BambuStudio/libslic3r/PrintObject.cpp

3890 lines
211 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
#include "Exception.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "ElephantFootCompensation.hpp"
#include "Geometry.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "MutablePolygon.hpp"
#include "Support/SupportMaterial.hpp"
#include "Support/TreeSupport.hpp"
#include "Surface.hpp"
#include "Slicing.hpp"
#include "Tesselate.hpp"
#include "TriangleMeshSlicer.hpp"
#include "Utils.hpp"
#include "Fill/FillAdaptive.hpp"
#include "Fill/FillLightning.hpp"
#include "Format/STL.hpp"
#include "InternalBridgeDetector.hpp"
#include "AABBTreeLines.hpp"
#include <float.h>
#include <string_view>
#include <utility>
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <tbb/concurrent_vector.h>
#include <Shiny/Shiny.h>
#include "format.hpp"
using namespace std::literals;
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
#define SLIC3R_DEBUG
#endif
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#define DEBUG
#define _DEBUG
#include "SVG.hpp"
#undef assert
#include <cassert>
#endif
namespace Slic3r {
// Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid.
PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) :
PrintObjectBaseWithState(print, model_object),
m_trafo(trafo),
// BBS
m_tree_support_preview_cache(nullptr)
{
// Compute centering offet to be applied to our meshes so that we work with smaller coordinates
// requiring less bits to represent Clipper coordinates.
// Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied.
// All the instances share the transformation matrix with the exception of translation in XY and rotation by Z,
// therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center,
// snug height and an approximate bounding box in XY.
BoundingBoxf3 bbox = model_object->raw_bounding_box();
Vec3d bbox_center = bbox.center();
// We may need to rotate the bbox / bbox_center from the original instance to the current instance.
double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation());
if (std::abs(z_diff) > EPSILON) {
auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ());
bbox = bbox.transformed(Transform3d(z_rot));
bbox_center = (z_rot * bbox_center).eval();
}
// Center of the transformed mesh (without translation).
m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y());
// Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z.
m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
m_max_z = scaled(model_object->instance_bounding_box(0).max(2));
this->set_instances(std::move(instances));
}
PrintObject::~PrintObject()
{
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": this=%1%, m_shared_object %2%")%this%m_shared_object;
if (m_shared_regions && -- m_shared_regions->m_ref_cnt == 0) delete m_shared_regions;
clear_layers();
clear_support_layers();
}
PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances)
{
for (PrintInstance &i : instances)
// Add the center offset, which will be subtracted from the mesh when slicing.
i.shift += m_center_offset;
// Invalidate and set copies.
PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
bool equal_length = instances.size() == m_instances.size();
bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(),
[](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; });
if (! equal) {
status = PrintBase::APPLY_STATUS_CHANGED;
if (m_print->invalidate_steps({ psSkirtBrim, psGCodeExport }) ||
(! equal_length && m_print->invalidate_step(psWipeTower)))
status = PrintBase::APPLY_STATUS_INVALIDATED;
m_instances = std::move(instances);
for (PrintInstance &i : m_instances)
i.print_object = this;
}
return status;
}
std::vector<std::reference_wrapper<const PrintRegion>> PrintObject::all_regions() const
{
std::vector<std::reference_wrapper<const PrintRegion>> out;
out.reserve(m_shared_regions->all_regions.size());
for (const std::unique_ptr<Slic3r::PrintRegion> &region : m_shared_regions->all_regions)
out.emplace_back(*region.get());
return out;
}
// 1) Merges typed region slices into stInternal type.
// 2) Increases an "extra perimeters" counter at region slices where needed.
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
void PrintObject::make_perimeters()
{
// prerequisites
this->slice();
if (! this->set_started(posPerimeters))
return;
m_print->set_status(15, L("Generating walls"));
BOOST_LOG_TRIVIAL(info) << "Generating walls..." << log_memory_info();
// Revert the typed slices into untyped slices.
if (m_typed_slices) {
for (Layer *layer : m_layers) {
layer->restore_untyped_slices();
m_print->throw_if_canceled();
}
m_typed_slices = false;
}
// compare each layer to the one below, and mark those slices needing
// one additional inner perimeter, like the top of domed objects-
// this algorithm makes sure that at least one perimeter is overlapping
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
// inside the object - infill_only_where_needed should be the method of choice for printing
// hollow objects
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
const PrintRegion &region = this->printing_region(region_id);
//BBS: remove extra_perimeters, always false
//if (! region.config().extra_perimeters || region.config().wall_loops == 0 || region.config().sparse_infill_density == 0 || this->layer_count() < 2)
continue;
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &region, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
LayerRegion &layerm = *m_layers[layer_idx]->get_region(region_id);
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->get_region(region_id);
const Polygons upper_layerm_polygons = to_polygons(upper_layerm.slices.surfaces);
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
const double total_loop_length = total_length(upper_layerm_polygons);
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
for (Surface &slice : layerm.slices.surfaces) {
for (;;) {
// compute the total thickness of perimeters
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ (region.config().wall_loops-1 + slice.extra_perimeters) * perimeter_spacing;
// define a critical area where we don't want the upper slice to fall into
// (it should either lay over our perimeters or outside this area)
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
const Polygons critical_area = diff(
offset(slice.expolygon, float(- perimeters_thickness)),
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
);
// check whether a portion of the upper slices falls inside the critical area
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
// only add an additional loop if at least 30% of the slice loop would benefit from it
if (total_length(intersection) <= total_loop_length*0.3)
break;
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"extra.svg",
no_arrows => 1,
expolygons => union_ex($critical_area),
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
);
}
*/
++ slice.extra_perimeters;
}
#ifdef DEBUG
if (slice.extra_perimeters > 0)
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
#endif
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
}
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_perimeters();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
this->set_done(posPerimeters);
}
void PrintObject::prepare_infill()
{
if (! this->set_started(posPrepareInfill))
return;
m_print->set_status(25, L("Generating infill regions"));
if (m_typed_slices) {
// To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442.
