounding_box = BoundingBoxf3();
m_filename = std::string();
}
void GLModel::render() const
{
GLShaderProgram* shader = wxGetApp().get_current_shader();
for (const RenderData& data : m_render_data) {
// sends data to gpu if not done yet
if (data.vbo_id == 0 || data.ibo_id == 0) {
auto origin_data = const_cast<RenderData *>(&data);
if (data.geometry.vertices_count() > 0 && data.geometry.indices_count() > 0
&& !send_to_gpu(*origin_data, data.geometry.vertices, data.geometry.indices))
continue;
}
bool has_normal = true;
if (data.geometry.vertices_count() > 0) {
has_normal = Geometry::has_normal(data.geometry.format);
}
GLenum mode;
switch (data.type)
{
default:
case PrimitiveType::Triangles: { mode = GL_TRIANGLES; break; }
case PrimitiveType::Lines: { mode = GL_LINES; break; }
case PrimitiveType::LineStrip: { mode = GL_LINE_STRIP; break; }
case PrimitiveType::LineLoop: { mode = GL_LINE_LOOP; break; }
}
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id));
if (has_normal) {
glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void *) 0));
glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), (const void *) (3 * sizeof(float))));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
} else {
glsafe(::glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), (const void *) 0));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
}
if (shader != nullptr)
shader->set_uniform("uniform_color", data.color);
else
glsafe(::glColor4fv(data.color.data()));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id));
glsafe(::glDrawElements(mode, static_cast<GLsizei>(data.indices_count), GL_UNSIGNED_INT, (const void*)0));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
}
void GLModel::render_instanced(unsigned int instances_vbo, unsigned int instances_count) const
{
if (instances_vbo == 0)
return;
GLShaderProgram* shader = wxGetApp().get_current_shader();
assert(shader == nullptr || boost::algorithm::iends_with(shader->get_name(), "_instanced"));
// vertex attributes
GLint position_id = (shader != nullptr) ? shader->get_attrib_location("v_position") : -1;
GLint normal_id = (shader != nullptr) ? shader->get_attrib_location("v_normal") : -1;
assert(position_id != -1 && normal_id != -1);
// instance attributes
GLint offset_id = (shader != nullptr) ? shader->get_attrib_location("i_offset") : -1;
GLint scales_id = (shader != nullptr) ? shader->get_attrib_location("i_scales") : -1;
assert(offset_id != -1 && scales_id != -1);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, instances_vbo));
if (offset_id != -1) {
glsafe(::glVertexAttribPointer(offset_id, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)0));
glsafe(::glEnableVertexAttribArray(offset_id));
glsafe(::glVertexAttribDivisor(offset_id, 1));
}
if (scales_id != -1) {
glsafe(::glVertexAttribPointer(scales_id, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)(3 * sizeof(float))));
glsafe(::glEnableVertexAttribArray(scales_id));
glsafe(::glVertexAttribDivisor(scales_id, 1));
}
for (const RenderData& data : m_render_data) {
if (data.vbo_id == 0 || data.ibo_id == 0)
continue;
GLenum mode;
switch (data.type)
{
default:
case PrimitiveType::Triangles: { mode = GL_TRIANGLES; break; }
case PrimitiveType::Lines: { mode = GL_LINES; break; }
case PrimitiveType::LineStrip: { mode = GL_LINE_STRIP; break; }
case PrimitiveType::LineLoop: { mode = GL_LINE_LOOP; break; }
}
if (shader != nullptr)
shader->set_uniform("uniform_color", data.color);
else
glsafe(::glColor4fv(data.color.data()));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id));
if (position_id != -1) {
glsafe(::glVertexAttribPointer(position_id, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (GLvoid*)0));
glsafe(::glEnableVertexAttribArray(position_id));
}
if (normal_id != -1) {
glsafe(::glVertexAttribPointer(normal_id, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (GLvoid*)(3 * sizeof(float))));
glsafe(::glEnableVertexAttribArray(normal_id));
}
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id));
glsafe(::glDrawElementsInstanced(mode, static_cast<GLsizei>(data.indices_count), GL_UNSIGNED_INT, (const void*)0, instances_count));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (normal_id != -1)
glsafe(::glDisableVertexAttribArray(normal_id));
if (position_id != -1)
glsafe(::glDisableVertexAttribArray(position_id));
}
if (scales_id != -1)
glsafe(::glDisableVertexAttribArray(scales_id));
if (offset_id != -1)
glsafe(::glDisableVertexAttribArray(offset_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
bool GLModel::send_to_gpu(RenderData& data, const std::vector<float>& vertices, const std::vector<unsigned int>& indices) const
{
if (data.vbo_id > 0 || data.ibo_id > 0) {
assert(false);
return false;
}
if (vertices.empty() || indices.empty()) {
assert(false);
return false;
}
// vertex data -> send to gpu
