BambuStudio/slic3r/GUI/Selection.cpp

3087 lines
115 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include "libslic3r/libslic3r.h"
#include "Selection.hpp"
#include "3DScene.hpp"
#include "GLCanvas3D.hpp"
#include "GUI_App.hpp"
#include "GUI.hpp"
#include "GUI_ObjectList.hpp"
#include "Gizmos/GLGizmoBase.hpp"
#include "Camera.hpp"
#include "Plater.hpp"
#include "slic3r/Utils/UndoRedo.hpp"
#include "libslic3r/LocalesUtils.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/PresetBundle.hpp"
#if ENABLE_ENHANCED_PRINT_VOLUME_FIT
#include "libslic3r/BuildVolume.hpp"
#endif // ENABLE_ENHANCED_PRINT_VOLUME_FIT
#include <GL/glew.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/log/trivial.hpp>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <CGAL/Min_sphere_of_points_d_traits_3.h>
static const std::array<float, 4> UNIFORM_SCALE_COLOR = { 0.923f, 0.504f, 0.264f, 1.0f };
namespace Slic3r {
namespace GUI {
Selection::VolumeCache::TransformCache::TransformCache()
: position(Vec3d::Zero())
, rotation(Vec3d::Zero())
, scaling_factor(Vec3d::Ones())
, mirror(Vec3d::Ones())
, rotation_matrix(Transform3d::Identity())
, scale_matrix(Transform3d::Identity())
, mirror_matrix(Transform3d::Identity())
, full_tran(Transform3d::Identity())
{
}
Selection::VolumeCache::TransformCache::TransformCache(const Geometry::Transformation& transform)
: position(transform.get_offset())
, rotation(transform.get_rotation())
, scaling_factor(transform.get_scaling_factor())
, mirror(transform.get_mirror())
, full_tran(transform)
{
rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation);
scale_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scaling_factor);
mirror_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d::Ones(), mirror);
}
Selection::VolumeCache::VolumeCache(const Geometry::Transformation& volume_transform, const Geometry::Transformation& instance_transform)
: m_volume(volume_transform)
, m_instance(instance_transform)
{
}
bool Selection::Clipboard::is_sla_compliant() const
{
if (m_mode == Selection::Volume)
return false;
for (const ModelObject* o : m_model->objects) {
if (o->is_multiparts())
return false;
for (const ModelVolume* v : o->volumes) {
if (v->is_modifier())
return false;
}
}
return true;
}
Selection::Clipboard::Clipboard()
{
m_model.reset(new Model);
}
void Selection::Clipboard::reset()
{
m_model->clear_objects();
}
bool Selection::Clipboard::is_empty() const
{
return m_model->objects.empty();
}
ModelObject* Selection::Clipboard::add_object()
{
return m_model->add_object();
}
ModelObject* Selection::Clipboard::get_object(unsigned int id)
{
return (id < (unsigned int)m_model->objects.size()) ? m_model->objects[id] : nullptr;
}
const ModelObjectPtrs& Selection::Clipboard::get_objects() const
{
return m_model->objects;
}
Selection::Selection()
: m_volumes(nullptr)
, m_model(nullptr)
, m_enabled(false)
, m_mode(Instance)
, m_type(Empty)
, m_valid(false)
, m_scale_factor(1.0f)
, m_dragging(false)
{
this->set_bounding_boxes_dirty();
}
void Selection::set_volumes(GLVolumePtrs* volumes)
{
m_volumes = volumes;
update_valid();
}
// Init shall be called from the OpenGL render function, so that the OpenGL context is initialized!
bool Selection::init()
{
m_arrow.init_from(straight_arrow(10.0f, 5.0f, 5.0f, 10.0f, 1.0f));
m_curved_arrow.init_from(circular_arrow(16, 10.0f, 5.0f, 10.0f, 5.0f, 1.0f));
#if ENABLE_RENDER_SELECTION_CENTER
m_vbo_sphere.init_from(make_sphere(0.75, 2*PI/24));
#endif // ENABLE_RENDER_SELECTION_CENTER
return true;
}
void Selection::set_model(Model* model)
{
m_model = model;
update_valid();
}
int Selection::query_real_volume_idx_from_other_view(unsigned int object_idx, unsigned int instance_idx, unsigned int model_volume_idx)
{
for (int i = 0; i < m_volumes->size(); i++) {
auto v = (*m_volumes)[i];
if (v->object_idx() == object_idx && instance_idx == v->instance_idx() && model_volume_idx == v->volume_idx()) {
return i;
}
}
return -1;
}
void Selection::add(unsigned int volume_idx, bool as_single_selection, bool check_for_already_contained)
{
if (!m_valid || (unsigned int)m_volumes->size() <= volume_idx)
return;
const GLVolume* volume = (*m_volumes)[volume_idx];
//BBS: multiple wipe tower case should be considered
// wipe tower is already selected
//if (is_wipe_tower() && volume->is_wipe_tower)
// return;
if (!m_list.empty() && !is_wipe_tower() && volume->is_wipe_tower && !as_single_selection)
return;
bool keep_instance_mode = (m_mode == Instance) && !as_single_selection;
bool already_contained = check_for_already_contained && contains_volume(volume_idx);
// resets the current list if needed
bool needs_reset = as_single_selection && !already_contained;
needs_reset |= volume->is_wipe_tower;
needs_reset |= is_wipe_tower() && !volume->is_wipe_tower;
needs_reset |= as_single_selection && !is_any_modifier() && volume->is_modifier;
needs_reset |= is_any_modifier() && !volume->is_modifier;
if (!needs_reset && (is_any_modifier() || is_any_volume())) {
int obj_index = volume->object_idx();
int inst_index = volume->instance_idx();
int first = *(m_list.begin());
if (first < m_volumes->size()) {
const GLVolume* volume = (*m_volumes)[first];
if ((volume->object_idx() != obj_index) || (volume->instance_idx() != inst_index))
needs_reset = true;
}
}
if (!already_contained || needs_reset) {
wxGetApp().plater()->take_snapshot(std::string("Selection-Add!"), UndoRedo::SnapshotType::Selection);
if (needs_reset)
clear();
// BBS
if (!keep_instance_mode)
m_mode = volume->is_modifier ? Volume : m_volume_selection_mode;
}
else
// keep current mode
return;
switch (m_mode)
{
case Volume:
{
if (volume->volume_idx() >= 0 && (is_empty() || volume->instance_idx() == get_instance_idx()))
do_add_volume(volume_idx);
break;
}
case Instance:
{
Plater::SuppressSnapshots suppress(wxGetApp().plater());
add_instance(volume->object_idx(), volume->instance_idx(), as_single_selection);
break;
}
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove(unsigned int volume_idx)
{
if (!m_valid || (unsigned int)m_volumes->size() <= volume_idx)
return;
if (!contains_volume(volume_idx))
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Remove!"), UndoRedo::SnapshotType::Selection);
GLVolume* volume = (*m_volumes)[volume_idx];
switch (m_mode)
{
case Volume:
{
do_remove_volume(volume_idx);
break;
}
case Instance:
{
do_remove_instance(volume->object_idx(), volume->instance_idx());
break;
}
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_object(unsigned int object_idx, bool as_single_selection)
{
if (!m_valid)
return;
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_object(object_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Add Object"), UndoRedo::SnapshotType::Selection);
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_object(unsigned int object_idx)
{
if (!m_valid)
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Remove Object"), UndoRedo::SnapshotType::Selection);
do_remove_object(object_idx);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_instance(unsigned int object_idx, unsigned int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
const std::vector<unsigned int> volume_idxs = get_volume_idxs_from_instance(object_idx, instance_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Add Instance"), UndoRedo::SnapshotType::Selection);
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
if (!m_valid)
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Remove Instance"), UndoRedo::SnapshotType::Selection);
do_remove_instance(object_idx, instance_idx);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_volume(unsigned int object_idx, unsigned int volume_idx, int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_volume(object_idx, instance_idx, volume_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Volume;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_volume(unsigned int object_idx, unsigned int volume_idx)
{
if (!m_valid)
return;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == (int)object_idx && v->volume_idx() == (int)volume_idx)
do_remove_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_volumes(EMode mode, const std::vector<unsigned int>& volume_idxs, bool as_single_selection)
{
if (!m_valid)
return;
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = mode;
for (unsigned int i : volume_idxs) {
if (i < (unsigned int)m_volumes->size())
do_add_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_volumes(EMode mode, const std::vector<unsigned int>& volume_idxs)
{
if (!m_valid)
return;
m_mode = mode;
for (unsigned int i : volume_idxs) {
if (i < (unsigned int)m_volumes->size())
do_remove_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_curr_plate()
{
if (!m_valid)
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Add Curr Plate All!"));
m_mode = Instance;
clear();
PartPlate* plate = wxGetApp().plater()->get_partplate_list().get_curr_plate();
for (int obj_idx = 0; obj_idx < m_model->objects.size(); obj_idx++) {
if (plate && plate->contain_instance_totally(obj_idx, 0)) {
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_object(obj_idx);
do_add_volumes(volume_idxs);
}
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_object_from_idx(std::vector<int>& object_idxs) {
if (!m_valid)
return;
m_mode = Instance;
clear();
for (int obj_idx = 0; obj_idx < object_idxs.size(); obj_idx++) {
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_object(object_idxs[obj_idx]);
do_add_volumes(volume_idxs);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_curr_plate()
{
if (!m_valid)
return;
PartPlate* plate = wxGetApp().plater()->get_partplate_list().get_curr_plate();
if (plate->empty())
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Delete Curr Plate All"));
m_mode = Instance;
clear();
for (int obj_idx = 0; obj_idx < m_model->objects.size(); obj_idx++) {
if (plate && plate->contain_instance(obj_idx, 0)) {
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_object(obj_idx);
do_add_volumes(volume_idxs);
}
}
update_type();
this->set_bounding_boxes_dirty();
erase();
}
void Selection::clone(int numbers)
{
if (numbers <= 0)
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-clone"));
copy_to_clipboard();
for (int i = 0; i < numbers; i++) {
paste_from_clipboard();
}
}
void Selection::center()
{
PartPlate* plate = wxGetApp().plater()->get_partplate_list().get_selected_plate();
// calc distance
Vec3d src_pos = this->get_bounding_box().center();
Vec3d tar_pos = plate->get_center_origin();
Vec3d distance = Vec3d(tar_pos.x() - src_pos.x(), tar_pos.y() - src_pos.y(), 0);
this->move_to_center(distance);
wxGetApp().plater()->get_view3D_canvas3D()->do_move(L("Move Object"));
return;
}
void Selection::center_plate(const int plate_idx) {
PartPlate* plate = wxGetApp().plater()->get_partplate_list().get_plate(plate_idx);
Vec3d src_pos = this->get_bounding_box().center();
Vec3d tar_pos = plate->get_center_origin();
Vec3d distance = Vec3d(tar_pos.x() - src_pos.x(), tar_pos.y() - src_pos.y(), 0);
this->move_to_center(distance);
wxGetApp().plater()->get_view3D_canvas3D()->do_move(L("Move Object"));
return;
}
//BBS
void Selection::set_printable(bool printable)
{
if (!m_valid)
return;
std::set<std::pair<int, int>> instances_idxs;
for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it)
{
for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it)
{
instances_idxs.insert(std::make_pair(obj_it->first, *inst_it));
}
}
std::string snapshot_text = (boost::format("%1%") % (printable ? "Set Selection Printable" : "Set Selection Unprintable")).str();
wxGetApp().plater()->take_snapshot(snapshot_text);
// set printable value for all instances in object
for (const std::pair<int, int>& i : instances_idxs)
{
ModelObject* object = m_model->objects[i.first];
for (auto inst : object->instances)
inst->printable = printable;
wxGetApp().obj_list()->update_printable_state(i.first, i.second);
//update printable state on canvas
wxGetApp().plater()->canvas3D()->update_instance_printable_state_for_object((size_t)i.first);
}
// update scene
wxGetApp().plater()->update();
}
void Selection::add_all()
{
if (!m_valid)
return;
unsigned int count = 0;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
if (!(*m_volumes)[i]->is_wipe_tower)
++count;
}
if ((unsigned int)m_list.size() == count)
return;
wxGetApp().plater()->take_snapshot(std::string("Selection-Add All!"), UndoRedo::SnapshotType::Selection);
m_mode = Instance;
clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
if (!(*m_volumes)[i]->is_wipe_tower)
do_add_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_all()
{
if (!m_valid)
return;
if (is_empty())
return;
// Not taking the snapshot with non-empty Redo stack will likely be more confusing than losing the Redo stack.