// The preceding step (perimeter generator) only modifies extra_perimeters and the extra perimeters are only used by discover_vertical_shells()
// with more than a single region. If this step does not use Surface::extra_perimeters or Surface::extra_perimeters is always zero, it is safe
// to reset to the untyped slices before re-runnning detect_surfaces_type().
//为了在重新切片使用类型化切片时提高detect_surfaces_type的鲁棒性请参阅GH问题#7442。
//前面的步骤周长生成器仅修改extra_perimeters并且额外的周长仅由具有多个区域的discover_vertical_shell使用。
//如果此步骤不使用Surfaceextra_perimeters或Surfaceextra_perimeter始终为零则可以在重新运行detect_surfaces_type之前重置为非类型切片。
2024-12-20 06:44:50 +00:00
for (Layer* layer : m_layers) {
layer->restore_untyped_slices_no_extra_perimeters();
m_print->throw_if_canceled();
}
}
// This will assign a type (top/bottom/internal) to $layerm->slices.
// Then the classifcation of $layerm->slices is transfered onto
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
// by the cummulative area of the previous $layerm->fill_surfaces.
this->detect_surfaces_type();
m_print->throw_if_canceled();
// Also tiny stInternal surfaces are turned to stInternalSolid.
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
for (auto *layer : m_layers)
for (auto *region : layer->m_regions) {
region->prepare_fill_surfaces();
m_print->throw_if_canceled();
}
// Add solid fills to ensure the shell vertical thickness.
this->discover_vertical_shells();
m_print->throw_if_canceled();
// this will detect bridges and reverse bridges
// and rearrange top/bottom/internal surfaces
// It produces enlarged overlapping bridging areas.
//
// 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
// 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
this->process_external_surfaces();
m_print->throw_if_canceled();
// Debugging output.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Detect, which fill surfaces are near external layers.
// They will be split in internal and internal-solid surfaces.
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
// to close these surfaces reliably.
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
this->discover_horizontal_shells();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
this->clip_fill_surfaces();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// the following step needs to be done before combination because it may need
// to remove only half of the combined infill
this->bridge_over_infill();
m_print->throw_if_canceled();
// combine fill surfaces to honor the "infill every N layers" option
this->combine_infill();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
} // for each region
for (const Layer *layer : m_layers) {
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
this->set_done(posPrepareInfill);
}
void PrintObject::infill()
{
// prerequisites
this->prepare_infill();
if (this->set_started(posInfill)) {
m_print->set_status(35, L("Generating infill toolpath"));
const auto& adaptive_fill_octree = this->m_adaptive_fill_octrees.first;
const auto& support_fill_octree = this->m_adaptive_fill_octrees.second;
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get(), this->m_lightning_generator.get());
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
/* we could free memory now, but this would make this step not idempotent
### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
*/
this->set_done(posInfill);
}
}
void PrintObject::ironing()
{
if (this->set_started(posIroning)) {
BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start";
tbb::parallel_for(
// Ironing starting with layer 0 to support ironing all surfaces.
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_ironing();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end";
this->set_done(posIroning);
}
}
// BBS
void PrintObject::clear_overhangs_for_lift()
{
if (!m_shared_object) {
for (Layer* l : m_layers)
l->loverhangs.clear();
}
}
static const float g_min_overhang_percent_for_lift = 0.3f;
void PrintObject::detect_overhangs_for_lift()
{
if (this->set_started(posDetectOverhangsForLift)) {
const float min_overlap = m_config.line_width * g_min_overhang_percent_for_lift;
size_t num_layers = this->layer_count();
size_t num_raft_layers = m_slicing_params.raft_layers();
m_print->set_status(71, L("Detect overhangs for auto-lift"));
this->clear_overhangs_for_lift();
tbb::spin_mutex layer_storage_mutex;
tbb::parallel_for(tbb::blocked_range<size_t>(num_raft_layers + 1, num_layers),
[this, min_overlap](const tbb::blocked_range<size_t>& range)
{
for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) {
Layer& layer = *m_layers[layer_id];
Layer& lower_layer = *layer.lower_layer;
ExPolygons overhangs = diff_ex(layer.lslices, offset_ex(lower_layer.lslices, scale_(min_overlap)));
layer.loverhangs = std::move(offset2_ex(overhangs, -0.1f * scale_(m_config.line_width), 0.1f * scale_(m_config.line_width)));
layer.loverhangs_bbox = get_extents(layer.loverhangs);
}
});
this->set_done(posDetectOverhangsForLift);
}
}
void PrintObject::generate_support_material()
{
if (this->set_started(posSupportMaterial)) {
this->clear_support_layers();
if(!has_support() && !m_print->get_no_check_flag()) {
// BBS: pop a warning if objects have significant amount of overhangs but support material is not enabled
// Note: we also need to pop warning if support is disabled and only raft is enabled
m_print->set_status(50, L("Checking support necessity"));
typedef std::chrono::high_resolution_clock clock_;
typedef std::chrono::duration<double, std::ratio<1> > second_;
std::chrono::time_point<clock_> t0{ clock_::now() };
SupportNecessaryType sntype = this->is_support_necessary();
double duration{ std::chrono::duration_cast<second_>(clock_::now() - t0).count() };
BOOST_LOG_TRIVIAL(info) << std::fixed << std::setprecision(0) << "is_support_necessary takes " << duration << " secs.";
if (sntype != NoNeedSupp) {
std::map<SupportNecessaryType, std::string> reasons = {
{SharpTail,L("floating regions")},
{Cantilever,L("floating cantilever")},
{LargeOverhang,L("large overhangs")} };
std::string warning_message = Slic3r::format(L("It seems object %s has %s. Please re-orient the object or enable support generation."),
this->model_object()->name, reasons[sntype]);
this->active_step_add_warning(PrintStateBase::WarningLevel::NON_CRITICAL, warning_message, PrintStateBase::SlicingNeedSupportOn);
}
#if 0
// Printing without supports. Empty layer means some objects or object parts are levitating,
// therefore they cannot be printed without supports.
