BambuStudio/libslic3r/Fill/Fill.cpp

855 lines
37 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include <assert.h>
#include <stdio.h>
#include <memory>
#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "FillBase.hpp"
#include "FillRectilinear.hpp"
#include "FillLightning.hpp"
#include "FillConcentricInternal.hpp"
#include "FillConcentric.hpp"
#define NARROW_INFILL_AREA_THRESHOLD 3
namespace Slic3r {
struct SurfaceFillParams
{
// Zero based extruder ID.
unsigned int extruder = 0;
// Infill pattern, adjusted for the density etc.
InfillPattern pattern = InfillPattern(0);
// FillBase
// in unscaled coordinates
coordf_t spacing = 0.;
// infill / perimeter overlap, in unscaled coordinates
coordf_t overlap = 0.;
// Angle as provided by the region config, in radians.
float angle = 0.f;
// Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
bool bridge;
// Non-negative for a bridge.
float bridge_angle = 0.f;
// FillParams
float density = 0.f;
// Don't adjust spacing to fill the space evenly.
// bool dont_adjust = false;
// Length of the infill anchor along the perimeter line.
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
float anchor_length = 1000.f;
float anchor_length_max = 1000.f;
//BBS
// width, height of extrusion, nozzle diameter, is bridge
// For the output, for fill generator.
Flow flow;
// For the output
ExtrusionRole extrusion_role = ExtrusionRole(0);
// Various print settings?
// Index of this entry in a linear vector.
size_t idx = 0;
// infill speed settings
float sparse_infill_speed = 0;
float top_surface_speed = 0;
float solid_infill_speed = 0;
bool operator<(const SurfaceFillParams &rhs) const {
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;
// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
if (this->bridge_angle > rhs.bridge_angle) return true;
if (this->bridge_angle < rhs.bridge_angle) return false;
RETURN_COMPARE_NON_EQUAL(extruder);
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
RETURN_COMPARE_NON_EQUAL(spacing);
RETURN_COMPARE_NON_EQUAL(overlap);
RETURN_COMPARE_NON_EQUAL(angle);
RETURN_COMPARE_NON_EQUAL(density);
// RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
RETURN_COMPARE_NON_EQUAL(anchor_length);
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
RETURN_COMPARE_NON_EQUAL(flow.width());
RETURN_COMPARE_NON_EQUAL(flow.height());
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role);
RETURN_COMPARE_NON_EQUAL(sparse_infill_speed);
RETURN_COMPARE_NON_EQUAL(top_surface_speed);
RETURN_COMPARE_NON_EQUAL(solid_infill_speed);
return false;
}
bool operator==(const SurfaceFillParams &rhs) const {
return this->extruder == rhs.extruder &&
this->pattern == rhs.pattern &&
this->spacing == rhs.spacing &&
this->overlap == rhs.overlap &&
this->angle == rhs.angle &&
this->bridge == rhs.bridge &&
// this->bridge_angle == rhs.bridge_angle &&
this->density == rhs.density &&
// this->dont_adjust == rhs.dont_adjust &&
this->anchor_length == rhs.anchor_length &&
this->anchor_length_max == rhs.anchor_length_max &&
this->flow == rhs.flow &&
this->extrusion_role == rhs.extrusion_role &&
this->sparse_infill_speed == rhs.sparse_infill_speed &&
this->top_surface_speed == rhs.top_surface_speed &&
this->solid_infill_speed == rhs.solid_infill_speed;
}
};
struct SurfaceFill {
SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}
size_t region_id;
Surface surface;
ExPolygons expolygons;
SurfaceFillParams params;
// BBS
std::vector<size_t> region_id_group;
ExPolygons no_overlap_expolygons;
};
// BBS: used to judge whether the internal solid infill area is narrow
static bool is_narrow_infill_area(const ExPolygon& expolygon)
{
ExPolygons offsets = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD));
if (offsets.empty())
return true;
return false;
}
std::vector<SurfaceFill> group_fills(const Layer &layer)
{
std::vector<SurfaceFill> surface_fills;
// Fill in a map of a region & surface to SurfaceFillParams.