// Let's wait for user feedback.
// if (!wxGetApp().plater()->can_redo())
wxGetApp().plater()->take_snapshot(std::string("Selection-Remove All!"), UndoRedo::SnapshotType::Selection);
m_mode = Instance;
clear();
}
void Selection::set_deserialized(EMode mode, const std::vector<std::pair<size_t, size_t>> &volumes_and_instances)
{
if (! m_valid)
return;
m_mode = mode;
for (unsigned int i : m_list)
(*m_volumes)[i]->selected = false;
m_list.clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++ i)
if (std::binary_search(volumes_and_instances.begin(), volumes_and_instances.end(), (*m_volumes)[i]->geometry_id))
do_add_volume(i);
update_type();
set_bounding_boxes_dirty();
}
void Selection::clear()
{
if (!m_valid)
return;
if (m_list.empty())
return;
#if ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
// ensure that the volumes get the proper color before next call to render (expecially needed for transparent volumes)
for (unsigned int i : m_list) {
GLVolume& volume = *(*m_volumes)[i];
volume.selected = false;
bool transparent = volume.color[3] < 1.0f;
if (transparent)
volume.force_transparent = true;
volume.set_render_color();
if (transparent)
volume.force_transparent = false;
}
#else
for (unsigned int i : m_list) {
(*m_volumes)[i]->selected = false;
// ensure the volume gets the proper color before next call to render (expecially needed for transparent volumes)
(*m_volumes)[i]->set_render_color();
}
#endif // ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
m_list.clear();
update_type();
set_bounding_boxes_dirty();
// BBS
#if 0
// this happens while the application is closing
if (wxGetApp().obj_manipul() == nullptr)
return;
// resets the cache in the sidebar
wxGetApp().obj_manipul()->reset_cache();
#endif
// #et_FIXME fake KillFocus from sidebar
wxGetApp().plater()->canvas3D()->handle_sidebar_focus_event("", false);
}
// Update the selection based on the new instance IDs.
void Selection::instances_changed(const std::vector<size_t> &instance_ids_selected)
{
assert(m_valid);
assert(m_mode == Instance);
m_list.clear();
for (unsigned int volume_idx = 0; volume_idx < (unsigned int)m_volumes->size(); ++ volume_idx) {
const GLVolume *volume = (*m_volumes)[volume_idx];
auto it = std::lower_bound(instance_ids_selected.begin(), instance_ids_selected.end(), volume->geometry_id.second);
if (it != instance_ids_selected.end() && *it == volume->geometry_id.second)
this->do_add_volume(volume_idx);
}
update_type();
this->set_bounding_boxes_dirty();
}
// Update the selection based on the map from old indices to new indices after m_volumes changed.
// If the current selection is by instance, this call may select newly added volumes, if they belong to already selected instances.
void Selection::volumes_changed(const std::vector<size_t> &map_volume_old_to_new)
{
assert(m_valid);
assert(m_mode == Volume);
IndicesList list_new;
for (unsigned int idx : m_list)
if (map_volume_old_to_new[idx] != size_t(-1)) {
unsigned int new_idx = (unsigned int)map_volume_old_to_new[idx];
(*m_volumes)[new_idx]->selected = true;
list_new.insert(new_idx);
}
m_list = std::move(list_new);
update_type();
this->set_bounding_boxes_dirty();
}
bool Selection::is_single_full_instance() const
{
if (m_type == SingleFullInstance)
return true;
if (m_type == SingleFullObject)
return get_instance_idx() != -1;
if (m_list.empty() || m_volumes->empty())
return false;
int object_idx = m_valid ? get_object_idx() : -1;
if (object_idx < 0 || (int)m_model->objects.size() <= object_idx)
return false;
int instance_idx = (*m_volumes)[*m_list.begin()]->instance_idx();
std::set<int> volumes_idxs;
for (unsigned int i : m_list) {
const GLVolume* v = (*m_volumes)[i];
if (object_idx != v->object_idx() || instance_idx != v->instance_idx())
return false;
int volume_idx = v->volume_idx();
if (volume_idx >= 0)
volumes_idxs.insert(volume_idx);
}
return m_model->objects[object_idx]->volumes.size() == volumes_idxs.size();
}
bool Selection::is_any_connector() const
{
const int obj_idx = get_object_idx();
if ((is_any_volume() || is_any_modifier() || is_mixed()) && // some solid_part AND/OR modifier is selected
obj_idx >= 0 && m_model->objects[obj_idx]->is_cut()) {
const ModelVolumePtrs &obj_volumes = m_model->objects[obj_idx]->volumes;
for (size_t vol_idx = 0; vol_idx < obj_volumes.size(); vol_idx++)
if (obj_volumes[vol_idx]->is_cut_connector())
for (const GLVolume *v : *m_volumes)
if (v->object_idx() == obj_idx && v->volume_idx() == (int) vol_idx && v->selected)
return true;
}
return false;
}
bool Selection::is_any_cut_volume() const
{
const int obj_idx = get_object_idx();
return is_any_volume() && obj_idx >= 0 && m_model->objects[obj_idx]->is_cut();
}
bool Selection::is_from_single_object() const
{
const int idx = get_object_idx();
return 0 <= idx && idx < 1000;
}
bool Selection::is_sla_compliant() const
{
if (m_mode == Volume)
return false;
for (unsigned int i : m_list) {
if ((*m_volumes)[i]->is_modifier)
return false;
}
return true;
}
bool Selection::contains_all_volumes(const std::vector<unsigned int>& volume_idxs) const
{
for (unsigned int i : volume_idxs) {
if (m_list.find(i) == m_list.end())
return false;
}
return true;
}
bool Selection::contains_any_volume(const std::vector<unsigned int>& volume_idxs) const
{
for (unsigned int i : volume_idxs) {
if (m_list.find(i) != m_list.end())
return true;
}
return false;
}
bool Selection::matches(const std::vector<unsigned int>& volume_idxs) const
{
unsigned int count = 0;
for (unsigned int i : volume_idxs) {
if (m_list.find(i) != m_list.end())
++count;
else
return false;
}
return count == (unsigned int)m_list.size();
}
bool Selection::requires_uniform_scale() const
{
if (is_single_full_instance() || is_single_modifier() || is_single_volume())
return false;
return true;
}
int Selection::get_object_idx() const
{
return (m_cache.content.size() == 1) ? m_cache.content.begin()->first : -1;
}
int Selection::get_instance_idx() const
{
if (m_cache.content.size() == 1) {
const InstanceIdxsList& idxs = m_cache.content.begin()->second;
if (idxs.size() == 1)
return *idxs.begin();
}
return -1;
}
const Selection::InstanceIdxsList& Selection::get_instance_idxs() const
{
assert(m_cache.content.size() == 1);
return m_cache.content.begin()->second;
}
const GLVolume* Selection::get_volume(unsigned int volume_idx) const
{
return (m_valid && (volume_idx < (unsigned int)m_volumes->size())) ? (*m_volumes)[volume_idx] : nullptr;
}
const BoundingBoxf3& Selection::get_bounding_box() const
{
if (!m_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* bbox = const_cast<std::optional<BoundingBoxf3>*>(&m_bounding_box);
*bbox = BoundingBoxf3();
if (m_valid) {
for (unsigned int i : m_list) {
(*bbox)->merge((*m_volumes)[i]->transformed_convex_hull_bounding_box());
}
}
}
return *m_bounding_box;
}
const BoundingBoxf3& Selection::get_unscaled_instance_bounding_box() const
{
if (!m_unscaled_instance_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* bbox = const_cast<std::optional<BoundingBoxf3>*>(&m_unscaled_instance_bounding_box);
*bbox = BoundingBoxf3();
if (m_valid) {
for (unsigned int i : m_list) {
const GLVolume& volume = *(*m_volumes)[i];
if (volume.is_modifier)
continue;
Transform3d trafo = volume.get_instance_transformation().get_matrix(false, false, true, false) * volume.get_volume_transformation().get_matrix();
trafo.translation().z() += volume.get_sla_shift_z();
(*bbox)->merge(volume.transformed_convex_hull_bounding_box(trafo));
}
}
}
return *m_unscaled_instance_bounding_box;
}
const BoundingBoxf3& Selection::get_scaled_instance_bounding_box() const
{
if (!m_scaled_instance_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* bbox = const_cast<std::optional<BoundingBoxf3>*>(&m_scaled_instance_bounding_box);
*bbox = BoundingBoxf3();
if (m_valid) {
for (unsigned int i : m_list) {
const GLVolume& volume = *(*m_volumes)[i];
if (volume.is_modifier)
continue;
Transform3d trafo = volume.get_instance_transformation().get_matrix(false, false, false, false) * volume.get_volume_transformation().get_matrix();
trafo.translation().z() += volume.get_sla_shift_z();
(*bbox)->merge(volume.transformed_convex_hull_bounding_box(trafo));
}
}
}
return *m_scaled_instance_bounding_box;
}
const std::pair<BoundingBoxf3, Transform3d> &Selection::get_bounding_box_in_current_reference_system() const
{
static int last_coordinates_type = -1;
assert(!is_empty());
ECoordinatesType coordinates_type = wxGetApp().obj_manipul()->get_coordinates_type();
if (m_mode == Instance && coordinates_type == ECoordinatesType::Local) coordinates_type = ECoordinatesType::World;
if (last_coordinates_type != int(coordinates_type)) const_cast<std::optional<std::pair<BoundingBoxf3, Transform3d>> *>(&m_bounding_box_in_current_reference_system)->reset();
if (!m_bounding_box_in_current_reference_system.has_value()) {
last_coordinates_type = int(coordinates_type);
*const_cast<std::optional<std::pair<BoundingBoxf3, Transform3d>> *>(&m_bounding_box_in_current_reference_system) = get_bounding_box_in_reference_system(coordinates_type);
}
return *m_bounding_box_in_current_reference_system;
}
std::pair<BoundingBoxf3, Transform3d> Selection::get_bounding_box_in_reference_system(ECoordinatesType type) const
{
//
// trafo to current reference system
//
Transform3d trafo;
switch (type) {
case ECoordinatesType::World: {
trafo = Transform3d::Identity();
break;
}
case ECoordinatesType::Instance: {