for (const Layer *layer : m_layers)
if (layer->empty())
throw Slic3r::SlicingError("Levitating objects cannot be printed without supports.");
#endif
}
if ((this->has_support() && m_layers.size() > 1) || (this->has_raft() && !m_layers.empty())) {
m_print->set_status(50, L("Generating support"));
this->_generate_support_material();
m_print->throw_if_canceled();
}
this->set_done(posSupportMaterial);
}
}
void PrintObject::simplify_extrusion_path()
{
if (this->set_started(posSimplifyWall)) {
m_print->set_status(75, L("Optimizing toolpath"));
BOOST_LOG_TRIVIAL(debug) << "Simplify wall extrusion path of object in parallel - start";
//BBS: walls
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->simplify_wall_extrusion_path();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Simplify wall extrusion path of object in parallel - end";
this->set_done(posSimplifyWall);
}
if (this->set_started(posSimplifyInfill)) {
m_print->set_status(75, L("Optimizing toolpath"));
BOOST_LOG_TRIVIAL(debug) << "Simplify infill extrusion path of object in parallel - start";
//BBS: infills
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->simplify_infill_extrusion_path();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Simplify infill extrusion path of object in parallel - end";
this->set_done(posSimplifyInfill);
}
if (this->set_started(posSimplifySupportPath)) {
//BBS: share same progress
m_print->set_status(75, L("Optimizing toolpath"));
BOOST_LOG_TRIVIAL(debug) << "Simplify extrusion path of support in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_support_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_support_layers[layer_idx]->simplify_support_extrusion_path();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Simplify extrusion path of support in parallel - end";
this->set_done(posSimplifySupportPath);
}
}
std::pair<FillAdaptive::OctreePtr, FillAdaptive::OctreePtr> PrintObject::prepare_adaptive_infill_data(
const std::vector<std::pair<const Surface *, float>> &surfaces_w_bottom_z) const
{
using namespace FillAdaptive;
auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this);
if ((adaptive_line_spacing == 0. && support_line_spacing == 0.) || this->layers().empty())
return std::make_pair(OctreePtr(), OctreePtr());
indexed_triangle_set mesh = this->model_object()->raw_indexed_triangle_set();
// Rotate mesh and build octree on it with axis-aligned (standart base) cubes.
auto to_octree = transform_to_octree().toRotationMatrix();
its_transform(mesh, to_octree * this->trafo_centered(), true);
// Triangulate internal bridging surfaces.
std::vector<std::vector<Vec3d>> overhangs(std::max(surfaces_w_bottom_z.size(), size_t(1)));
// ^ make sure vector is not empty, even with no briding surfaces we still want to build the adaptive trees later, some continue normally
tbb::parallel_for(tbb::blocked_range<int>(0, surfaces_w_bottom_z.size()),
[this, &to_octree, &overhangs, &surfaces_w_bottom_z](const tbb::blocked_range<int> &range) {
for (int surface_idx = range.begin(); surface_idx < range.end(); ++surface_idx) {
std::vector<Vec3d> &out = overhangs[surface_idx];
m_print->throw_if_canceled();
append(out, triangulate_expolygon_3d(surfaces_w_bottom_z[surface_idx].first->expolygon,
surfaces_w_bottom_z[surface_idx].second));
for (Vec3d &p : out)
p = (to_octree * p).eval();
}
});
// and gather them.