glsafe(::glGenBuffers(1, &data.vbo_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), vertices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
// indices data -> send to gpu
glsafe(::glGenBuffers(1, &data.ibo_id));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
return true;
}
GLModel::InitializationData stilized_arrow(int resolution, float tip_radius, float tip_height, float stem_radius, float stem_height)
{
auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) {
entity.positions.emplace_back(position);
entity.normals.emplace_back(normal);
};
auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) {
entity.indices.emplace_back(v1);
entity.indices.emplace_back(v2);
entity.indices.emplace_back(v3);
};
resolution = std::max(4, resolution);
GLModel::InitializationData data;
GLModel::InitializationData::Entity entity;
entity.type = GLModel::PrimitiveType::Triangles;
const float angle_step = 2.0f * M_PI / static_cast<float>(resolution);
std::vector<float> cosines(resolution);
std::vector<float> sines(resolution);
for (int i = 0; i < resolution; ++i) {
const float angle = angle_step * static_cast<float>(i);
cosines[i] = ::cos(angle);
sines[i] = -::sin(angle);
}
const float total_height = tip_height + stem_height;
// tip vertices/normals
append_vertex(entity, { 0.0f, 0.0f, total_height }, Vec3f::UnitZ());
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f });
}
// tip triangles
for (int i = 0; i < resolution; ++i) {
const int v3 = (i < resolution - 1) ? i + 2 : 1;
append_indices(entity, 0, i + 1, v3);
}
// tip cap outer perimeter vertices
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, -Vec3f::UnitZ());
}
// tip cap inner perimeter vertices
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, -Vec3f::UnitZ());
}
// tip cap triangles
for (int i = 0; i < resolution; ++i) {
const int v2 = (i < resolution - 1) ? i + resolution + 2 : resolution + 1;
const int v3 = (i < resolution - 1) ? i + 2 * resolution + 2 : 2 * resolution + 1;
append_indices(entity, i + resolution + 1, v3, v2);
append_indices(entity, i + resolution + 1, i + 2 * resolution + 1, v3);
}
// stem bottom vertices
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f });
}
// stem top vertices
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, { sines[i], cosines[i], 0.0f });
}
// stem triangles
for (int i = 0; i < resolution; ++i) {
const int v2 = (i < resolution - 1) ? i + 3 * resolution + 2 : 3 * resolution + 1;
const int v3 = (i < resolution - 1) ? i + 4 * resolution + 2 : 4 * resolution + 1;
append_indices(entity, i + 3 * resolution + 1, v3, v2);
append_indices(entity, i + 3 * resolution + 1, i + 4 * resolution + 1, v3);
}
// stem cap vertices
append_vertex(entity, Vec3f::Zero(), -Vec3f::UnitZ());
for (int i = 0; i < resolution; ++i) {
append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, -Vec3f::UnitZ());
}
// stem cap triangles
for (int i = 0; i < resolution; ++i) {
const int v3 = (i < resolution - 1) ? i + 5 * resolution + 3 : 5 * resolution + 2;
append_indices(entity, 5 * resolution + 1, v3, i + 5 * resolution + 2);
}
data.entities.emplace_back(entity);
return data;
}
GLModel::InitializationData circular_arrow(int resolution, float radius, float tip_height, float tip_width, float stem_width, float thickness)
{
auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) {
entity.positions.emplace_back(position);
entity.normals.emplace_back(normal);
};
auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) {
entity.indices.emplace_back(v1);
entity.indices.emplace_back(v2);
entity.indices.emplace_back(v3);
};
resolution = std::max(2, resolution);
GLModel::InitializationData data;
GLModel::InitializationData::Entity entity;
entity.type = GLModel::PrimitiveType::Triangles;
const float half_thickness = 0.5f * thickness;
const float half_stem_width = 0.5f * stem_width;
const float half_tip_width = 0.5f * tip_width;
const float outer_radius = radius + half_stem_width;
const float inner_radius = radius - half_stem_width;
const float step_angle = 0.5f * PI / static_cast<float>(resolution);
// tip
// top face vertices
append_vertex(entity, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { -tip_height, radius, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitZ());
// top face triangles
append_indices(entity, 0, 1, 2);
append_indices(entity, 0, 2, 4);
append_indices(entity, 4, 2, 3);
// bottom face vertices
append_vertex(entity, { 0.0f, outer_radius, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { -tip_height, radius, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { 0.0f, inner_radius, -half_thickness }, -Vec3f::UnitZ());
// bottom face triangles
append_indices(entity, 5, 7, 6);
append_indices(entity, 5, 9, 7);
append_indices(entity, 9, 8, 7);
// side faces vertices
append_vertex(entity, { 0.0f, outer_radius, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitX());
Vec3f normal(-half_tip_width, tip_height, 0.0f);