trafo = get_first_volume()->get_instance_transformation().get_matrix();
break;
}
case ECoordinatesType::Local: {
trafo = get_first_volume()->world_matrix();
break;
}
}
//
// trafo basis in world coordinates
//
Geometry::Transformation t(trafo);
t.reset_scaling_factor();
const Transform3d basis_trafo = t.get_matrix_no_offset();
std::vector<Vec3d> axes = {Vec3d::UnitX(), Vec3d::UnitY(), Vec3d::UnitZ()};
for (size_t i = 0; i < axes.size(); ++i) { axes[i] = basis_trafo * axes[i]; }
//
// calculate bounding box aligned to trafo basis
//
Vec3d min = {DBL_MAX, DBL_MAX, DBL_MAX};
Vec3d max = {-DBL_MAX, -DBL_MAX, -DBL_MAX};
for (unsigned int id : m_list) {
const GLVolume & vol = *get_volume(id);
const Transform3d vol_world_rafo = vol.world_matrix();
const TriangleMesh *mesh = vol.convex_hull();
if (mesh == nullptr) mesh = &m_model->objects[vol.object_idx()]->volumes[vol.volume_idx()]->mesh();
assert(mesh != nullptr);
for (const stl_vertex &v : mesh->its.vertices) {
const Vec3d world_v = vol_world_rafo * v.cast<double>();
for (int i = 0; i < 3; ++i) {
const double i_comp = world_v.dot(axes[i]);
min(i) = std::min(min(i), i_comp);
max(i) = std::max(max(i), i_comp);
}
}
}
const Vec3d box_size = max - min;
Vec3d half_box_size = 0.5 * box_size;
Geometry::Transformation out_trafo(trafo);
Vec3d center = 0.5 * (min + max);
// Fix for non centered volume
// by move with calculated center(to volume center) and extend half box size
// e.g. for right aligned embossed text
if (m_list.size() == 1 && type == ECoordinatesType::Local) {
const GLVolume & vol = *get_volume(*m_list.begin());
const Transform3d vol_world_trafo = vol.world_matrix();
Vec3d world_zero = vol_world_trafo * Vec3d::Zero();
for (size_t i = 0; i < 3; i++) {
// move center to local volume zero
center[i] = world_zero.dot(axes[i]);
// extend half size to bigger distance from center
half_box_size[i] = std::max(abs(center[i] - min[i]), abs(center[i] - max[i]));
}
}
const BoundingBoxf3 out_box(-half_box_size, half_box_size);
out_trafo.set_offset(basis_trafo * center);
return {out_box, out_trafo.get_matrix_no_scaling_factor()};
}
void Selection::start_dragging()
{
if (!m_valid)
return;
m_dragging = true;
set_caches();
}
void Selection::move_to_center(const Vec3d& displacement, bool local)
{
if (!m_valid)
return;
EMode translation_type = m_mode;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": %1%, displacement {%2%, %3%, %4%}") % __LINE__ % displacement(X) % displacement(Y) % displacement(Z);
set_caches();
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
if (m_mode == Volume) {
if (local)
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + displacement);
else {
const Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
}
}
else if (m_mode == Instance) {
if (is_from_fully_selected_instance(i)) {
v.set_instance_offset(m_cache.volumes_data[i].get_instance_position() + displacement);
}
else {
const Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
translation_type = Volume;
}
}
}
this->set_bounding_boxes_dirty();
}
const std::pair<Vec3d, double> Selection::get_bounding_sphere() const
{
if (!m_bounding_sphere.has_value()) {
std::optional<std::pair<Vec3d, double>> *sphere = const_cast<std::optional<std::pair<Vec3d, double>> *>(&m_bounding_sphere);
*sphere = {Vec3d::Zero(), 0.0};
using K = CGAL::Simple_cartesian<float>;
using Traits = CGAL::Min_sphere_of_points_d_traits_3<K, float>;
using Min_sphere = CGAL::Min_sphere_of_spheres_d<Traits>;
using Point = K::Point_3;
std::vector<Point> points;
if (m_valid) {
for (unsigned int i : m_list) {
const GLVolume & volume = *(*m_volumes)[i];
const TriangleMesh * hull = volume.convex_hull();
const indexed_triangle_set &its = (hull != nullptr) ? hull->its : m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh().its;
const Transform3d & matrix = volume.world_matrix();
for (const Vec3f &v : its.vertices) {
const Vec3d vv = matrix * v.cast<double>();
points.push_back(Point(vv.x(), vv.y(), vv.z()));
}
}
Min_sphere ms(points.begin(), points.end());
const float *center_x = ms.center_cartesian_begin();
(*sphere)->first = {*center_x, *(center_x + 1), *(center_x + 2)};
(*sphere)->second = ms.radius();
}
}
return *m_bounding_sphere;
}
void Selection::setup_cache()
{
if (!m_valid)
return;
set_caches();
}
void Selection::translate(const Vec3d &displacement, bool local)
{
if (!m_valid)
return;
EMode translation_type = m_mode;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": %1%, displacement {%2%, %3%, %4%}") % __LINE__ % displacement(X) % displacement(Y) % displacement(Z);
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
if (v.is_wipe_tower) {
int plate_idx = v.object_idx() - 1000;
BoundingBoxf3 plate_bbox = wxGetApp().plater()->get_partplate_list().get_plate(plate_idx)->get_bounding_box();
Vec3d tower_size = v.bounding_box().size();
Vec3d tower_origin = m_cache.volumes_data[i].get_volume_position();
Vec3d actual_displacement = displacement;
const double margin = WIPE_TOWER_MARGIN;
if (!local)
actual_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
if (tower_origin(0) + actual_displacement(0) - margin < plate_bbox.min(0)) {
actual_displacement(0) = plate_bbox.min(0) - tower_origin(0) + margin;
}
else if (tower_origin(0) + actual_displacement(0) + tower_size(0) + margin > plate_bbox.max(0)) {
actual_displacement(0) = plate_bbox.max(0) - tower_origin(0) - tower_size(0) - margin;
}
if (tower_origin(1) + actual_displacement(1) - margin < plate_bbox.min(1)) {
actual_displacement(1) = plate_bbox.min(1) - tower_origin(1) + margin;
}
else if (tower_origin(1) + actual_displacement(1) + tower_size(1) + margin > plate_bbox.max(1)) {
actual_displacement(1) = plate_bbox.max(1) - tower_origin(1) - tower_size(1) - margin;
}
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + actual_displacement);
}
else if (m_mode == Volume || v.is_wipe_tower) {
if (local)
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + displacement);
else {
const Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
}
}
else if (m_mode == Instance) {
if (is_from_fully_selected_instance(i))
v.set_instance_offset(m_cache.volumes_data[i].get_instance_position() + displacement);
else {
const Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
translation_type = Volume;
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (translation_type == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (translation_type == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
if (wxGetApp().plater()->canvas3D()->get_canvas_type() != GLCanvas3D::ECanvasType::CanvasAssembleView) {
ensure_not_below_bed();
}
set_bounding_boxes_dirty();
if (wxGetApp().plater()->canvas3D()->get_canvas_type() != GLCanvas3D::ECanvasType::CanvasAssembleView) {
wxGetApp().plater()->canvas3D()->requires_check_outside_state();
}
}
// Rotate an object around one of the axes. Only one rotation component is expected to be changing.
void Selection::rotate(const Vec3d& rotation, TransformationType transformation_type)
{
if (!m_valid)
return;
// Only relative rotation values are allowed in the world coordinate system.
assert(!transformation_type.world() || transformation_type.relative());
if (!is_wipe_tower()) {
int rot_axis_max = 0;
if (rotation.isApprox(Vec3d::Zero())) {
for (unsigned int i : m_list) {
GLVolume &v = *(*m_volumes)[i];
if (m_mode == Instance) {
v.set_instance_rotation(m_cache.volumes_data[i].get_instance_rotation());
v.set_instance_offset(m_cache.volumes_data[i].get_instance_position());
}
else if (m_mode == Volume) {
v.set_volume_rotation(m_cache.volumes_data[i].get_volume_rotation());
v.set_volume_offset(m_cache.volumes_data[i].get_volume_position());
}
}
}
else { // this is not the wipe tower
//FIXME this does not work for absolute rotations (transformation_type.absolute() is true)
rotation.cwiseAbs().maxCoeff(&rot_axis_max);
// if ( single instance or single volume )
// Rotate around center , if only a single object or volume
// transformation_type.set_independent();
// For generic rotation, we want to rotate the first volume in selection, and then to synchronize the other volumes with it.
std::vector<int> object_instance_first(m_model->objects.size(), -1);
auto rotate_instance = [this, &rotation, &object_instance_first, rot_axis_max, transformation_type](GLVolume &volume, int i) {
const int first_volume_idx = object_instance_first[volume.object_idx()];
if (rot_axis_max != 2 && first_volume_idx != -1) {
// Generic rotation, but no rotation around the Z axis.
// Always do a local rotation (do not consider the selection to be a rigid body).
assert(is_approx(rotation.z(), 0.0));
const GLVolume &first_volume = *(*m_volumes)[first_volume_idx];
const Vec3d &rotation = first_volume.get_instance_rotation();
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[first_volume_idx].get_instance_rotation(), m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
}
else {
// extracts rotations from the composed transformation
Vec3d new_rotation = transformation_type.world() ?
Geometry::extract_euler_angles(Geometry::assemble_transform(Vec3d::Zero(), rotation) * m_cache.volumes_data[i].get_instance_rotation_matrix()) :
transformation_type.absolute() ? rotation : rotation + m_cache.volumes_data[i].get_instance_rotation();
if (rot_axis_max == 2 && transformation_type.joint()) {
// Only allow rotation of multiple instances as a single rigid body when rotating around the Z axis.