for (size_t i = 1; i < overhangs.size(); ++ i)
append(overhangs.front(), std::move(overhangs[i]));
return std::make_pair(
adaptive_line_spacing ? build_octree(mesh, overhangs.front(), adaptive_line_spacing, false) : OctreePtr(),
support_line_spacing ? build_octree(mesh, overhangs.front(), support_line_spacing, true) : OctreePtr());
}
FillLightning::GeneratorPtr PrintObject::prepare_lightning_infill_data()
{
bool has_lightning_infill = false;
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id)
if (const PrintRegionConfig& config = this->printing_region(region_id).config(); config.sparse_infill_density > 0 && config.sparse_infill_pattern == ipLightning) {
has_lightning_infill = true;
break;
}
return has_lightning_infill ? FillLightning::build_generator(std::as_const(*this), [this]() -> void { this->throw_if_canceled(); }) : FillLightning::GeneratorPtr();
}
void PrintObject::clear_layers()
{
if (!m_shared_object) {
for (Layer *l : m_layers)
delete l;
m_layers.clear();
}
}
Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
return m_layers.back();
}
const SupportLayer* PrintObject::get_support_layer_at_printz(coordf_t print_z, coordf_t epsilon) const
{
coordf_t limit = print_z - epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_support_layers.begin(), m_support_layers.end(), [limit](const SupportLayer* layer) { return layer->print_z < limit; });
return (it == m_support_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it;
}
SupportLayer* PrintObject::get_support_layer_at_printz(coordf_t print_z, coordf_t epsilon)
{
return const_cast<SupportLayer*>(std::as_const(*this).get_support_layer_at_printz(print_z, epsilon));
}
void PrintObject::clear_support_layers()
{
if (!m_shared_object) {
for (SupportLayer* l : m_support_layers)
delete l;
m_support_layers.clear();
for (auto l : m_layers) {
l->sharp_tails.clear();
l->sharp_tails_height.clear();
l->cantilevers.clear();
}
}
}
std::shared_ptr<TreeSupportData> PrintObject::alloc_tree_support_preview_cache()
{
if (!m_tree_support_preview_cache) {
const coordf_t layer_height = m_config.layer_height.value;
const coordf_t xy_distance = m_config.support_object_xy_distance.value;
const double angle = m_config.tree_support_branch_angle.value * M_PI / 180.;
const coordf_t max_move_distance
= (angle < M_PI / 2) ? (coordf_t)(tan(angle) * layer_height) : std::numeric_limits<coordf_t>::max();
const coordf_t radius_sample_resolution = g_config_tree_support_collision_resolution;
m_tree_support_preview_cache = std::make_shared<TreeSupportData>(*this, xy_distance, max_move_distance, radius_sample_resolution);
}
return m_tree_support_preview_cache;
}
SupportLayer* PrintObject::add_tree_support_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
m_support_layers.emplace_back(new SupportLayer(id, 0, this, height, print_z, slice_z));
m_support_layers.back()->support_type = stInnerTree;
return m_support_layers.back();
}
SupportLayer* PrintObject::add_support_layer(int id, int interface_id, coordf_t height, coordf_t print_z)
{
m_support_layers.emplace_back(new SupportLayer(id, interface_id, this, height, print_z, -1));
return m_support_layers.back();
}
SupportLayerPtrs::iterator PrintObject::insert_support_layer(SupportLayerPtrs::iterator pos, size_t id, size_t interface_id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
return m_support_layers.insert(pos, new SupportLayer(id, interface_id, this, height, print_z, slice_z));
}
// Called by Print::apply().
// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
bool PrintObject::invalidate_state_by_config_options(
const ConfigOptionResolver &old_config, const ConfigOptionResolver &new_config, const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<PrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "brim_width"
|| opt_key == "brim_object_gap"
|| opt_key == "brim_type"
// BBS: brim generation depends on printing speed
|| opt_key == "outer_wall_speed"
|| opt_key == "sparse_infill_speed"
|| opt_key == "inner_wall_speed"
|| opt_key == "support_speed"
|| opt_key == "internal_solid_infill_speed"
|| opt_key == "top_surface_speed") {
// Brim is printed below supports, support invalidates brim and skirt.
steps.emplace_back(posSupportMaterial);
if (opt_key == "brim_type") {
const auto* old_brim_type = old_config.option<ConfigOptionEnum<BrimType>>(opt_key);
const auto* new_brim_type = new_config.option<ConfigOptionEnum<BrimType>>(opt_key);
//BBS: When switch to manual brim, the object must have brim, then re-generate perimeter
//to make the wall order of first layer to be outer-first
if (old_brim_type->value == btOuterOnly || new_brim_type->value == btOuterOnly)
steps.emplace_back(posPerimeters);
}
} else if (
opt_key == "wall_loops"
|| opt_key == "top_one_wall_type"
|| opt_key == "top_area_threshold"
|| opt_key == "only_one_wall_first_layer"
|| opt_key == "initial_layer_line_width"
|| opt_key == "inner_wall_line_width"
|| opt_key == "infill_wall_overlap") {
steps.emplace_back(posPerimeters);
} else if (opt_key == "gap_infill_speed" || opt_key == "filter_out_gap_fill") {
// Return true if gap-fill speed has changed from zero value to non-zero or from non-zero value to zero.
auto is_gap_fill_changed_state_due_to_speed = [&opt_key, &old_config, &new_config]() -> bool {
if (opt_key == "gap_infill_speed") {
const auto *old_gap_fill_speed = old_config.option<ConfigOptionFloat>(opt_key);
const auto *new_gap_fill_speed = new_config.option<ConfigOptionFloat>(opt_key);
assert(old_gap_fill_speed && new_gap_fill_speed);
return (old_gap_fill_speed->value > 0.f && new_gap_fill_speed->value == 0.f) ||
(old_gap_fill_speed->value == 0.f && new_gap_fill_speed->value > 0.f);
}
return false;
};
// Filtering of unprintable regions in multi-material segmentation depends on if gap-fill is enabled or not.