normal.normalize();
append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, normal);
append_vertex(entity, { -tip_height, radius, -half_thickness }, normal);
append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, normal);
append_vertex(entity, { -tip_height, radius, half_thickness }, normal);
normal = Vec3f(-half_tip_width, -tip_height, 0.0f);
normal.normalize();
append_vertex(entity, { -tip_height, radius, -half_thickness }, normal);
append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, normal);
append_vertex(entity, { -tip_height, radius, half_thickness }, normal);
append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, normal);
append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, inner_radius, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitX());
append_vertex(entity, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitX());
// side face triangles
for (int i = 0; i < 4; ++i) {
const int ii = i * 4;
append_indices(entity, 10 + ii, 11 + ii, 13 + ii);
append_indices(entity, 10 + ii, 13 + ii, 12 + ii);
}
// stem
// top face vertices
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
append_vertex(entity, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ());
}
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
append_vertex(entity, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ());
}
// top face triangles
for (int i = 0; i < resolution; ++i) {
append_indices(entity, 26 + i, 27 + i, 27 + resolution + i);
append_indices(entity, 27 + i, 28 + resolution + i, 27 + resolution + i);
}
// bottom face vertices
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
append_vertex(entity, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ());
}
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
append_vertex(entity, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ());
}
// bottom face triangles
for (int i = 0; i < resolution; ++i) {
append_indices(entity, 28 + 2 * resolution + i, 29 + 3 * resolution + i, 29 + 2 * resolution + i);
append_indices(entity, 29 + 2 * resolution + i, 29 + 3 * resolution + i, 30 + 3 * resolution + i);
}
// side faces vertices and triangles
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(entity, { inner_radius * s, inner_radius * c, -half_thickness }, { -s, -c, 0.0f });
}
for (int i = 0; i <= resolution; ++i) {
const float angle = static_cast<float>(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(entity, { inner_radius * s, inner_radius * c, half_thickness }, { -s, -c, 0.0f });
}
int first_id = 26 + 4 * (resolution + 1);
for (int i = 0; i < resolution; ++i) {
const int ii = first_id + i;
append_indices(entity, ii, ii + 1, ii + resolution + 2);
append_indices(entity, ii, ii + resolution + 2, ii + resolution + 1);
}
append_vertex(entity, { inner_radius, 0.0f, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { outer_radius, 0.0f, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { inner_radius, 0.0f, half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { outer_radius, 0.0f, half_thickness }, -Vec3f::UnitY());
first_id = 26 + 6 * (resolution + 1);
append_indices(entity, first_id, first_id + 1, first_id + 3);
append_indices(entity, first_id, first_id + 3, first_id + 2);
for (int i = resolution; i >= 0; --i) {
const float angle = static_cast<float>(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(entity, { outer_radius * s, outer_radius * c, -half_thickness }, { s, c, 0.0f });
}
for (int i = resolution; i >= 0; --i) {
const float angle = static_cast<float>(i) * step_angle;
const float c = ::cos(angle);
const float s = ::sin(angle);
append_vertex(entity, { outer_radius * s, outer_radius * c, +half_thickness }, { s, c, 0.0f });
}
first_id = 30 + 6 * (resolution + 1);
for (int i = 0; i < resolution; ++i) {
const int ii = first_id + i;
append_indices(entity, ii, ii + 1, ii + resolution + 2);
append_indices(entity, ii, ii + resolution + 2, ii + resolution + 1);
}
data.entities.emplace_back(entity);
return data;
}
GLModel::InitializationData straight_arrow(float tip_width, float tip_height, float stem_width, float stem_height, float thickness)
{
auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) {
entity.positions.emplace_back(position);
entity.normals.emplace_back(normal);
};
auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) {
entity.indices.emplace_back(v1);
entity.indices.emplace_back(v2);
entity.indices.emplace_back(v3);
};
GLModel::InitializationData data;
GLModel::InitializationData::Entity entity;
entity.type = GLModel::PrimitiveType::Triangles;
const float half_thickness = 0.5f * thickness;
const float half_stem_width = 0.5f * stem_width;
const float half_tip_width = 0.5f * tip_width;
const float total_height = tip_height + stem_height;
// top face vertices
append_vertex(entity, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { 0.0, total_height, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ());