std::set<SurfaceFillParams> set_surface_params;
std::vector<std::vector<const SurfaceFillParams*>> region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
SurfaceFillParams params;
bool has_internal_voids = false;
const PrintObjectConfig& object_config = layer.object()->config();
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
const LayerRegion &layerm = *layer.regions()[region_id];
region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type == stInternalVoid)
has_internal_voids = true;
else {
const PrintRegionConfig &region_config = layerm.region().config();
FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
bool is_bridge = layer.id() > 0 && surface.is_bridge();
params.extruder = layerm.region().extruder(extrusion_role);
params.pattern = region_config.sparse_infill_pattern.value;
params.density = float(region_config.sparse_infill_density);
if (surface.is_solid()) {
params.density = 100.f;
//FIXME for non-thick bridges, shall we allow a bottom surface pattern?
if (surface.is_solid_infill())
params.pattern = region_config.internal_solid_infill_pattern.value;
else if (surface.is_external() && !is_bridge)
params.pattern = surface.is_top() ? region_config.top_surface_pattern.value : region_config.bottom_surface_pattern.value;
else
params.pattern = region_config.top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
} else if (params.density <= 0)
continue;
params.extrusion_role =
is_bridge ?
erBridgeInfill :
(surface.is_solid() ?
(surface.is_top() ? erTopSolidInfill : (surface.is_bottom()? erBottomSurface : erSolidInfill)) :
erInternalInfill);
params.bridge_angle = float(surface.bridge_angle);
params.angle = float(Geometry::deg2rad(region_config.infill_direction.value));
// Calculate the actual flow we'll be using for this infill.
params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
params.flow = params.bridge ?
//BBS: always enable thick bridge for internal bridge
layerm.bridging_flow(extrusion_role, (surface.is_bridge() && !surface.is_external()) || object_config.thick_bridges) :
layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);
//BBS: record speed params
if (!params.bridge) {
if (params.extrusion_role == erInternalInfill)
params.sparse_infill_speed = region_config.sparse_infill_speed;
else if (params.extrusion_role == erTopSolidInfill)
params.top_surface_speed = region_config.top_surface_speed;
else if (params.extrusion_role == erSolidInfill)
params.solid_infill_speed = region_config.internal_solid_infill_speed;
}
// Calculate flow spacing for infill pattern generation.
if (surface.is_solid() || is_bridge) {
params.spacing = params.flow.spacing();
// Don't limit anchor length for solid or bridging infill.
params.anchor_length = 1000.f;
params.anchor_length_max = 1000.f;
} else {
// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
// so that internall infill will be aligned over all layers of the current region.
params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
// Anchor a sparse infill to inner perimeters with the following anchor length:
params.anchor_length = float(region_config.sparse_infill_anchor);
if (region_config.sparse_infill_anchor.percent)
params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
params.anchor_length_max = float(region_config.sparse_infill_anchor_max);
if (region_config.sparse_infill_anchor_max.percent)
params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
}
auto it_params = set_surface_params.find(params);
if (it_params == set_surface_params.end())
it_params = set_surface_params.insert(it_params, params);
region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
}
}
surface_fills.reserve(set_surface_params.size());
for (const SurfaceFillParams &params : set_surface_params) {
const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
surface_fills.emplace_back(params);
}
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
const LayerRegion &layerm = *layer.regions()[region_id];
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type != stInternalVoid) {
const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
if (params != nullptr) {
SurfaceFill &fill = surface_fills[params->idx];
if (fill.region_id == size_t(-1)) {
fill.region_id = region_id;
fill.surface = surface;
fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
//BBS
fill.region_id_group.push_back(region_id);
fill.no_overlap_expolygons = layerm.fill_no_overlap_expolygons;
} else {
fill.expolygons.emplace_back(surface.expolygon);
//BBS
auto t = find(fill.region_id_group.begin(), fill.region_id_group.end(), region_id);
if (t == fill.region_id_group.end()) {
fill.region_id_group.push_back(region_id);
fill.no_overlap_expolygons = union_ex(fill.no_overlap_expolygons, layerm.fill_no_overlap_expolygons);
}
}
}
}
}
{
Polygons all_polygons;
for (SurfaceFill &fill : surface_fills)
if (! fill.expolygons.empty()) {
if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
Polygons polys = to_polygons(std::move(fill.expolygons));
// Make a union of polygons, use a safety offset, subtract the preceding polygons.