// So step posSlice is invalidated when gap-fill was enabled/disabled by option "gap_fill_enabled" or by
// changing "gap_infill_speed" to force recomputation of the multi-material segmentation.
if (this->is_mm_painted() && ((opt_key == "gap_infill_speed" || opt_key == "filter_out_gap_fill") && is_gap_fill_changed_state_due_to_speed()))
steps.emplace_back(posSlice);
steps.emplace_back(posPerimeters);
} else if (
opt_key == "layer_height"
|| opt_key == "mmu_segmented_region_max_width"
|| opt_key == "mmu_segmented_region_interlocking_depth"
|| opt_key == "raft_layers"
|| opt_key == "raft_contact_distance"
|| opt_key == "slice_closing_radius"
|| opt_key == "slicing_mode") {
steps.emplace_back(posSlice);
} else if (
opt_key == "elefant_foot_compensation"
|| opt_key == "support_top_z_distance"
|| opt_key == "support_bottom_z_distance"
|| opt_key == "xy_hole_compensation"
|| opt_key == "xy_contour_compensation") {
steps.emplace_back(posSlice);
} else if (opt_key == "enable_support") {
steps.emplace_back(posSupportMaterial);
if (m_config.support_top_z_distance == 0.) {
// Enabling / disabling supports while soluble support interface is enabled.
// This changes the bridging logic (bridging enabled without supports, disabled with supports).
// Reset everything.
// See GH #1482 for details.
steps.emplace_back(posSlice);
}
} else if (
opt_key == "support_type"
|| opt_key == "support_angle"
|| opt_key == "support_on_build_plate_only"
|| opt_key == "support_critical_regions_only"
|| opt_key == "support_remove_small_overhang"
|| opt_key == "enforce_support_layers"
|| opt_key == "support_filament"
|| opt_key == "support_line_width"
|| opt_key == "support_interface_top_layers"
|| opt_key == "support_interface_bottom_layers"
|| opt_key == "support_interface_pattern"
|| opt_key == "support_interface_loop_pattern"
|| opt_key == "support_interface_filament"
|| opt_key == "support_interface_not_for_body"
|| opt_key == "support_interface_spacing"
|| opt_key == "support_bottom_interface_spacing" //BBS
|| opt_key == "support_base_pattern"
|| opt_key == "support_style"
|| opt_key == "support_object_xy_distance"
|| opt_key == "support_object_first_layer_gap"
|| opt_key == "support_base_pattern_spacing"
|| opt_key == "support_expansion"
//|| opt_key == "independent_support_layer_height" // BBS
|| opt_key == "support_threshold_angle"
|| opt_key == "raft_expansion"
|| opt_key == "raft_first_layer_density"
|| opt_key == "raft_first_layer_expansion"
|| opt_key == "bridge_no_support"
|| opt_key == "max_bridge_length"
|| opt_key == "initial_layer_line_width"
|| opt_key == "tree_support_branch_distance"
|| opt_key == "tree_support_branch_diameter"
|| opt_key == "tree_support_branch_angle"
|| opt_key == "tree_support_wall_count") {
steps.emplace_back(posSupportMaterial);
} else if (
opt_key == "bottom_shell_layers"
|| opt_key == "top_shell_layers") {
steps.emplace_back(posSlice);
#if (0)
const auto *old_shell_layers = old_config.option<ConfigOptionInt>(opt_key);
const auto *new_shell_layers = new_config.option<ConfigOptionInt>(opt_key);
assert(old_shell_layers && new_shell_layers);
bool value_changed = (old_shell_layers->value == 0 && new_shell_layers->value > 0) ||
(old_shell_layers->value > 0 && new_shell_layers->value == 0);
if (value_changed && this->object_extruders().size() > 1) {
steps.emplace_back(posSlice);
}
else if (m_print->config().spiral_mode && opt_key == "bottom_shell_layers") {
// Changing the number of bottom layers when a spiral vase is enabled requires re-slicing the object again.
// Otherwise, holes in the bottom layers could be filled, as is reported in GH #5528.
steps.emplace_back(posSlice);
}
#endif
} else if (
opt_key == "interface_shells"
|| opt_key == "infill_combination"
|| opt_key == "bottom_shell_thickness"
|| opt_key == "top_shell_thickness"
|| opt_key == "minimum_sparse_infill_area"
|| opt_key == "sparse_infill_filament"
|| opt_key == "solid_infill_filament"
|| opt_key == "sparse_infill_line_width"
|| opt_key == "infill_direction"
|| opt_key == "ensure_vertical_shell_thickness"
|| opt_key == "bridge_angle"
//BBS
) {
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "top_surface_pattern"
|| opt_key == "bottom_surface_pattern"
|| opt_key == "internal_solid_infill_pattern"
|| opt_key == "external_fill_link_max_length"
|| opt_key == "sparse_infill_anchor"
|| opt_key == "sparse_infill_anchor_max"
|| opt_key == "top_surface_line_width"
|| opt_key == "initial_layer_line_width") {
steps.emplace_back(posInfill);
} else if (opt_key == "sparse_infill_pattern") {
steps.emplace_back(posPrepareInfill);
} else if (opt_key == "sparse_infill_density") {
// One likely wants to reslice only when switching between zero infill to simulate boolean difference (subtracting volumes),
// normal infill and 100% (solid) infill.