append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ());
// top face triangles
append_indices(entity, 0, 1, 6);
append_indices(entity, 6, 1, 5);
append_indices(entity, 4, 5, 3);
append_indices(entity, 5, 1, 3);
append_indices(entity, 1, 2, 3);
// bottom face vertices
append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { 0.0, total_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ());
append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ());
// bottom face triangles
append_indices(entity, 7, 13, 8);
append_indices(entity, 13, 12, 8);
append_indices(entity, 12, 11, 10);
append_indices(entity, 8, 12, 10);
append_indices(entity, 9, 8, 10);
// side faces vertices
append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, Vec3f::UnitX());
append_vertex(entity, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitX());
append_vertex(entity, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitX());
append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY());
Vec3f normal(tip_height, half_tip_width, 0.0f);
normal.normalize();
append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, normal);
append_vertex(entity, { 0.0, total_height, -half_thickness }, normal);
append_vertex(entity, { half_tip_width, stem_height, half_thickness }, normal);
append_vertex(entity, { 0.0, total_height, half_thickness }, normal);
normal = Vec3f(-tip_height, half_tip_width, 0.0f);
normal.normalize();
append_vertex(entity, { 0.0, total_height, -half_thickness }, normal);
append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, normal);
append_vertex(entity, { 0.0, total_height, half_thickness }, normal);
append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, normal);
append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitX());
append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitX());
append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitX());
append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitX());
append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY());
append_vertex(entity, { half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY());
// side face triangles
for (int i = 0; i < 7; ++i) {
const int ii = i * 4;
append_indices(entity, 14 + ii, 15 + ii, 17 + ii);
append_indices(entity, 14 + ii, 17 + ii, 16 + ii);
}
data.entities.emplace_back(entity);
return data;
}
GLModel::InitializationData diamond(int resolution)
{
resolution = std::max(4, resolution);
GLModel::InitializationData data;
GLModel::InitializationData::Entity entity;
entity.type = GLModel::PrimitiveType::Triangles;
const float step = 2.0f * float(PI) / float(resolution);
// positions
for (int i = 0; i < resolution; ++i) {
float ii = float(i) * step;
entity.positions.emplace_back(0.5f * ::cos(ii), 0.5f * ::sin(ii), 0.0f);
}
entity.positions.emplace_back(0.0f, 0.0f, 0.5f);
entity.positions.emplace_back(0.0f, 0.0f, -0.5f);
// normals
for (const Vec3f& v : entity.positions) {
entity.normals.emplace_back(v.normalized());
}
// triangles
// top
for (int i = 0; i < resolution; ++i) {
entity.indices.push_back(i + 0);
entity.indices.push_back(i + 1);
entity.indices.push_back(resolution);
}
entity.indices.push_back(resolution - 1);
entity.indices.push_back(0);
entity.indices.push_back(resolution);
// bottom
for (int i = 0; i < resolution; ++i) {
entity.indices.push_back(i + 0);
entity.indices.push_back(resolution + 1);
entity.indices.push_back(i + 1);
}
entity.indices.push_back(resolution - 1);
entity.indices.push_back(resolution + 1);
entity.indices.push_back(0);
data.entities.emplace_back(entity);
return data;
}
GLModel::Geometry smooth_sphere(unsigned int resolution, float radius)
{
resolution = std::max<unsigned int>(4, resolution);
const unsigned int sectorCount = resolution;
const unsigned int stackCount = resolution;
const float sectorStep = float(2.0 * M_PI / sectorCount);
const float stackStep = float(M_PI / stackCount);
GLModel::Geometry data;
data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
data.reserve_vertices((stackCount - 1) * sectorCount + 2);
data.reserve_indices((2 * (stackCount - 1) * sectorCount) * 3);
// vertices
for (unsigned int i = 0; i <= stackCount; ++i) {
// from pi/2 to -pi/2
const double stackAngle = 0.5 * M_PI - stackStep * i;
const double xy = double(radius) * ::cos(stackAngle);
const double z = double(radius) * ::sin(stackAngle);
if (i == 0 || i == stackCount) {
const Vec3f v(float(xy), 0.0f, float(z));
data.add_vertex(v, (Vec3f) v.normalized());
} else {
for (unsigned int j = 0; j < sectorCount; ++j) {
// from 0 to 2pi
const double sectorAngle = sectorStep * j;
const Vec3f v(float(xy * std::cos(sectorAngle)), float(xy * std::sin(sectorAngle)), float(z));
data.add_vertex(v, (Vec3f) v.normalized());
}
}
}
// triangles
for (unsigned int i = 0; i < stackCount; ++i) {
// Beginning of current stack.