// Bridges are processed first (see SurfaceFill::operator<())
fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
append(all_polygons, std::move(polys));
} else if (&fill != &surface_fills.back())
append(all_polygons, to_polygons(fill.expolygons));
}
}
// we need to detect any narrow surfaces that might collapse
// when adding spacing below
// such narrow surfaces are often generated in sloping walls
// by bridge_over_infill() and combine_infill() as a result of the
// subtraction of the combinable area from the layer infill area,
// which leaves small areas near the perimeters
// we are going to grow such regions by overlapping them with the void (if any)
// TODO: detect and investigate whether there could be narrow regions without
// any void neighbors
if (has_internal_voids) {
// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
coord_t distance_between_surfaces = 0;
Polygons surfaces_polygons;
Polygons voids;
int region_internal_infill = -1;
int region_solid_infill = -1;
int region_some_infill = -1;
for (SurfaceFill &surface_fill : surface_fills)
if (! surface_fill.expolygons.empty()) {
distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
if (surface_fill.surface.surface_type == stInternalSolid)
region_internal_infill = (int)surface_fill.region_id;
if (surface_fill.surface.is_solid())
region_solid_infill = (int)surface_fill.region_id;
if (surface_fill.surface.surface_type != stInternalVoid)
region_some_infill = (int)surface_fill.region_id;
}
if (! voids.empty() && ! surfaces_polygons.empty()) {
// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
voids = diff(voids, surfaces_polygons);
// Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
Polygons collapsed = diff(
surfaces_polygons,
opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
//FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
// added if two offsetted void regions merge.
// polygons_append(voids, collapsed);
ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
// Now find an internal infill SurfaceFill to add these extrusions to.
SurfaceFill *internal_solid_fill = nullptr;
unsigned int region_id = 0;
if (region_internal_infill != -1)
region_id = region_internal_infill;
else if (region_solid_infill != -1)
region_id = region_solid_infill;
else if (region_some_infill != -1)
region_id = region_some_infill;
const LayerRegion& layerm = *layer.regions()[region_id];
for (SurfaceFill &surface_fill : surface_fills)
if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
internal_solid_fill = &surface_fill;
break;
}
if (internal_solid_fill == nullptr) {
// Produce another solid fill.
params.extruder = layerm.region().extruder(frSolidInfill);
params.pattern = layerm.region().config().top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
params.density = 100.f;
params.extrusion_role = erInternalInfill;
params.angle = float(Geometry::deg2rad(layerm.region().config().infill_direction.value));
// calculate the actual flow we'll be using for this infill
params.flow = layerm.flow(frSolidInfill);
params.spacing = params.flow.spacing();
surface_fills.emplace_back(params);
surface_fills.back().surface.surface_type = stInternalSolid;
surface_fills.back().surface.thickness = layer.height;
surface_fills.back().expolygons = std::move(extensions);
} else {
append(extensions, std::move(internal_solid_fill->expolygons));
internal_solid_fill->expolygons = union_ex(extensions);
}
}
}
// BBS: detect narrow internal solid infill area and use ipConcentricInternal pattern instead
if (layer.object()->config().detect_narrow_internal_solid_infill) {
size_t surface_fills_size = surface_fills.size();
for (size_t i = 0; i < surface_fills_size; i++) {
if (surface_fills[i].surface.surface_type != stInternalSolid)
continue;
size_t expolygons_size = surface_fills[i].expolygons.size();
std::vector<size_t> narrow_expolygons_index;
narrow_expolygons_index.reserve(expolygons_size);
// BBS: get the index list of narrow expolygon