const auto *old_density = old_config.option<ConfigOptionPercent>(opt_key);
const auto *new_density = new_config.option<ConfigOptionPercent>(opt_key);
assert(old_density && new_density);
//FIXME Vojtech is not quite sure about the 100% here, maybe it is not needed.
if (is_approx(old_density->value, 0.) || is_approx(old_density->value, 100.) ||
is_approx(new_density->value, 0.) || is_approx(new_density->value, 100.))
steps.emplace_back(posPerimeters);
steps.emplace_back(posPrepareInfill);
} else if (opt_key == "internal_solid_infill_line_width") {
// This value is used for calculating perimeter - infill overlap, thus perimeters need to be recalculated.
steps.emplace_back(posPerimeters);
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "outer_wall_line_width"
|| opt_key == "wall_filament"
|| opt_key == "fuzzy_skin"
|| opt_key == "fuzzy_skin_thickness"
|| opt_key == "fuzzy_skin_point_distance"
|| opt_key == "detect_overhang_wall"
//BBS
|| opt_key == "enable_overhang_speed"
|| opt_key == "detect_thin_wall") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posSupportMaterial);
} else if (opt_key == "bridge_flow") {
if (m_config.support_top_z_distance > 0.) {
// Only invalidate due to bridging if bridging is enabled.
// If later "support_top_z_distance" is modified, the complete PrintObject is invalidated anyway.
steps.emplace_back(posPerimeters);
steps.emplace_back(posInfill);
steps.emplace_back(posSupportMaterial);
}
} else if (
opt_key == "wall_generator"
|| opt_key == "wall_transition_length"
|| opt_key == "wall_transition_filter_deviation"
|| opt_key == "wall_transition_angle"
|| opt_key == "wall_distribution_count"
|| opt_key == "min_feature_size"
|| opt_key == "min_bead_width") {
steps.emplace_back(posSlice);
} else if (
opt_key == "seam_position"
|| opt_key == "seam_slope_type"
|| opt_key == "seam_slope_conditional"
|| opt_key == "scarf_angle_threshold"
|| opt_key == "seam_slope_start_height"
|| opt_key == "seam_slope_entire_loop"
|| opt_key == "seam_slope_min_length"
|| opt_key == "seam_slope_steps"
|| opt_key == "seam_slope_inner_walls"
|| opt_key == "seam_gap"
|| opt_key == "wipe_speed"
|| opt_key == "support_speed"
|| opt_key == "support_interface_speed"
|| opt_key == "smooth_speed_discontinuity_area"
|| opt_key == "smooth_coefficient"
|| opt_key == "overhang_1_4_speed"
|| opt_key == "overhang_2_4_speed"
|| opt_key == "overhang_3_4_speed"
|| opt_key == "overhang_4_4_speed"
|| opt_key == "overhang_totally_speed"
|| opt_key == "bridge_speed"
|| opt_key == "outer_wall_speed"
|| opt_key == "small_perimeter_speed"
|| opt_key == "small_perimeter_threshold"
|| opt_key == "sparse_infill_speed"
|| opt_key == "inner_wall_speed"
|| opt_key == "internal_solid_infill_speed"
|| opt_key == "top_surface_speed") {
invalidated |= m_print->invalidate_step(psGCodeExport);
} else if (
opt_key == "flush_into_infill"
|| opt_key == "flush_into_objects"
|| opt_key == "flush_into_support") {
invalidated |= m_print->invalidate_step(psWipeTower);
invalidated |= m_print->invalidate_step(psGCodeExport);
} else {
// for legacy, if we can't handle this option let's invalidate all steps
this->invalidate_all_steps();
invalidated = true;
}
}
sort_remove_duplicates(steps);
for (PrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == posPerimeters) {
invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill, posIroning, posSimplifyWall, posSimplifyInfill });
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
} else if (step == posPrepareInfill) {
invalidated |= this->invalidate_steps({ posInfill, posIroning, posSimplifyWall, posSimplifyInfill });
} else if (step == posInfill) {
invalidated |= this->invalidate_steps({ posIroning, posSimplifyInfill });
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
} else if (step == posSlice) {
invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posIroning, posSupportMaterial, posSimplifyWall, posSimplifyInfill });
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
m_slicing_params.valid = false;
} else if (step == posSupportMaterial) {
invalidated |= this->invalidate_steps({ posSimplifySupportPath });
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
m_slicing_params.valid = false;
}
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
// It also decides about what the flush_into_infill / wipe_into_object / flush_into_support features will do,
// and that too depends on many of the settings.
invalidated |= m_print->invalidate_step(psWipeTower);
// Invalidate G-code export in any case.
invalidated |= m_print->invalidate_step(psGCodeExport);
return invalidated;
}
bool PrintObject::invalidate_all_steps()
{
// First call the "invalidate" functions, which may cancel background processing.
bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
// Then reset some of the depending values.
m_slicing_params.valid = false;
return result;
}
// This function analyzes slices of a region (SurfaceCollection slices).