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), new_rotation);
volume.set_instance_offset(m_cache.dragging_center + Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()) * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
}
volume.set_instance_rotation(new_rotation);
object_instance_first[volume.object_idx()] = i;
}
};
for (unsigned int i : m_list) {
Transform3d rotation_matrix = Geometry::rotation_transform(rotation);
GLVolume &v = *(*m_volumes)[i];
const VolumeCache &volume_data = m_cache.volumes_data[i];
const Geometry::Transformation &inst_trafo = volume_data.get_instance_transform();
if (m_mode == Instance ||is_single_full_instance()) {
assert(is_from_fully_selected_instance(i));
if (transformation_type.instance()) {
// ensure that the instance rotates as a rigid body
Transform3d inst_rotation_matrix = inst_trafo.get_rotation_matrix();
if (inst_trafo.is_left_handed()) {
Geometry::TransformationSVD inst_svd(inst_trafo);
inst_rotation_matrix = inst_svd.u * inst_svd.v.transpose();
// ensure the rotation has the proper direction
if (!rotation.normalized().cwiseAbs().isApprox(Vec3d::UnitX())) rotation_matrix = rotation_matrix.inverse();
}
const Transform3d inst_matrix_no_offset = inst_trafo.get_matrix_no_offset();
rotation_matrix = inst_matrix_no_offset.inverse() * inst_rotation_matrix * rotation_matrix * inst_rotation_matrix.inverse() * inst_matrix_no_offset;
// rotate around selection center
const Vec3d inst_pivot = inst_trafo.get_matrix_no_offset().inverse() * (m_cache.rotation_pivot - inst_trafo.get_offset());
rotation_matrix = Geometry::translation_transform(inst_pivot) * rotation_matrix * Geometry::translation_transform(-inst_pivot);
}
transform_instance_relative(v, volume_data, transformation_type, rotation_matrix, m_cache.rotation_pivot);
}
else if (!is_single_volume_or_modifier()) {
assert(transformation_type.world());
transform_volume_relative(v, volume_data, transformation_type, rotation_matrix, m_cache.rotation_pivot);
}
else
{
if (transformation_type.instance()) {//in object Coordinate System
// ensure that the volume rotates as a rigid body
const Transform3d inst_scale_matrix = inst_trafo.get_scaling_factor_matrix();
rotation_matrix = inst_scale_matrix.inverse() * rotation_matrix * inst_scale_matrix;
} else {
if (transformation_type.local()) {
// ensure that the volume rotates as a rigid body
const Geometry::Transformation &vol_trafo = volume_data.get_volume_transform();
const Transform3d vol_matrix_no_offset = vol_trafo.get_matrix_no_offset();
const Transform3d inst_scale_matrix = inst_trafo.get_scaling_factor_matrix();
Transform3d vol_rotation_matrix = vol_trafo.get_rotation_matrix();
if (vol_trafo.is_left_handed()) {
Geometry::TransformationSVD vol_svd(vol_trafo);
vol_rotation_matrix = vol_svd.u * vol_svd.v.transpose();
// ensure the rotation has the proper direction
if (!rotation.normalized().cwiseAbs().isApprox(Vec3d::UnitX())) rotation_matrix = rotation_matrix.inverse();
}
rotation_matrix = vol_matrix_no_offset.inverse() * inst_scale_matrix.inverse() * vol_rotation_matrix * rotation_matrix *
vol_rotation_matrix.inverse() * inst_scale_matrix * vol_matrix_no_offset;
}
}
transform_volume_relative(v, volume_data, transformation_type, rotation_matrix, m_cache.rotation_pivot);
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances((rot_axis_max == 2) ? SYNC_ROTATION_NONE : SYNC_ROTATION_GENERAL);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
}
else { // it's the wipe tower that's selected and being rotated
GLVolume& volume = *((*m_volumes)[*m_list.begin()]); // the wipe tower is always alone in the selection
// make sure the wipe tower rotates around its center, not origin
// we can assume that only Z rotation changes
const Vec3d center_local = volume.transformed_bounding_box().center() - volume.get_volume_offset();
const Vec3d center_local_new = Eigen::AngleAxisd(rotation(2)-volume.get_volume_rotation()(2), Vec3d(0.0, 0.0, 1.0)) * center_local;
volume.set_volume_rotation(rotation);
volume.set_volume_offset(volume.get_volume_offset() + center_local - center_local_new);
}
set_bounding_boxes_dirty();
if (wxGetApp().plater()->canvas3D()->get_canvas_type() != GLCanvas3D::ECanvasType::CanvasAssembleView) {
wxGetApp().plater()->canvas3D()->requires_check_outside_state();
}
}
void Selection::flattening_rotate(const Vec3d& normal)
{
// We get the normal in untransformed coordinates. We must transform it using the instance matrix, find out
// how to rotate the instance so it faces downwards and do the rotation. All that for all selected instances.
// The function assumes that is_from_single_object() holds.
assert(Slic3r::is_approx(normal.norm(), 1.));
if (!m_valid)
return;
// BBS: show the normal for debug
std::stringstream ss;
ss << std::fixed << std::setprecision(4) << ": " << (-normal).transpose();
wxGetApp().plater()->show_status_message("place on face -normal: "+ss.str());
BOOST_LOG_TRIVIAL(debug) <<"flattening_rotate at "<<__FILE__<<":"<<__LINE__ << std::fixed << std::setprecision(4) << ": " << normal.transpose();
flush_logs();
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
// Normal transformed from the object coordinate space to the world coordinate space.
const auto &voldata = m_cache.volumes_data[i];
Vec3d tnormal = (Geometry::assemble_transform(
Vec3d::Zero(), voldata.get_instance_rotation(),
voldata.get_instance_scaling_factor().cwiseInverse(), voldata.get_instance_mirror()) * normal).normalized();
// Additional rotation to align tnormal with the down vector in the world coordinate space.
auto extra_rotation = Eigen::Quaterniond().setFromTwoVectors(tnormal, - Vec3d::UnitZ());
v.set_instance_rotation(Geometry::extract_euler_angles(extra_rotation.toRotationMatrix() * m_cache.volumes_data[i].get_instance_rotation_matrix()));
BOOST_LOG_TRIVIAL(debug) << "flattening_rotate " << (*m_volumes)[i]->name << std::fixed << std::setprecision(4) << ": tnormal=" << tnormal.transpose() << "; extra_rotation=" << Geometry::extract_euler_angles(extra_rotation.toRotationMatrix()).transpose();
flush_logs();
}
#if !DISABLE_INSTANCES_SYNCH
// Apply the same transformation also to other instances,
// but respect their possibly diffrent z-rotation.
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_GENERAL);
#endif // !DISABLE_INSTANCES_SYNCH
this->set_bounding_boxes_dirty();
}
void Selection::scale(const Vec3d& scale, TransformationType transformation_type)
{
if (!m_valid)
return;
for (unsigned int i : m_list) {
GLVolume &v = *(*m_volumes)[i];
if (is_single_full_instance()) {
if (transformation_type.relative()) {
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale);
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint())
v.set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
v.set_instance_scaling_factor(new_scale);
}
else {
if (transformation_type.world() && (std::abs(scale.x() - scale.y()) > EPSILON || std::abs(scale.x() - scale.z()) > EPSILON)) {
// Non-uniform scaling. Transform the scaling factors into the local coordinate system.
// This is only possible, if the instance rotation is mulitples of ninety degrees.
assert(Geometry::is_rotation_ninety_degrees(v.get_instance_rotation()));
v.set_instance_scaling_factor((v.get_instance_transformation().get_matrix(true, false, true, true).matrix().block<3, 3>(0, 0).transpose() * scale).cwiseAbs());
}
else
v.set_instance_scaling_factor(scale);
}
// update the instance assemble transform
ModelObject* object = m_model->objects[v.object_idx()];
Geometry::Transformation assemble_transform = object->instances[v.instance_idx()]->get_assemble_transformation();
assemble_transform.set_scaling_factor(v.get_instance_scaling_factor());
object->instances[v.instance_idx()]->set_assemble_transformation(assemble_transform);
}
else if (is_single_volume() || is_single_modifier())
v.set_volume_scaling_factor(scale);
else {
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale);
if (m_mode == Instance) {
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint())
v.set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
v.set_instance_scaling_factor(new_scale);
}
else if (m_mode == Volume) {
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_volume_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint()) {
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center);
v.set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset);
}
v.set_volume_scaling_factor(new_scale);
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
ensure_on_bed();
set_bounding_boxes_dirty();
if (wxGetApp().plater()->canvas3D()->get_canvas_type() != GLCanvas3D::ECanvasType::CanvasAssembleView) {
wxGetApp().plater()->canvas3D()->requires_check_outside_state();
}
}
#if ENABLE_ENHANCED_PRINT_VOLUME_FIT
void Selection::scale_to_fit_print_volume(const BuildVolume& volume)
{
auto fit = [this](double s, Vec3d offset) {
if (s <= 0.0 || s == 1.0)
return;
wxGetApp().plater()->take_snapshot(std::string("Scale To Fit"));
TransformationType type;
type.set_world();
type.set_relative();
type.set_joint();
// apply scale
start_dragging();
scale(s * Vec3d::Ones(), type);
wxGetApp().plater()->canvas3D()->do_scale(""); // avoid storing another snapshot
// center selection on print bed
start_dragging();
offset.z() = -get_bounding_box().min.z();
translate(offset);
wxGetApp().plater()->canvas3D()->do_move(""); // avoid storing another snapshot
// BBS
//wxGetApp().obj_manipul()->set_dirty();
};
auto fit_rectangle = [this, fit](const BuildVolume& volume) {
const BoundingBoxf3 print_volume = volume.bounding_volume();
const Vec3d print_volume_size = print_volume.size();
// adds 1/100th of a mm on all sides to avoid false out of print volume detections due to floating-point roundings
const Vec3d box_size = get_bounding_box().size() + 0.02 * Vec3d::Ones();
const double sx = (box_size.x() != 0.0) ? print_volume_size.x() / box_size.x() : 0.0;
const double sy = (box_size.y() != 0.0) ? print_volume_size.y() / box_size.y() : 0.0;
const double sz = (box_size.z() != 0.0) ? print_volume_size.z() / box_size.z() : 0.0;
if (sx != 0.0 && sy != 0.0 && sz != 0.0)
fit(std::min(sx, std::min(sy, sz)), print_volume.center() - get_bounding_box().center());
};
auto fit_circle = [this, fit](const BuildVolume& volume) {
const Geometry::Circled& print_circle = volume.circle();
double print_circle_radius = unscale<double>(print_circle.radius);
if (print_circle_radius == 0.0)
return;
Points points;
double max_z = 0.0;
for (unsigned int i : m_list) {
const GLVolume& v = *(*m_volumes)[i];
TriangleMesh hull_3d = *v.convex_hull();