for (size_t j = 0; j < expolygons_size; j++)
if (is_narrow_infill_area(surface_fills[i].expolygons[j]))
narrow_expolygons_index.push_back(j);
if (narrow_expolygons_index.size() == 0) {
// BBS: has no narrow expolygon
continue;
}
else if (narrow_expolygons_index.size() == expolygons_size) {
// BBS: all expolygons are narrow, directly change the fill pattern
surface_fills[i].params.pattern = ipConcentricInternal;
}
else {
// BBS: some expolygons are narrow, spilit surface_fills[i] and rearrange the expolygons
params = surface_fills[i].params;
params.pattern = ipConcentricInternal;
surface_fills.emplace_back(params);
surface_fills.back().region_id = surface_fills[i].region_id;
surface_fills.back().surface.surface_type = stInternalSolid;
surface_fills.back().surface.thickness = surface_fills[i].surface.thickness;
surface_fills.back().region_id_group = surface_fills[i].region_id_group;
surface_fills.back().no_overlap_expolygons = surface_fills[i].no_overlap_expolygons;
for (size_t j = 0; j < narrow_expolygons_index.size(); j++) {
// BBS: move the narrow expolygons to new surface_fills.back();
surface_fills.back().expolygons.emplace_back(std::move(surface_fills[i].expolygons[narrow_expolygons_index[j]]));
}
for (int j = narrow_expolygons_index.size() - 1; j >= 0; j--) {
// BBS: delete the narrow expolygons from old surface_fills
surface_fills[i].expolygons.erase(surface_fills[i].expolygons.begin() + narrow_expolygons_index[j]);
}
}
}
}
return surface_fills;
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
{
BoundingBox bbox;
for (const auto &fill : fills)
for (const auto &expoly : fill.expolygons)
bbox.merge(get_extents(expoly));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const auto &fill : fills)
for (const auto &expoly : fill.expolygons)
svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
#endif
// friend to Layer
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator)
{
for (LayerRegion *layerm : m_regions)
layerm->fills.clear();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
// this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
std::vector<SurfaceFill> surface_fills = group_fills(*this);
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
const auto resolution = this->object()->print()->config().resolution.value;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (SurfaceFill &surface_fill : surface_fills) {
// Create the filler object.
2025-05-12 08:28:54 +00:00
//创建填充对象。
2024-12-20 06:44:50 +00:00
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
f->set_bounding_box(bbox);
f->layer_id = this->id();
f->z = this->print_z;
f->angle = surface_fill.params.angle;
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
if (surface_fill.params.pattern == ipConcentricInternal) {
FillConcentricInternal *fill_concentric = dynamic_cast<FillConcentricInternal *>(f.get());
assert(fill_concentric != nullptr);
fill_concentric->print_config = &this->object()->print()->config();
fill_concentric->print_object_config = &this->object()->config();
} else if (surface_fill.params.pattern == ipConcentric) {
FillConcentric *fill_concentric = dynamic_cast<FillConcentric *>(f.get());
assert(fill_concentric != nullptr);
fill_concentric->print_config = &this->object()->print()->config();
fill_concentric->print_object_config = &this->object()->config();
} else if (surface_fill.params.pattern == ipLightning)
dynamic_cast<FillLightning::Filler*>(f.get())->generator = lightning_generator;
// calculate flow spacing for infill pattern generation
2025-05-12 08:28:54 +00:00
//计算填充图案生成的流间距
2024-12-20 06:44:50 +00:00
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
double link_max_length = 0.;
if (! surface_fill.params.bridge) {
#if 0
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
if (surface_fill.params.density > 80.) // 80%
link_max_length = 3. * f->spacing;
#endif
}
// Maximum length of the perimeter segment linking two infill lines.