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type stInternal.
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
// stInternal - Part of a region, which is supported by the same region type.
// If a part of a region is of stBottom and stTop, the stBottom wins.
void PrintObject::detect_surfaces_type()
{
BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
// Interface shells: the intersecting parts are treated as self standing objects supporting each other.
// Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
// are completely hidden inside a collective body of intersecting parts.
// This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
// should be visible.
bool spiral_mode = this->print()->config().spiral_mode.value;
bool interface_shells = ! spiral_mode && m_config.interface_shells.value;
size_t num_layers = spiral_mode ? std::min(size_t(this->printing_region(0).config().bottom_shell_layers), m_layers.size()) : m_layers.size();
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " in parallel - start";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (Layer *layer : m_layers)
layer->m_regions[region_id]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
// Cache the result of the following parallel_loop.
std::vector<Surfaces> surfaces_new;
if (interface_shells)
surfaces_new.assign(num_layers, Surfaces());
tbb::parallel_for(
tbb::blocked_range<size_t>(0,
spiral_mode ?
// In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom.
((num_layers > 1) ? num_layers - 1 : num_layers) :
// In non-spiral vase mode, go over all layers.
m_layers.size()),
[this, spiral_mode, region_id, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
// the support from the print.
// BBS: the above logic only applys for normal(auto) support. Complete logic:
// 1. has support, top z distance=0 (soluble material), auto support
// 2. for normal(auto), bridge_no_support is off
// 3. for tree(auto), interface top layers=0, max bridge length=0, support_critical_regions_only=false (only in this way the bridge is fully supported)
bool bottom_is_fully_supported = this->has_support() && m_config.support_top_z_distance.value == 0 && is_auto(m_config.support_type.value);
if (m_config.support_type.value == stNormalAuto)
bottom_is_fully_supported &= !m_config.bridge_no_support.value;
else if (m_config.support_type.value == stTreeAuto) {
bottom_is_fully_supported &= (m_config.support_interface_top_layers.value > 0 && m_config.max_bridge_length.value == 0 && m_config.support_critical_regions_only.value==false);
}
SurfaceType surface_type_bottom_other = bottom_is_fully_supported ? stBottom : stBottomBridge;
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << region_id << " and layer " << layer->print_z;
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->m_regions[region_id];
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
bool detect_top = spiral_mode || layerm->region().config().top_shell_layers;
bool detect_bottom = spiral_mode || layerm->region().config().bottom_shell_layers;
// find top surfaces (difference between current surfaces
// of current layer and upper one)
Surfaces top;
if (detect_top) {
if (upper_layer) {
ExPolygons upper_slices = interface_shells ?
diff_ex(layerm->slices.surfaces, upper_layer->m_regions[region_id]->slices.surfaces, ApplySafetyOffset::Yes) :
diff_ex(layerm->slices.surfaces, upper_layer->lslices, ApplySafetyOffset::Yes);
surfaces_append(top, opening_ex(upper_slices, offset), stTop);
}
else {
// if no upper layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
top = layerm->slices.surfaces;
for (Surface& surface : top)
surface.surface_type = stTop;
}
}
// Find bottom surfaces (difference between current surfaces of current layer and lower one).
Surfaces bottom;
if (detect_bottom) {
if (lower_layer) {
#if 0
//FIXME Why is this branch failing t\multi.t ?
Polygons lower_slices = interface_shells ?
to_polygons(lower_layer->get_region(region_id)->slices.surfaces) :
to_polygons(lower_layer->slices);
surfaces_append(bottom,
opening_ex(diff(layerm->slices.surfaces, lower_slices, true), offset),
surface_type_bottom_other);
#else
// Any surface lying on the void is a true bottom bridge (an overhang)
surfaces_append(
bottom,
opening_ex(
diff_ex(layerm->slices.surfaces, lower_layer->lslices, ApplySafetyOffset::Yes),
offset),
surface_type_bottom_other);
// if user requested internal shells, we need to identify surfaces
// lying on other slices not belonging to this region
if (interface_shells) {
// non-bridging bottom surfaces: any part of this layer lying
// on something else, excluding those lying on our own region
surfaces_append(
bottom,
opening_ex(
diff_ex(
intersection(layerm->slices.surfaces, lower_layer->lslices), // supported
lower_layer->m_regions[region_id]->slices.surfaces,
ApplySafetyOffset::Yes),
offset),
stBottom);
}
#endif
}
else {
// if no lower layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
bottom = layerm->slices.surfaces;
for (Surface& surface : bottom)
surface.surface_type = stBottom;
}
}
// now, if the object contained a thin membrane, we could have overlapping bottom
// and top surfaces; let's do an intersection to discover them and consider them
// as bottom surfaces (to allow for bridge detection)
if (! top.empty() && ! bottom.empty()) {
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
// if $Slic3r::debug;
Polygons top_polygons = to_polygons(std::move(top));
top.clear();
surfaces_append(top, diff_ex(top_polygons, bottom), stTop);
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black")));
SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, region_id, layer->print_z).c_str(), expolygons_with_attributes);
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// save surfaces to layer
Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
Surfaces surfaces_backup;
if (! interface_shells) {
surfaces_backup = std::move(surfaces_out);
surfaces_out.clear();
}
const Surfaces &surfaces_prev = interface_shells ? layerm->slices.surfaces : surfaces_backup;
// find internal surfaces (difference between top/bottom surfaces and others)
{
Polygons topbottom = to_polygons(top);
polygons_append(topbottom, to_polygons(bottom));
surfaces_append(surfaces_out, diff_ex(surfaces_prev, topbottom), stInternal);
}
surfaces_append(surfaces_out, std::move(top));
surfaces_append(surfaces_out, std::move(bottom));
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
}
); // for each layer of a region
m_print->throw_if_canceled();
if (interface_shells) {
// Move surfaces_new to layerm->slices.surfaces
for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer)
m_layers[idx_layer]->m_regions[region_id]->slices.surfaces = std::move(surfaces_new[idx_layer]);
}
if (spiral_mode) {
if (num_layers > 1)
// Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern.