hull_3d.transform(v.world_matrix());
max_z = std::max(max_z, hull_3d.bounding_box().size().z());
const Polygon hull_2d = hull_3d.convex_hull();
points.insert(points.end(), hull_2d.begin(), hull_2d.end());
}
if (points.empty())
return;
const Geometry::Circled circle = Geometry::smallest_enclosing_circle_welzl(points);
// adds 1/100th of a mm on all sides to avoid false out of print volume detections due to floating-point roundings
const double circle_radius = unscale<double>(circle.radius) + 0.01;
if (circle_radius == 0.0 || max_z == 0.0)
return;
const double s = std::min(print_circle_radius / circle_radius, volume.printable_height() / max_z);
const Vec3d sel_center = get_bounding_box().center();
const Vec3d offset = s * (Vec3d(unscale<double>(circle.center.x()), unscale<double>(circle.center.y()), 0.5 * max_z) - sel_center);
const Vec3d print_center = { unscale<double>(print_circle.center.x()), unscale<double>(print_circle.center.y()), 0.5 * volume.printable_height() };
fit(s, print_center - (sel_center + offset));
};
if (is_empty() || m_mode == Volume)
return;
switch (volume.type())
{
case BuildVolume::Type::Rectangle: { fit_rectangle(volume); break; }
case BuildVolume::Type::Circle: { fit_circle(volume); break; }
default: { break; }
}
}
#else
void Selection::scale_to_fit_print_volume(const DynamicPrintConfig& config)
{
if (is_empty() || m_mode == Volume)
return;
// adds 1/100th of a mm on all sides to avoid false out of print volume detections due to floating-point roundings
Vec3d box_size = get_bounding_box().size() + 0.01 * Vec3d::Ones();
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config.option("printable_area"));
if (opt != nullptr) {
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume({ unscale<double>(bed_box_2D.min(0)), unscale<double>(bed_box_2D.min(1)), 0.0 }, { unscale<double>(bed_box_2D.max(0)), unscale<double>(bed_box_2D.max(1)), config.opt_float("printable_height") });
Vec3d print_volume_size = print_volume.size();
double sx = (box_size(0) != 0.0) ? print_volume_size(0) / box_size(0) : 0.0;
double sy = (box_size(1) != 0.0) ? print_volume_size(1) / box_size(1) : 0.0;
double sz = (box_size(2) != 0.0) ? print_volume_size(2) / box_size(2) : 0.0;
if (sx != 0.0 && sy != 0.0 && sz != 0.0)
{
double s = std::min(sx, std::min(sy, sz));
if (s != 1.0) {
wxGetApp().plater()->take_snapshot("Scale To Fit");
TransformationType type;
type.set_world();
type.set_relative();
type.set_joint();
// apply scale
start_dragging();
scale(s * Vec3d::Ones(), type);
wxGetApp().plater()->canvas3D()->do_scale(""); // avoid storing another snapshot
// center selection on print bed
start_dragging();
translate(print_volume.center() - get_bounding_box().center());
wxGetApp().plater()->canvas3D()->do_move(""); // avoid storing another snapshot
// BBS
//wxGetApp().obj_manipul()->set_dirty();
}
}
}
}
#endif // ENABLE_ENHANCED_PRINT_VOLUME_FIT
void Selection::mirror(Axis axis)
{
if (!m_valid)
return;
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
if (is_single_full_instance())
v.set_instance_mirror(axis, -v.get_instance_mirror(axis));
else if (m_mode == Volume)
v.set_volume_mirror(axis, -v.get_volume_mirror(axis));
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
set_bounding_boxes_dirty();
}
void Selection::translate(unsigned int object_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": obj %1%") % object_idx;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": %1%, displacement {%2%, %3%, %4%}") % __LINE__ % displacement(X) % displacement(Y) % displacement(Z);
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
if (v.object_idx() == (int)object_idx)
v.set_instance_offset(v.get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume& v = *(*m_volumes)[j];
if (v.object_idx() != object_idx)
continue;
v.set_instance_offset(v.get_instance_offset() + displacement);
done.insert(j);
}
}
this->set_bounding_boxes_dirty();
}
void Selection::translate(unsigned int object_idx, unsigned int instance_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": obj %1%, instance %2%") % object_idx % instance_idx;
//BOOST_LOG_TRIVIAL(debug) << __FUNCTION__ << boost::format(": %1%, displacement {%2%, %3%, %4%}") % __LINE__ % displacement(X) % displacement(Y) % displacement(Z);
for (unsigned int i : m_list) {
GLVolume& v = *(*m_volumes)[i];
if (v.object_idx() == (int)object_idx && v.instance_idx() == (int)instance_idx)
v.set_instance_offset(v.get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume& v = *(*m_volumes)[j];
if (v.object_idx() != object_idx || v.instance_idx() != (int)instance_idx)
continue;
v.set_instance_offset(v.get_instance_offset() + displacement);
done.insert(j);
}
}
this->set_bounding_boxes_dirty();
}
void Selection::translate(unsigned int object_idx, unsigned int instance_idx, unsigned int volume_idx, const Vec3d &displacement) {
if (!m_valid) return;
for (unsigned int i : m_list) {
GLVolume &v = *(*m_volumes)[i];
if (v.object_idx() == (int) object_idx && v.instance_idx() == (int) instance_idx && v.volume_idx() == (int) volume_idx)
v.set_volume_offset(v.get_volume_offset() + displacement);
}
this->set_bounding_boxes_dirty();
}
void Selection::rotate(unsigned int object_idx, unsigned int instance_idx, const Transform3d &overwrite_tran)
{
if (!m_valid) return;
for (unsigned int i : m_list) {
GLVolume &v = *(*m_volumes)[i];
if (v.object_idx() == (int) object_idx && v.instance_idx() == (int) instance_idx) {
v.set_instance_transformation(overwrite_tran);
}
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size()) break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000) continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int) m_volumes->size(); ++j) {
if (done.size() == m_volumes->size()) break;
if (done.find(j) != done.end()) continue;
GLVolume &v = *(*m_volumes)[j];
if (v.object_idx() != object_idx || v.instance_idx() != (int) instance_idx)
continue;
v.set_instance_transformation(overwrite_tran);
done.insert(j);
}
}
this->set_bounding_boxes_dirty();
}
void Selection::rotate(unsigned int object_idx, unsigned int instance_idx, unsigned int volume_idx, const Transform3d &overwrite_tran)
{
if (!m_valid) return;
for (unsigned int i : m_list) {
GLVolume &v = *(*m_volumes)[i];
if (v.object_idx() == (int) object_idx && v.instance_idx() == (int) instance_idx && v.volume_idx() == (int) volume_idx) {
v.set_volume_transformation(overwrite_tran);
}
}
this->set_bounding_boxes_dirty();
}
//BBS: add partplate related logic
void Selection::notify_instance_update(int object_idx, int instance_idx)
{
//BBS: notify instance updates to part plater list
PartPlateList& plate_list = wxGetApp().plater()->get_partplate_list();
if (object_idx == -1)
{
std::set<std::pair<int, int>> notify_set;
for (unsigned int i : m_list)
{
int obj_index = (*m_volumes)[i]->object_idx();
//-1 means all the instance in this object
if (instance_idx == -1)
{
ModelObject* object = m_model->objects[obj_index];
for (int instance_index = 0; instance_index < object->instances.size(); instance_index++)
{
std::pair<int, int> notify_index(obj_index, instance_index);
if (notify_set.find(notify_index) == notify_set.end()) {
plate_list.notify_instance_update(obj_index, instance_index);
notify_set.insert(notify_index);
}
}
}
else {
std::pair<int, int> notify_index(obj_index, instance_idx);
if (notify_set.find(notify_index) == notify_set.end()) {
plate_list.notify_instance_update(obj_index, instance_idx);
notify_set.insert(notify_index);
}
}
}
}
else
{
if (instance_idx == -1)
{
ModelObject* object = m_model->objects[object_idx];
for (int index = 0; index < object->instances.size(); index++)
{
plate_list.notify_instance_update(object_idx, index);
}
}
else
plate_list.notify_instance_update(object_idx, instance_idx);
}
}
void Selection::erase()
{
if (!m_valid)
return;
if (is_single_full_object())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itObject, get_object_idx(), 0);
else if (is_multiple_full_object()) {
std::vector<ItemForDelete> items;
items.reserve(m_cache.content.size());
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it) {
items.emplace_back(ItemType::itObject, it->first, 0);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_multiple_full_instance()) {
std::set<std::pair<int, int>> instances_idxs;
for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it) {
for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it) {
instances_idxs.insert(std::make_pair(obj_it->first, *inst_it));
}
}
std::vector<ItemForDelete> items;
items.reserve(instances_idxs.size());
for (const std::pair<int, int>& i : instances_idxs) {
items.emplace_back(ItemType::itInstance, i.first, i.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_single_full_instance())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx());
else if (is_mixed()) {
std::set<ItemForDelete> items_set;
std::map<int, int> volumes_in_obj;
for (auto i : m_list) {
const auto gl_vol = (*m_volumes)[i];
const auto glv_obj_idx = gl_vol->object_idx();
const auto model_object = m_model->objects[glv_obj_idx];
if (model_object->instances.size() == 1) {
if (model_object->volumes.size() == 1)
items_set.insert(ItemForDelete(ItemType::itObject, glv_obj_idx, -1));
else {
items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx()));
int idx = (volumes_in_obj.find(glv_obj_idx) == volumes_in_obj.end()) ? 0 : volumes_in_obj.at(glv_obj_idx);
volumes_in_obj[glv_obj_idx] = ++idx;
}
continue;
}
const auto glv_ins_idx = gl_vol->instance_idx();
for (auto obj_ins : m_cache.content) {
if (obj_ins.first == glv_obj_idx) {
if (obj_ins.second.find(glv_ins_idx) != obj_ins.second.end()) {
if (obj_ins.second.size() == model_object->instances.size())
items_set.insert(ItemForDelete(ItemType::itObject, glv_obj_idx, -1));
else
items_set.insert(ItemForDelete(ItemType::itInstance, glv_obj_idx, glv_ins_idx));
break;
}
}
}
}
std::vector<ItemForDelete> items;
items.reserve(items_set.size());
for (const ItemForDelete& i : items_set) {
if (i.type == ItemType::itVolume) {
const int vol_in_obj_cnt = volumes_in_obj.find(i.obj_idx) == volumes_in_obj.end() ? 0 : volumes_in_obj.at(i.obj_idx);
if (vol_in_obj_cnt == (int)m_model->objects[i.obj_idx]->volumes.size()) {
if (i.sub_obj_idx == vol_in_obj_cnt - 1)
items.emplace_back(ItemType::itObject, i.obj_idx, 0);
continue;
}
}
items.emplace_back(i.type, i.obj_idx, i.sub_obj_idx);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else {
std::set<std::pair<int, int>> volumes_idxs;
for (unsigned int i : m_list) {
const GLVolume* v = (*m_volumes)[i];
// Only remove volumes associated with ModelVolumes from the object list.