2025-05-12 08:28:54 +00:00
//连接两条填充线的周长段的最大长度。
2024-12-20 06:44:50 +00:00
f->link_max_length = (coord_t)scale_(link_max_length);
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
2025-05-12 08:28:54 +00:00
//由同心填充图案用于剪裁环以创建拉伸路径。
2024-12-20 06:44:50 +00:00
f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
// apply half spacing using this flow's own spacing and generate infill
2025-05-12 08:28:54 +00:00
//使用此流自己的间距应用半间距并生成填充
2024-12-20 06:44:50 +00:00
FillParams params;
params.density = float(0.01 * surface_fill.params.density);
params.dont_adjust = false; // surface_fill.params.dont_adjust;
params.anchor_length = surface_fill.params.anchor_length;
params.anchor_length_max = surface_fill.params.anchor_length_max;
params.resolution = resolution;
params.use_arachne = surface_fill.params.pattern == ipConcentric;
params.layer_height = m_regions[surface_fill.region_id]->layer()->height;
// BBS
params.flow = surface_fill.params.flow;
params.extrusion_role = surface_fill.params.extrusion_role;
params.using_internal_flow = using_internal_flow;
params.no_extrusion_overlap = surface_fill.params.overlap;
if (surface_fill.params.pattern == ipGrid)
params.can_reverse = false;
LayerRegion* layerm = this->m_regions[surface_fill.region_id];
for (ExPolygon& expoly : surface_fill.expolygons) {
f->no_overlap_expolygons = intersection_ex(surface_fill.no_overlap_expolygons, ExPolygons() = {expoly}, ApplySafetyOffset::Yes);
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
2025-05-12 08:28:54 +00:00
//填充物会修改间距以表示调整。为每个expolygon重置它。
2024-12-20 06:44:50 +00:00
f->spacing = surface_fill.params.spacing;
surface_fill.surface.expolygon = std::move(expoly);
// BBS: make fill
2025-05-12 08:28:54 +00:00
//此处往里执行
2024-12-20 06:44:50 +00:00
f->fill_surface_extrusion(&surface_fill.surface,
params,
m_regions[surface_fill.region_id]->fills.entities);
}
}
// add thin fill regions
// Unpacks the collection, creates multiple collections per path.
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
// Why the paths are unpacked?
2025-05-12 08:28:54 +00:00
//添加薄填充区域
//解压缩集合,在每个路径上创建多个集合。
//路径类型可以是ExtrusionPath、ExtrusionLoop或ExtrusionEntityCollection。
//为什么路径被解包?
2024-12-20 06:44:50 +00:00
for (LayerRegion *layerm : m_regions)
for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
layerm->fills.entities.push_back(&collection);
collection.entities.push_back(thin_fill->clone());
}
#ifndef NDEBUG
for (LayerRegion *layerm : m_regions)
for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != nullptr);
#endif
}
Polylines Layer::generate_sparse_infill_polylines_for_anchoring(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator) const
{
std::vector<SurfaceFill> surface_fills = group_fills(*this);
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
const auto resolution = this->object()->print()->config().resolution.value;
Polylines sparse_infill_polylines{};
for (SurfaceFill& surface_fill : surface_fills) {
if (surface_fill.surface.surface_type != stInternal) {
continue;
}
switch (surface_fill.params.pattern) {
case ipCount: continue; break;
case ipSupportBase: continue; break;
//case ipEnsuring: continue; break;
case ipLightning:
case ipAdaptiveCubic:
case ipSupportCubic:
case ipRectilinear:
case ipMonotonic:
case ipAlignedRectilinear:
case ipGrid:
case ipTriangles:
case ipStars:
case ipCubic:
case ipLine:
case ipConcentric:
case ipHoneycomb:
case ip3DHoneycomb:
case ipGyroid:
case ipHilbertCurve:
case ipArchimedeanChords:
2024-12-25 08:26:49 +00:00
case ipOctagramSpiral:
//xiamian+
case ipFiberSpiral:
break;
2024-12-20 06:44:50 +00:00
}
// Create the filler object.