unsigned int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount);
const unsigned int k1_first = k1;
// Beginning of next stack.
unsigned int k2 = (i == 0) ? 1 : (k1 + sectorCount);
const unsigned int k2_first = k2;
for (unsigned int j = 0; j < sectorCount; ++j) {
// 2 triangles per sector excluding first and last stacks
unsigned int k1_next = k1;
unsigned int k2_next = k2;
if (i != 0) {
k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1);
data.add_triangle(k1, k2, k1_next);
}
if (i + 1 != stackCount) {
k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1);
data.add_triangle(k1_next, k2, k2_next);
}
k1 = k1_next;
k2 = k2_next;
}
}
return data;
}
GLModel::Geometry smooth_cylinder(unsigned int resolution, float radius, float height)
{
resolution = std::max<unsigned int>(4, resolution);
const unsigned int sectorCount = resolution;
const float sectorStep = 2.0f * float(M_PI) / float(sectorCount);
GLModel::Geometry data;
data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
data.reserve_vertices(sectorCount * 4 + 2);
data.reserve_indices(sectorCount * 4 * 3);
auto generate_vertices_on_circle = [sectorCount, sectorStep](float radius) {
std::vector<Vec3f> ret;
ret.reserve(sectorCount);
for (unsigned int i = 0; i < sectorCount; ++i) {
// from 0 to 2pi
const float sectorAngle = sectorStep * i;
ret.emplace_back(radius * std::cos(sectorAngle), radius * std::sin(sectorAngle), 0.0f);
}
return ret;
};
const std::vector<Vec3f> base_vertices = generate_vertices_on_circle(radius);
const Vec3f h = height * Vec3f::UnitZ();
// stem vertices
for (unsigned int i = 0; i < sectorCount; ++i) {
const Vec3f &v = base_vertices[i];
const Vec3f n = v.normalized();
data.add_vertex(v, n);
data.add_vertex(v + h, n);
}
// stem triangles
for (unsigned int i = 0; i < sectorCount; ++i) {
unsigned int v1 = i * 2;
unsigned int v2 = (i < sectorCount - 1) ? v1 + 2 : 0;
unsigned int v3 = v2 + 1;
unsigned int v4 = v1 + 1;
data.add_triangle(v1, v2, v3);
data.add_triangle(v1, v3, v4);
}
// bottom cap vertices
Vec3f cap_center = Vec3f::Zero();
unsigned int cap_center_id = data.vertices_count();
Vec3f normal = -Vec3f::UnitZ();
data.add_vertex(cap_center, normal);
for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i], normal); }
// bottom cap triangles
for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1, cap_center_id + i + 1); }
// top cap vertices
cap_center += h;
cap_center_id = data.vertices_count();
normal = -normal;
data.add_vertex(cap_center, normal);
for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i] + h, normal); }
// top cap triangles
for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, cap_center_id + i + 1, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1); }
return data;
}
GLModel::Geometry smooth_torus(unsigned int primary_resolution, unsigned int secondary_resolution, float radius, float thickness)
{
const unsigned int torus_sector_count = std::max<unsigned int>(4, primary_resolution);
const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count);
const unsigned int section_sector_count = std::max<unsigned int>(4, secondary_resolution);
const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count);
GLModel::Geometry data;
data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
data.reserve_vertices(torus_sector_count * section_sector_count);
data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3);
// vertices
for (unsigned int i = 0; i < torus_sector_count; ++i) {
const float section_angle = torus_sector_step * i;
const float csa = std::cos(section_angle);
const float ssa = std::sin(section_angle);
const Vec3f section_center(radius * csa, radius * ssa, 0.0f);
for (unsigned int j = 0; j < section_sector_count; ++j) {
const float circle_angle = section_sector_step * j;
const float thickness_xy = thickness * std::cos(circle_angle);
const float thickness_z = thickness * std::sin(circle_angle);
const Vec3f v(thickness_xy * csa, thickness_xy * ssa, thickness_z);
data.add_vertex(section_center + v, (Vec3f) v.normalized());