// Temporary meshes (SLA supports or pads) are not managed by the object list.
if (v->volume_idx() >= 0)
volumes_idxs.insert(std::make_pair(v->object_idx(), v->volume_idx()));
}
std::vector<ItemForDelete> items;
items.reserve(volumes_idxs.size());
for (const std::pair<int, int>& v : volumes_idxs) {
items.emplace_back(ItemType::itVolume, v.first, v.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
ensure_not_below_bed();
}
}
void Selection::render(float scale_factor) const
{
if (!m_valid || is_empty())
return;
*const_cast<float*>(&m_scale_factor) = scale_factor;
// render cumulative bounding box of selected volumes
render_selected_volumes();
render_synchronized_volumes();
}
#if ENABLE_RENDER_SELECTION_CENTER
void Selection::render_center(bool gizmo_is_dragging) const
{
if (!m_valid || is_empty())
return;
const Vec3d center = gizmo_is_dragging ? m_cache.dragging_center : get_bounding_box().center();
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glColor3f(1.0f, 1.0f, 1.0f));
glsafe(::glPushMatrix());
glsafe(::glTranslated(center(0), center(1), center(2)));
m_vbo_sphere.render();
glsafe(::glPopMatrix());
}
#endif // ENABLE_RENDER_SELECTION_CENTER
//BBS: GUI refactor, add uniform scale from gizmo
void Selection::render_sidebar_hints(const std::string& sidebar_field, bool uniform_scale) const
//void Selection::render_sidebar_hints(const std::string& sidebar_field) const
{
if (sidebar_field.empty())
return;
GLShaderProgram* shader = nullptr;
if (!boost::starts_with(sidebar_field, "layer")) {
shader = wxGetApp().get_shader("gouraud_light");
if (shader == nullptr)
return;
shader->start_using();
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
}
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
if (!boost::starts_with(sidebar_field, "layer")) {
const Vec3d& center = get_bounding_box().center();
// BBS
if (is_single_full_instance()/* && !wxGetApp().obj_manipul()->get_world_coordinates()*/) {
glsafe(::glTranslated(center(0), center(1), center(2)));
if (!boost::starts_with(sidebar_field, "position")) {
Transform3d orient_matrix = Transform3d::Identity();
if (boost::starts_with(sidebar_field, "scale") || boost::starts_with(sidebar_field, "size"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::starts_with(sidebar_field, "rotation")) {
if (boost::ends_with(sidebar_field, "x"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::ends_with(sidebar_field, "y")) {
const Vec3d& rotation = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_rotation();
if (rotation(0) == 0.0)
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else
orient_matrix.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
}
}
glsafe(::glMultMatrixd(orient_matrix.data()));
}
} else if (is_single_volume() || is_single_modifier()) {
glsafe(::glTranslated(center(0), center(1), center(2)));
Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
if (!boost::starts_with(sidebar_field, "position"))
orient_matrix = orient_matrix * (*m_volumes)[*m_list.begin()]->get_volume_transformation().get_matrix(true, false, true, true);
glsafe(::glMultMatrixd(orient_matrix.data()));
} else {
glsafe(::glTranslated(center(0), center(1), center(2)));
if (requires_local_axes()) {
const Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
glsafe(::glMultMatrixd(orient_matrix.data()));
}
}
}
if (boost::starts_with(sidebar_field, "position"))
render_sidebar_position_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "rotation"))
render_sidebar_rotation_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "scale") || boost::starts_with(sidebar_field, "size"))
//BBS: GUI refactor: add uniform_scale from gizmo
render_sidebar_scale_hints(sidebar_field, uniform_scale);
else if (boost::starts_with(sidebar_field, "layer"))
render_sidebar_layers_hints(sidebar_field);
glsafe(::glPopMatrix());
if (!boost::starts_with(sidebar_field, "layer"))
shader->stop_using();
}
bool Selection::requires_local_axes() const
{
return (m_mode == Volume) && is_from_single_instance();
}
void Selection::cut_to_clipboard()
{
copy_to_clipboard();
erase();
}
void Selection::copy_to_clipboard()
{
if (!m_valid)
return;
m_clipboard.reset();
// sort as the object list order
std::vector<unsigned int> selected_list;
selected_list.assign(m_list.begin(), m_list.end());
std::sort(selected_list.begin(), selected_list.end(), [this](unsigned int left, unsigned int right) {
return (*m_volumes)[left]->volume_idx() < (*m_volumes)[right]->volume_idx();
});
for (const ObjectIdxsToInstanceIdxsMap::value_type& object : m_cache.content)
{
ModelObject* src_object = m_model->objects[object.first];
ModelObject* dst_object = m_clipboard.add_object();
dst_object->name = src_object->name;
dst_object->input_file = src_object->input_file;
dst_object->config.assign_config(src_object->config);
dst_object->sla_support_points = src_object->sla_support_points;
dst_object->sla_points_status = src_object->sla_points_status;
dst_object->sla_drain_holes = src_object->sla_drain_holes;
dst_object->layer_config_ranges = src_object->layer_config_ranges; // #ys_FIXME_experiment
dst_object->layer_height_profile.assign(src_object->layer_height_profile);
dst_object->origin_translation = src_object->origin_translation;
for (int i : object.second)
{
dst_object->add_instance(*src_object->instances[i]);
}
for (unsigned int i : selected_list)
{
// Copy the ModelVolumes only for the selected GLVolumes of the 1st selected instance.
const GLVolume* volume = (*m_volumes)[i];
if ((volume->object_idx() == object.first) && (volume->instance_idx() == *object.second.begin()))
{
int volume_idx = volume->volume_idx();
if ((0 <= volume_idx) && (volume_idx < (int)src_object->volumes.size()))
{
ModelVolume* src_volume = src_object->volumes[volume_idx];
ModelVolume* dst_volume = dst_object->add_volume(*src_volume);
dst_volume->set_new_unique_id();
} else {
assert(false);
}
}
}
}
m_clipboard.set_mode(m_mode);
}
void Selection::paste_from_clipboard()
{
if (!m_valid || m_clipboard.is_empty())
return;
switch (m_clipboard.get_mode())
{
case Volume:
{
if (is_from_single_instance())
paste_volumes_from_clipboard();
break;
}
case Instance:
{
if (m_mode == Instance)
paste_objects_from_clipboard();
break;
}
}
}
//BBS get export mesh for exporting stl
std::set<std::pair<int, int>> Selection::get_selected_object_instances()
{
std::set<std::pair<int, int>> instances_idxs;
// BBS only support multi full object now
if (!is_multiple_full_object())
return instances_idxs;
for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it)
{
for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it)
{
instances_idxs.insert(std::make_pair(obj_it->first, *inst_it));
}
}
return instances_idxs;
}
void Selection::fill_color(int extruder_id)
{
wxGetApp().obj_list()->set_extruder_for_selected_items(extruder_id);
}
std::vector<unsigned int> Selection::get_volume_idxs_from_object(unsigned int object_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
if ((*m_volumes)[i]->object_idx() == (int)object_idx)
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_volume_idxs_from_instance(unsigned int object_idx, unsigned int instance_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->instance_idx() == (int)instance_idx))
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_volume_idxs_from_volume(unsigned int object_idx, unsigned int instance_idx, unsigned int volume_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->volume_idx() == (int)volume_idx))
{
if (((int)instance_idx != -1) && (v->instance_idx() == (int)instance_idx))
idxs.push_back(i);
}
}
return idxs;
}
std::vector<unsigned int> Selection::get_missing_volume_idxs_from(const std::vector<unsigned int>& volume_idxs) const
{
std::vector<unsigned int> idxs;
for (unsigned int i : m_list)
{
std::vector<unsigned int>::const_iterator it = std::find(volume_idxs.begin(), volume_idxs.end(), i);
if (it == volume_idxs.end())
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_unselected_volume_idxs_from(const std::vector<unsigned int>& volume_idxs) const
{
std::vector<unsigned int> idxs;
for (unsigned int i : volume_idxs)
{
if (m_list.find(i) == m_list.end())
idxs.push_back(i);
}
return idxs;
}
void Selection::update_valid()
{
m_valid = (m_volumes != nullptr) && (m_model != nullptr);
}
void Selection::update_type()
{
m_cache.content.clear();
m_type = Mixed;
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int obj_idx = volume->object_idx();
int inst_idx = volume->instance_idx();
ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.find(obj_idx);
if (obj_it == m_cache.content.end())
obj_it = m_cache.content.insert(ObjectIdxsToInstanceIdxsMap::value_type(obj_idx, InstanceIdxsList())).first;
obj_it->second.insert(inst_idx);
}
bool requires_disable = false;
if (!m_valid)
m_type = Invalid;
else
{
if (m_list.empty())
m_type = Empty;
else if (m_list.size() == 1)
{
const GLVolume* first = (*m_volumes)[*m_list.begin()];
if (first->is_wipe_tower)
m_type = WipeTower;
else if (first->is_modifier)
{
m_type = SingleModifier;
requires_disable = true;
}
else
{
const ModelObject* model_object = m_model->objects[first->object_idx()];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
if (volumes_count * instances_count == 1)
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (volumes_count == 1) // instances_count > 1
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
m_type = SingleVolume;
requires_disable = true;
}
}
}
else
{
unsigned int sla_volumes_count = 0;
// Note: sla_volumes_count is a count of the selected sla_volumes per object instead of per instance, like a model_volumes_count is
for (unsigned int i : m_list) {
if ((*m_volumes)[i]->volume_idx() < 0)
++sla_volumes_count;
}
if (m_cache.content.size() == 1) // single object
{
const ModelObject* model_object = m_model->objects[m_cache.content.begin()->first];
unsigned int model_volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
unsigned int selected_instances_count = (unsigned int)m_cache.content.begin()->second.size();
if (model_volumes_count * instances_count + sla_volumes_count == (unsigned int)m_list.size())
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (selected_instances_count == 1)
{
if (model_volumes_count + sla_volumes_count == (unsigned int)m_list.size())
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
unsigned int modifiers_count = 0;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->is_modifier)
++modifiers_count;
}
if (modifiers_count == 0)
m_type = MultipleVolume;
else if (modifiers_count == (unsigned int)m_list.size())
m_type = MultipleModifier;
requires_disable = true;
}
}
else if ((selected_instances_count > 1) && (selected_instances_count * model_volumes_count + sla_volumes_count == (unsigned int)m_list.size()))
{
m_type = MultipleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
}
else
{
unsigned int sels_cntr = 0;
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it)
{
bool is_wipe_tower = it->first >= 1000;
int actual_obj_id = is_wipe_tower ? it->first - 1000 : it->first;
const ModelObject *model_object = m_model->objects[actual_obj_id];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
sels_cntr += volumes_count * instances_count;
}
if (sels_cntr + sla_volumes_count == (unsigned int)m_list.size())
{