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
f->set_bounding_box(bbox);
f->layer_id = this->id() - this->object()->get_layer(0)->id(); // We need to subtract raft layers.
f->z = this->print_z;
f->angle = surface_fill.params.angle;
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
if (surface_fill.params.pattern == ipLightning)
dynamic_cast<FillLightning::Filler*>(f.get())->generator = lightning_generator;
// calculate flow spacing for infill pattern generation
double link_max_length = 0.;
if (!surface_fill.params.bridge) {
#if 0
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
if (surface_fill.params.density > 80.) // 80%
link_max_length = 3. * f->spacing;
#endif
}
// Maximum length of the perimeter segment linking two infill lines.
f->link_max_length = (coord_t)scale_(link_max_length);
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
LayerRegion& layerm = *m_regions[surface_fill.region_id];
// apply half spacing using this flow's own spacing and generate infill
FillParams params;
params.density = float(0.01 * surface_fill.params.density);
params.dont_adjust = false; // surface_fill.params.dont_adjust;
params.anchor_length = surface_fill.params.anchor_length;
params.anchor_length_max = surface_fill.params.anchor_length_max;
params.resolution = resolution;
params.use_arachne = false;
params.layer_height = layerm.layer()->height;
for (ExPolygon& expoly : surface_fill.expolygons) {
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
f->spacing = surface_fill.params.spacing;
surface_fill.surface.expolygon = std::move(expoly);
try {
Polylines polylines = f->fill_surface(&surface_fill.surface, params);
sparse_infill_polylines.insert(sparse_infill_polylines.end(), polylines.begin(), polylines.end());
}
catch (InfillFailedException&) {}
}
}
return sparse_infill_polylines;
}
// Create ironing extrusions over top surfaces.
void Layer::make_ironing()
{
// LayerRegion::slices contains surfaces marked with SurfaceType.
// Here we want to collect top surfaces extruded with the same extruder.
// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.
// First classify regions based on the extruder used.
struct IroningParams {
InfillPattern pattern;
int extruder = -1;
bool just_infill = false;
// Spacing of the ironing lines, also to calculate the extrusion flow from.
double line_spacing;
// Height of the extrusion, to calculate the extrusion flow from.
double height;
double speed;
double angle;
bool operator<(const IroningParams &rhs) const {
if (this->extruder < rhs.extruder)
return true;
if (this->extruder > rhs.extruder)
return false;
if (int(this->just_infill) < int(rhs.just_infill))
return true;
if (int(this->just_infill) > int(rhs.just_infill))
return false;
if (this->line_spacing < rhs.line_spacing)
return true;
if (this->line_spacing > rhs.line_spacing)
return false;
if (this->height < rhs.height)
return true;
if (this->height > rhs.height)
return false;
if (this->speed < rhs.speed)
return true;
if (this->speed > rhs.speed)
return false;
if (this->angle < rhs.angle)
return true;
if (this->angle > rhs.angle)
return false;
return false;
}
bool operator==(const IroningParams &rhs) const {
return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed && this->angle == rhs.angle && this->pattern == rhs.pattern;
}
LayerRegion *layerm = nullptr;
// IdeaMaker: ironing
// ironing flowrate (5% percent)
// ironing speed (10 mm/sec)
// Kisslicer:
// iron off, Sweep, Group
// ironing speed: 15 mm/sec
// Cura:
// Pattern (zig-zag / concentric)
// line spacing (0.1mm)
// flow: from normal layer height. 10%
// speed: 20 mm/sec
};
std::vector<IroningParams> by_extruder;
double default_layer_height = this->object()->config().layer_height;
for (LayerRegion *layerm : m_regions)
if (! layerm->slices.empty()) {
IroningParams ironing_params;
const PrintRegionConfig &config = layerm->region().config();
if (config.ironing_type != IroningType::NoIroning &&
(config.ironing_type == IroningType::AllSolid ||
(config.top_shell_layers > 0 &&
(config.ironing_type == IroningType::TopSurfaces ||
(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
if (config.wall_filament == config.solid_infill_filament || config.wall_loops == 0) {
// Iron the whole face.
ironing_params.extruder = config.solid_infill_filament;
} else {
// Iron just the infill.
ironing_params.extruder = config.solid_infill_filament;
}
}
if (ironing_params.extruder != -1) {
//TODO just_infill is currently not used.