}
}
// triangles
for (unsigned int i = 0; i < torus_sector_count; ++i) {
const unsigned int ii = i * section_sector_count;
const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count;
for (unsigned int j = 0; j < section_sector_count; ++j) {
const unsigned int j_next = (j + 1) % section_sector_count;
const unsigned int i0 = ii + j;
const unsigned int i1 = ii_next + j;
const unsigned int i2 = ii_next + j_next;
const unsigned int i3 = ii + j_next;
data.add_triangle(i0, i1, i2);
data.add_triangle(i0, i2, i3);
}
}
return data;
}
std::shared_ptr<GLModel> init_plane_data(const indexed_triangle_set &its, const std::vector<int> &triangle_indices, float normal_offset)
{
GLModel::Geometry init_data;
init_data.format = {GUI::GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
init_data.reserve_indices(3 * triangle_indices.size());
init_data.reserve_vertices(3 * triangle_indices.size());
unsigned int i = 0;
for (int idx : triangle_indices) {
Vec3f v0 = its.vertices[its.indices[idx][0]];
Vec3f v1 = its.vertices[its.indices[idx][1]];
Vec3f v2 = its.vertices[its.indices[idx][2]];
const Vec3f n = (v1 - v0).cross(v2 - v0).normalized();
if (std::abs(normal_offset) > 0.0) {
v0 = v0 + n * normal_offset;
v1 = v1 + n * normal_offset;
v2 = v2 + n * normal_offset;
}
init_data.add_vertex(v0, n);
init_data.add_vertex(v1, n);
init_data.add_vertex(v2, n);
init_data.add_triangle(i, i + 1, i + 2);
i += 3;
}
std::shared_ptr<GLModel> gl_data = std::make_shared<GLModel>();
gl_data->init_from(std::move(init_data), true);
return gl_data;
}
std::shared_ptr<GLModel> init_torus_data(unsigned int primary_resolution,
unsigned int secondary_resolution,
const Vec3f & center,
float radius,
float thickness,
const Vec3f & model_axis,
const Transform3f &world_trafo)
{
const unsigned int torus_sector_count = std::max<unsigned int>(4, primary_resolution);
const unsigned int section_sector_count = std::max<unsigned int>(4, secondary_resolution);
const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count);
const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count);
GLModel::Geometry data;
data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
data.reserve_vertices(torus_sector_count * section_sector_count);
data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3);
// vertices
const Transform3f local_to_world_matrix = world_trafo * Geometry::translation_transform(center.cast<double>()).cast<float>() *
Eigen::Quaternion<float>::FromTwoVectors(Vec3f::UnitZ(), model_axis);
for (unsigned int i = 0; i < torus_sector_count; ++i) {
const float section_angle = torus_sector_step * i;
const Vec3f radius_dir(std::cos(section_angle), std::sin(section_angle), 0.0f);
const Vec3f local_section_center = radius * radius_dir;
const Vec3f world_section_center = local_to_world_matrix * local_section_center;
const Vec3f local_section_normal = local_section_center.normalized().cross(Vec3f::UnitZ()).normalized();
const Vec3f world_section_normal = (Vec3f) (local_to_world_matrix.matrix().block(0, 0, 3, 3) * local_section_normal).normalized();
const Vec3f base_v = thickness * radius_dir;
for (unsigned int j = 0; j < section_sector_count; ++j) {
const Vec3f v = Eigen::AngleAxisf(section_sector_step * j, world_section_normal) * base_v;
data.add_vertex(world_section_center + v, (Vec3f) v.normalized());
}
}
// triangles
for (unsigned int i = 0; i < torus_sector_count; ++i) {
const unsigned int ii = i * section_sector_count;
const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count;
for (unsigned int j = 0; j < section_sector_count; ++j) {
const unsigned int j_next = (j + 1) % section_sector_count;
const unsigned int i0 = ii + j;
const unsigned int i1 = ii_next + j;
const unsigned int i2 = ii_next + j_next;
const unsigned int i3 = ii + j_next;
data.add_triangle(i0, i1, i2);
data.add_triangle(i0, i2, i3);
}
}
std::shared_ptr<GLModel> gl_data = std::make_shared<GLModel>();
gl_data->init_from(std::move(data), true);
return gl_data;
}
} // namespace GUI
} // namespace Slic3r