m_type = MultipleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
}
}
}
//BBS: remove the disable logic here
/*int object_idx = get_object_idx();
int instance_idx = get_instance_idx();
for (GLVolume* v : *m_volumes)
{
v->disabled = requires_disable ? (v->object_idx() != object_idx) || (v->instance_idx() != instance_idx) : false;
}*/
#if ENABLE_SELECTION_DEBUG_OUTPUT
std::cout << "Selection: ";
std::cout << "mode: ";
switch (m_mode)
{
case Volume:
{
std::cout << "Volume";
break;
}
case Instance:
{
std::cout << "Instance";
break;
}
}
std::cout << " - type: ";
switch (m_type)
{
case Invalid:
{
std::cout << "Invalid" << std::endl;
break;
}
case Empty:
{
std::cout << "Empty" << std::endl;
break;
}
case WipeTower:
{
std::cout << "WipeTower" << std::endl;
break;
}
case SingleModifier:
{
std::cout << "SingleModifier" << std::endl;
break;
}
case MultipleModifier:
{
std::cout << "MultipleModifier" << std::endl;
break;
}
case SingleVolume:
{
std::cout << "SingleVolume" << std::endl;
break;
}
case MultipleVolume:
{
std::cout << "MultipleVolume" << std::endl;
break;
}
case SingleFullObject:
{
std::cout << "SingleFullObject" << std::endl;
break;
}
case MultipleFullObject:
{
std::cout << "MultipleFullObject" << std::endl;
break;
}
case SingleFullInstance:
{
std::cout << "SingleFullInstance" << std::endl;
break;
}
case MultipleFullInstance:
{
std::cout << "MultipleFullInstance" << std::endl;
break;
}
case Mixed:
{
std::cout << "Mixed" << std::endl;
break;
}
}
#endif // ENABLE_SELECTION_DEBUG_OUTPUT
}
void Selection::set_caches()
{
m_cache.volumes_data.clear();
m_cache.sinking_volumes.clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
const GLVolume& v = *(*m_volumes)[i];
m_cache.volumes_data.emplace(i, VolumeCache(v.get_volume_transformation(), v.get_instance_transformation()));
if (v.is_sinking())
m_cache.sinking_volumes.push_back(i);
}
m_cache.dragging_center = get_bounding_box().center();
m_cache.rotation_pivot = get_bounding_sphere().first;
}
void Selection::do_add_volume(unsigned int volume_idx)
{
m_list.insert(volume_idx);
GLVolume* v = (*m_volumes)[volume_idx];
v->selected = true;
if (v->hover == GLVolume::HS_Select || v->hover == GLVolume::HS_Deselect)
v->hover = GLVolume::HS_Hover;
}
void Selection::do_add_volumes(const std::vector<unsigned int>& volume_idxs)
{
for (unsigned int i : volume_idxs)
{
if (i < (unsigned int)m_volumes->size())
do_add_volume(i);
}
}
void Selection::do_remove_volume(unsigned int volume_idx)
{
IndicesList::iterator v_it = m_list.find(volume_idx);
if (v_it == m_list.end())
return;
m_list.erase(v_it);
(*m_volumes)[volume_idx]->selected = false;
}
void Selection::do_remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == (int)object_idx && v->instance_idx() == (int)instance_idx)
do_remove_volume(i);
}
}
void Selection::do_remove_object(unsigned int object_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == (int)object_idx)
do_remove_volume(i);
}
}
void Selection::render_selected_volumes() const
{
float color[3] = { 1.0f, 1.0f, 1.0f };
render_bounding_box(get_bounding_box(), color);
}
void Selection::render_synchronized_volumes() const
{
if (m_mode == Instance)
return;
float color[3] = { 1.0f, 1.0f, 0.0f };
for (unsigned int i : m_list) {
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
int volume_idx = volume->volume_idx();
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (i == j)
continue;
const GLVolume* v = (*m_volumes)[j];
if (v->object_idx() != object_idx || v->volume_idx() != volume_idx)
continue;
render_bounding_box(v->transformed_convex_hull_bounding_box(), color);
}
}
}
void Selection::render_bounding_box(const BoundingBoxf3& box, float* color) const
{
if (color == nullptr)
return;
Vec3f b_min = box.min.cast<float>();
Vec3f b_max = box.max.cast<float>();
Vec3f size = 0.2f * box.size().cast<float>();
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glColor3fv(color));
glsafe(::glLineWidth(2.0f * m_scale_factor));
::glBegin(GL_LINES);
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2) - size(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2) - size(2));
glsafe(::glEnd());
}
static std::array<float, 4> get_color(Axis axis)
{
return { GLGizmoBase::AXES_COLOR[axis][0],
GLGizmoBase::AXES_COLOR[axis][1],
GLGizmoBase::AXES_COLOR[axis][2],
GLGizmoBase::AXES_COLOR[axis][3] };
};
void Selection::render_sidebar_position_hints(const std::string& sidebar_field) const
{
if (boost::ends_with(sidebar_field, "x")) {
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
const_cast<GLModel*>(&m_arrow)->set_color(-1, get_color(X));
m_arrow.render();
}
else if (boost::ends_with(sidebar_field, "y")) {
const_cast<GLModel*>(&m_arrow)->set_color(-1, get_color(Y));
m_arrow.render();
}
else if (boost::ends_with(sidebar_field, "z")) {
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
const_cast<GLModel*>(&m_arrow)->set_color(-1, get_color(Z));
m_arrow.render();
}
}
void Selection::render_sidebar_rotation_hints(const std::string& sidebar_field) const
{
auto render_sidebar_rotation_hint = [this]() {
m_curved_arrow.render();
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_curved_arrow.render();
};
if (boost::ends_with(sidebar_field, "x")) {
glsafe(::glRotated(90.0, 0.0, 1.0, 0.0));
const_cast<GLModel*>(&m_curved_arrow)->set_color(-1, get_color(X));
render_sidebar_rotation_hint();
}
else if (boost::ends_with(sidebar_field, "y")) {
glsafe(::glRotated(-90.0, 1.0, 0.0, 0.0));
const_cast<GLModel*>(&m_curved_arrow)->set_color(-1, get_color(Y));
render_sidebar_rotation_hint();
}
else if (boost::ends_with(sidebar_field, "z")) {
const_cast<GLModel*>(&m_curved_arrow)->set_color(-1, get_color(Z));
render_sidebar_rotation_hint();
}
}
//BBS: GUI refactor: add gizmo uniform_scale
void Selection::render_sidebar_scale_hints(const std::string& sidebar_field, bool gizmo_uniform_scale) const
{
// BBS
//bool uniform_scale = requires_uniform_scale() || wxGetApp().obj_manipul()->get_uniform_scaling();
bool uniform_scale = requires_uniform_scale() || gizmo_uniform_scale;
auto render_sidebar_scale_hint = [this, uniform_scale](Axis axis) {
const_cast<GLModel*>(&m_arrow)->set_color(-1, uniform_scale ? UNIFORM_SCALE_COLOR : get_color(axis));
GLShaderProgram* shader = wxGetApp().get_current_shader();
if (shader != nullptr)
shader->set_uniform("emission_factor", 0.0f);
glsafe(::glTranslated(0.0, 5.0, 0.0));
m_arrow.render();
glsafe(::glTranslated(0.0, -10.0, 0.0));
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_arrow.render();
};
if (boost::ends_with(sidebar_field, "x") || uniform_scale) {
glsafe(::glPushMatrix());
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
render_sidebar_scale_hint(X);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "y") || uniform_scale) {
glsafe(::glPushMatrix());
render_sidebar_scale_hint(Y);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "z") || uniform_scale) {
glsafe(::glPushMatrix());
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
render_sidebar_scale_hint(Z);
glsafe(::glPopMatrix());
}
}
void Selection::render_sidebar_layers_hints(const std::string& sidebar_field) const
{
static const double Margin = 10.0;
std::string field = sidebar_field;
// extract max_z
std::string::size_type pos = field.rfind("_");
if (pos == std::string::npos)
return;
double max_z = string_to_double_decimal_point(field.substr(pos + 1));
// extract min_z
field = field.substr(0, pos);
pos = field.rfind("_");
if (pos == std::string::npos)
return;
const double min_z = string_to_double_decimal_point(field.substr(pos + 1));
// extract type
field = field.substr(0, pos);
pos = field.rfind("_");
if (pos == std::string::npos)
return;
const int type = std::stoi(field.substr(pos + 1));
const BoundingBoxf3& box = get_bounding_box();
const float min_x = box.min(0) - Margin;
const float max_x = box.max(0) + Margin;
const float min_y = box.min(1) - Margin;
const float max_y = box.max(1) + Margin;
// view dependend order of rendering to keep correct transparency
bool camera_on_top = wxGetApp().plater()->get_camera().is_looking_downward();
const float z1 = camera_on_top ? min_z : max_z;
const float z2 = camera_on_top ? max_z : min_z;
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glDisable(GL_CULL_FACE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
::glBegin(GL_QUADS);
if ((camera_on_top && type == 1) || (!camera_on_top && type == 2))
::glColor4f(0.0f, 174.0f / 255.0f, 66.0f / 255.0f, 1.0f);
else
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
::glVertex3f(min_x, min_y, z1);
::glVertex3f(max_x, min_y, z1);
::glVertex3f(max_x, max_y, z1);
::glVertex3f(min_x, max_y, z1);
glsafe(::glEnd());
::glBegin(GL_QUADS);
if ((camera_on_top && type == 2) || (!camera_on_top && type == 1))
::glColor4f(0.0f, 174.0f / 255.0f, 66.0f / 255.0f, 1.0f);
else
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
::glVertex3f(min_x, min_y, z2);
::glVertex3f(max_x, min_y, z2);
::glVertex3f(max_x, max_y, z2);
::glVertex3f(min_x, max_y, z2);
glsafe(::glEnd());
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glDisable(GL_BLEND));
}
#ifndef NDEBUG
static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
const Eigen::AngleAxisd angle_axis(Geometry::rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
const Vec3d axis = angle_axis.axis();
const double angle = angle_axis.angle();
if (std::abs(angle) < 1e-8)
return true;
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
assert(std::abs(std::abs(axis.z()) - 1.) < 1e-8);
return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8;
}
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{
for (int idx_object = 0; idx_object < int(model.objects.size()); ++idx_object) {
int idx_volume_first = -1;
for (int i = 0; i < (int)volumes.size(); ++i) {
if (volumes[i]->object_idx() == idx_object) {
idx_volume_first = i;
break;
}
}
//assert(idx_volume_first != -1); // object without instances?
if (idx_volume_first == -1)
continue;
const Vec3d &rotation0 = volumes[idx_volume_first]->get_instance_rotation();
for (int i = idx_volume_first + 1; i < (int)volumes.size(); ++i)
if (volumes[i]->object_idx() == idx_object) {
const Vec3d &rotation = volumes[i]->get_instance_rotation();
assert(is_rotation_xy_synchronized(rotation, rotation0));
}
}
}
#endif /* NDEBUG */
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume* volume = (*m_volumes)[i];
const int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
const int instance_idx = volume->instance_idx();
const Vec3d& rotation = volume->get_instance_rotation();
const Vec3d& scaling_factor = volume->get_instance_scaling_factor();
const Vec3d& mirror = volume->get_instance_mirror();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if (v->object_idx() != object_idx || v->instance_idx() == instance_idx)
continue;
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
switch (sync_rotation_type) {
case SYNC_ROTATION_NONE: {
// z only rotation -> synch instance z
// The X,Y rotations should be synchronized from start to end of the rotation.
assert(is_rotation_xy_synchronized(rotation, v->get_instance_rotation()));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
v->set_instance_offset(Z, volume->get_instance_offset().z());
break;
}
case SYNC_ROTATION_GENERAL:
// generic rotation -> update instance z with the delta of the rotation.