ironing_params.just_infill = false;
ironing_params.line_spacing = config.ironing_spacing;
ironing_params.height = default_layer_height * 0.01 * config.ironing_flow;
ironing_params.speed = config.ironing_speed;
ironing_params.angle = (int(config.ironing_direction.value+layerm->region().config().infill_direction.value)%180) * M_PI / 180.;
ironing_params.pattern = config.ironing_pattern;
ironing_params.layerm = layerm;
by_extruder.emplace_back(ironing_params);
}
}
std::sort(by_extruder.begin(), by_extruder.end());
FillParams fill_params;
fill_params.density = 1.;
fill_params.monotonic = true;
InfillPattern f_pattern = ipRectilinear;
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
f->set_bounding_box(this->object()->bounding_box());
f->layer_id = this->id();
f->z = this->print_z;
f->overlap = 0;
for (size_t i = 0; i < by_extruder.size();) {
// Find span of regions equivalent to the ironing operation.
IroningParams &ironing_params = by_extruder[i];
// Create the filler object.
if( f_pattern != ironing_params.pattern )
{
f_pattern = ironing_params.pattern;
f = std::unique_ptr<Fill>(Fill::new_from_type(f_pattern));
f->set_bounding_box(this->object()->bounding_box());
f->layer_id = this->id();
f->z = this->print_z;
f->overlap = 0;
}
size_t j = i;
for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;
// Create the ironing extrusions for regions <i, j)
ExPolygons ironing_areas;
double nozzle_dmr = this->object()->print()->config().nozzle_diameter.get_at(ironing_params.extruder - 1);
if (ironing_params.just_infill) {
//TODO just_infill is currently not used.
// Just infill.
} else {
// Infill and perimeter.
// Merge top surfaces with the same ironing parameters.
Polygons polys;
Polygons infills;
for (size_t k = i; k < j; ++ k) {
const IroningParams &ironing_params = by_extruder[k];
const PrintRegionConfig &region_config = ironing_params.layerm->region().config();
bool iron_everything = region_config.ironing_type == IroningType::AllSolid;
bool iron_completely = iron_everything;
if (iron_everything) {
// Check whether there is any non-solid hole in the regions.
bool internal_infill_solid = region_config.sparse_infill_density.value > 95.;
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
if ((!internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
// Some fill region is not quite solid. Don't iron over the whole surface.
iron_completely = false;
break;
}
}
if (iron_completely) {
// Iron everything. This is likely only good for solid transparent objects.
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
polygons_append(polys, surface.expolygon);
} else {
for (const Surface &surface : ironing_params.layerm->slices.surfaces)
if ((surface.surface_type == stTop && region_config.top_shell_layers > 0) || (iron_everything && surface.surface_type == stBottom && region_config.bottom_shell_layers > 0))
// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
polygons_append(polys, surface.expolygon);
}
if (iron_everything && ! iron_completely) {
// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
// solid fill surfaces, but it is likely better than nothing.
for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternalSolid)
polygons_append(infills, surface.expolygon);
}
}
if (! infills.empty() || j > i + 1) {
// Ironing over more than a single region or over solid internal infill.
if (! infills.empty())
// For IroningType::AllSolid only:
// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
append(polys, std::move(infills));
polys = union_safety_offset(polys);
}
// Trim the top surfaces with half the nozzle diameter.
ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr))));
}
// Create the filler object.
f->spacing = ironing_params.line_spacing;
f->angle = float(ironing_params.angle);
f->link_max_length = (coord_t) scale_(3. * f->spacing);
double extrusion_height = ironing_params.height * f->spacing / nozzle_dmr;
float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
Surface surface_fill(stTop, ExPolygon());
for (ExPolygon &expoly : ironing_areas) {
surface_fill.expolygon = std::move(expoly);
Polylines polylines;
try {
polylines = f->fill_surface(&surface_fill, fill_params);
} catch (InfillFailedException &) {
}
if (! polylines.empty()) {
// Save into layer.
ExtrusionEntityCollection *eec = nullptr;
ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection());
// Don't sort the ironing infill lines as they are monotonicly ordered.
eec->no_sort = true;
extrusion_entities_append_paths(
eec->entities, std::move(polylines),
erIroning,
flow_mm3_per_mm, extrusion_width, float(extrusion_height));
}
}
// Regions up to j were processed.
i = j;
}
}
} // namespace Slic3r