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
v->set_instance_rotation({ rotation.x(), rotation.y(), rotation.z() + z_diff });
break;
}
v->set_instance_scaling_factor(scaling_factor);
v->set_instance_mirror(mirror);
done.insert(j);
}
}
#ifndef NDEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */
}
void Selection::synchronize_unselected_volumes()
{
for (unsigned int i : m_list) {
const GLVolume* volume = (*m_volumes)[i];
const int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
const int volume_idx = volume->volume_idx();
const Vec3d& offset = volume->get_volume_offset();
const Vec3d& rotation = volume->get_volume_rotation();
const Vec3d& scaling_factor = volume->get_volume_scaling_factor();
const Vec3d& mirror = volume->get_volume_mirror();
// Process unselected volumes.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (j == i)
continue;
GLVolume* v = (*m_volumes)[j];
if (v->object_idx() != object_idx || v->volume_idx() != volume_idx)
continue;
v->set_volume_offset(offset);
v->set_volume_rotation(rotation);
v->set_volume_scaling_factor(scaling_factor);
v->set_volume_mirror(mirror);
}
}
}
void Selection::ensure_on_bed()
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_min_z;
for (size_t i = 0; i < m_volumes->size(); ++i) {
GLVolume* volume = (*m_volumes)[i];
if (!volume->is_wipe_tower && !volume->is_modifier &&
std::find(m_cache.sinking_volumes.begin(), m_cache.sinking_volumes.end(), i) == m_cache.sinking_volumes.end()) {
const double min_z = volume->transformed_convex_hull_bounding_box().min.z();
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it == instances_min_z.end())
it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first;
it->second = std::min(it->second, min_z);
}
}
for (GLVolume* volume : *m_volumes) {
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it != instances_min_z.end())
volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second);
}
}
void Selection::ensure_not_below_bed()
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_max_z;
for (size_t i = 0; i < m_volumes->size(); ++i) {
GLVolume* volume = (*m_volumes)[i];
if (!volume->is_wipe_tower && !volume->is_modifier) {
const double max_z = volume->transformed_convex_hull_bounding_box().max.z();
const std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_max_z.find(instance);
if (it == instances_max_z.end())
it = instances_max_z.insert({ instance, -DBL_MAX }).first;
it->second = std::max(it->second, max_z);
}
}
if (is_any_volume()) {
for (unsigned int i : m_list) {
GLVolume& volume = *(*m_volumes)[i];
const std::pair<int, int> instance = std::make_pair(volume.object_idx(), volume.instance_idx());
InstancesToZMap::const_iterator it = instances_max_z.find(instance);
const double z_shift = SINKING_MIN_Z_THRESHOLD - it->second;
if (it != instances_max_z.end() && z_shift > 0.0)
volume.set_volume_offset(Z, volume.get_volume_offset(Z) + z_shift);
}
}
else {
for (GLVolume* volume : *m_volumes) {
const std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::const_iterator it = instances_max_z.find(instance);
if (it != instances_max_z.end() && it->second < SINKING_MIN_Z_THRESHOLD)
volume->set_instance_offset(Z, volume->get_instance_offset(Z) + SINKING_MIN_Z_THRESHOLD - it->second);
}
}
}
bool Selection::is_from_fully_selected_instance(unsigned int volume_idx) const
{
if (m_mode == Instance && wxGetApp().plater()->canvas3D()->get_canvas_type() == GLCanvas3D::ECanvasType::CanvasAssembleView) {
return true;
}
struct SameInstance
{
int obj_idx;
int inst_idx;
GLVolumePtrs& volumes;
SameInstance(int obj_idx, int inst_idx, GLVolumePtrs& volumes) : obj_idx(obj_idx), inst_idx(inst_idx), volumes(volumes) {}
bool operator () (unsigned int i) { return (volumes[i]->volume_idx() >= 0) && (volumes[i]->object_idx() == obj_idx) && (volumes[i]->instance_idx() == inst_idx); }
};
if ((unsigned int)m_volumes->size() <= volume_idx)
return false;
GLVolume* volume = (*m_volumes)[volume_idx];
int object_idx = volume->object_idx();
if ((int)m_model->objects.size() <= object_idx)
return false;
unsigned int count = (unsigned int)std::count_if(m_list.begin(), m_list.end(), SameInstance(object_idx, volume->instance_idx(), *m_volumes));
return count == (unsigned int)m_model->objects[object_idx]->volumes.size();
}
void Selection::paste_volumes_from_clipboard()
{
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
int dst_obj_idx = get_object_idx();
if ((dst_obj_idx < 0) || ((int)m_model->objects.size() <= dst_obj_idx))
return;
ModelObject* dst_object = m_model->objects[dst_obj_idx];
int dst_inst_idx = get_instance_idx();
if ((dst_inst_idx < 0) || ((int)dst_object->instances.size() <= dst_inst_idx))
return;
ModelObject* src_object = m_clipboard.get_object(0);
if (src_object != nullptr)
{
ModelInstance* dst_instance = dst_object->instances[dst_inst_idx];
BoundingBoxf3 dst_instance_bb = dst_object->instance_bounding_box(dst_inst_idx);
Transform3d src_matrix = src_object->instances[0]->get_transformation().get_matrix(true);
Transform3d dst_matrix = dst_instance->get_transformation().get_matrix(true);
bool from_same_object = (src_object->input_file == dst_object->input_file) && src_matrix.isApprox(dst_matrix);
// used to keep relative position of multivolume selections when pasting from another object
BoundingBoxf3 total_bb;
ModelVolumePtrs volumes;
for (ModelVolume* src_volume : src_object->volumes)
{
ModelVolume* dst_volume = dst_object->add_volume(*src_volume);
dst_volume->set_new_unique_id();
if (from_same_object)
{
// // if the volume comes from the same object, apply the offset in world system
// double offset = wxGetApp().plater()->canvas3D()->get_size_proportional_to_max_bed_size(0.05);
// dst_volume->translate(dst_matrix.inverse() * Vec3d(offset, offset, 0.0));
}
else
{
// if the volume comes from another object, apply the offset as done when adding modifiers
// see ObjectList::load_generic_subobject()
total_bb.merge(dst_volume->mesh().bounding_box().transformed(src_volume->get_matrix()));
}
volumes.push_back(dst_volume);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
// keeps relative position of multivolume selections
if (!from_same_object)
{
for (ModelVolume* v : volumes)
{
v->set_offset((v->get_offset() - total_bb.center()) + dst_matrix.inverse() * (Vec3d(dst_instance_bb.max(0), dst_instance_bb.min(1), dst_instance_bb.min(2)) + 0.5 * total_bb.size() - dst_instance->get_transformation().get_offset()));
}
}
wxGetApp().obj_list()->paste_volumes_into_list(dst_obj_idx, volumes);
}
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
void Selection::paste_objects_from_clipboard()
{
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
std::vector<size_t> object_idxs;
const ModelObjectPtrs& src_objects = m_clipboard.get_objects();
PartPlate * plate = wxGetApp().plater()->get_partplate_list().get_curr_plate();
//BBS: if multiple objects are selected, move them as a whole after copy
Vec2d shift_all = {0, 0};
Vec2f empty_cell_all = {0, 0};
if (src_objects.size() > 1) {
BoundingBoxf3 bbox_all;
for (const ModelObject *src_object : src_objects) {
BoundingBoxf3 bbox = src_object->instance_convex_hull_bounding_box(size_t(0));
bbox_all.merge(bbox);
}
auto bsize = bbox_all.size();
if (bsize.x() < bsize.y())
shift_all = {bbox_all.size().x(), 0};
else
shift_all = {0, bbox_all.size().y()};
}
for (size_t i=0;i<src_objects.size();i++)
{
const ModelObject *src_object = src_objects[i];
ModelObject* dst_object = m_model->add_object(*src_object);
// BBS: find an empty cell to put the copied object
BoundingBoxf3 bbox = src_object->instance_convex_hull_bounding_box(size_t(0));
Vec3d displacement;
bool in_current = plate->intersects(bbox);
auto start_point = in_current ? bbox.center() : plate->get_build_volume().center();
if (shift_all(0) != 0 || shift_all(1) != 0) {
// BBS: if multiple objects are selected, move them as a whole after copy
if (i == 0) empty_cell_all = wxGetApp().plater()->canvas3D()->get_nearest_empty_cell({start_point(0), start_point(1)}, {bbox.size()(0)+1,bbox.size()(1)+1});
auto instance_shift = src_object->instances.front()->get_offset() - src_objects[0]->instances.front()->get_offset();
displacement = {shift_all.x() + empty_cell_all.x()+instance_shift.x(), shift_all.y() + empty_cell_all.y()+instance_shift.y(), start_point(2)};
} else {
// BBS: if only one object is copied, find an empty cell to put it
auto start_offset = in_current ? src_object->instances.front()->get_offset() : plate->get_build_volume().center();
auto point_offset = start_offset - start_point;
auto empty_cell = wxGetApp().plater()->canvas3D()->get_nearest_empty_cell({start_point(0), start_point(1)}, {bbox.size()(0)+1, bbox.size()(1)+1});
displacement = {empty_cell.x() + point_offset.x(), empty_cell.y() + point_offset.y(), start_offset(2)};
}
for (ModelInstance* inst : dst_object->instances) {
inst->set_offset(displacement);
//BBS init asssmble transformation
Geometry::Transformation t = inst->get_transformation();
inst->set_assemble_transformation(t);
}
object_idxs.push_back(m_model->objects.size() - 1);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
wxGetApp().obj_list()->paste_objects_into_list(object_idxs);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
void Selection::transform_instance_relative(
GLVolume &volume, const VolumeCache &volume_data, TransformationType transformation_type, const Transform3d &transform, const Vec3d &world_pivot)
{
assert(transformation_type.relative());
const Geometry::Transformation &inst_trafo = volume_data.get_instance_transform();
if (transformation_type.world()) {
const Vec3d inst_pivot = transformation_type.independent() && !is_from_single_instance() ? inst_trafo.get_offset() : world_pivot;
const Transform3d trafo = Geometry::translation_transform(inst_pivot) * transform * Geometry::translation_transform(-inst_pivot);
volume.set_instance_transformation(trafo * inst_trafo.get_matrix());
} else if (transformation_type.instance())
volume.set_instance_transformation(inst_trafo.get_matrix() * transform);
else
assert(false);
}
void Selection::transform_volume_relative(
GLVolume &volume, const VolumeCache &volume_data, TransformationType transformation_type, const Transform3d &transform, const Vec3d &world_pivot)
{
assert(transformation_type.relative());
const Geometry::Transformation &vol_trafo = volume_data.get_volume_transform();
const Geometry::Transformation &inst_trafo = volume_data.get_instance_transform();
if (transformation_type.world()) {
const Vec3d inst_pivot = transformation_type.independent() ? vol_trafo.get_offset() : (Vec3d) (inst_trafo.get_matrix().inverse() * world_pivot);
const Transform3d inst_matrix_no_offset = inst_trafo.get_matrix_no_offset();
const Transform3d trafo = Geometry::translation_transform(inst_pivot) * inst_matrix_no_offset.inverse() * transform * inst_matrix_no_offset *
Geometry::translation_transform(-inst_pivot);
volume.set_volume_transformation(trafo * vol_trafo.get_matrix());
} else if (transformation_type.instance()) {
const Vec3d inst_pivot = transformation_type.independent() ? vol_trafo.get_offset() : (Vec3d) (inst_trafo.get_matrix().inverse() * world_pivot);
const Transform3d trafo = Geometry::translation_transform(inst_pivot) * transform * Geometry::translation_transform(-inst_pivot);
volume.set_volume_transformation(trafo * vol_trafo.get_matrix());
} else if (transformation_type.local())
volume.set_volume_transformation(vol_trafo.get_matrix() * transform);
else
assert(false);
}
} // namespace GUI
} // namespace Slic3r