m_layers[num_layers - 1]->m_regions[region_id]->slices.set_type(stTop);
for (size_t i = num_layers; i < m_layers.size(); ++ i)
m_layers[i]->m_regions[region_id]->slices.set_type(stInternal);
}
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - start";
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
LayerRegion *layerm = m_layers[idx_layer]->m_regions[region_id];
layerm->slices_to_fill_surfaces_clipped();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer of a region
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - end";
} // for each this->print->region_count
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
m_typed_slices = true;
}
void PrintObject::process_external_surfaces()
{
BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
// Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand.
std::vector<Polygons> surfaces_covered;
// Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only
// over voids, which are supported by the layer below.
bool has_voids = false;
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id)
if (this->printing_region(region_id).config().sparse_infill_density == 0) {
has_voids = true;
break;
}
if (has_voids && m_layers.size() > 1) {
// All but stInternal fill surfaces will get expanded and possibly trimmed.
std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false);
for (size_t layer_idx = 1; layer_idx < m_layers.size(); ++ layer_idx) {
const Layer *layer = m_layers[layer_idx];
bool expansions = false;
bool voids = false;
for (const LayerRegion *layerm : layer->regions()) {
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
if (surface.surface_type == stInternal)
voids = true;
else
expansions = true;
if (voids && expansions) {
layer_expansions_and_voids[layer_idx] = true;
goto end;
}
}
}
end:;
}
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start";
surfaces_covered.resize(m_layers.size() - 1, Polygons());
auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
if (layer_expansions_and_voids[layer_idx + 1]) {
m_print->throw_if_canceled();
Polygons voids;
for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) {
if (layerm->region().config().sparse_infill_density.value == 0.)
for (const Surface &surface : layerm->fill_surfaces.surfaces)
// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
polygons_append(voids, offset(surface.expolygon, unsupported_width));
}
surfaces_covered[layer_idx] = diff(m_layers[layer_idx]->lslices, voids);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end";
}
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
m_layers[layer_idx]->get_region(int(region_id))->process_external_surfaces(
(layer_idx == 0) ? nullptr : m_layers[layer_idx - 1],
(layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
}
}
void PrintObject::discover_vertical_shells()
{
PROFILE_FUNC();
BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
struct DiscoverVerticalShellsCacheEntry
{
// Collected polygons, offsetted
Polygons top_surfaces;
Polygons bottom_surfaces;
Polygons holes;
};
bool spiral_mode = this->print()->config().spiral_mode.value;
size_t num_layers = spiral_mode ? std::min(size_t(this->printing_region(0).config().bottom_shell_layers), m_layers.size()) : m_layers.size();
std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry());
bool top_bottom_surfaces_all_regions = this->num_printing_regions() > 1 && ! m_config.interface_shells.value;
static constexpr float top_bottom_expansion_coeff = 0.05f;
if (top_bottom_surfaces_all_regions) {
// This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
// is calculated over all materials.
bool has_extra_layers = false;
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
const PrintRegionConfig &config = this->printing_region(region_id).config();
if (config.ensure_vertical_shell_thickness.value) {
has_extra_layers = true;
break;
}
}
if (! has_extra_layers)
// The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
return;
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(num_layers / 16, size_t(1));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const std::initializer_list<SurfaceType> surfaces_bottom{ stBottom, stBottomBridge };
const size_t num_regions = this->num_printing_regions();
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
m_print->throw_if_canceled();
const Layer& layer = *m_layers[idx_layer];
DiscoverVerticalShellsCacheEntry& cache = cache_top_botom_regions[idx_layer];
// Simulate single set of perimeters over all merged regions.
float perimeter_offset = 0.f;
float perimeter_min_spacing = FLT_MAX;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (size_t region_id = 0; region_id < num_regions; ++region_id) {
LayerRegion& layerm = *layer.m_regions[region_id];
float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff;
// Top surfaces.
append(cache.top_surfaces, offset(layerm.slices.filter_by_type(stTop), top_bottom_expansion));
// append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion));
// Bottom surfaces.
append(cache.bottom_surfaces, offset(layerm.slices.filter_by_types(surfaces_bottom), top_bottom_expansion));
// append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion));
// Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
// First find the maxium number of perimeters per region slice.
unsigned int perimeters = 0;
for (const Surface& s : layerm.slices.surfaces)
perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
perimeters += layerm.region().config().wall_loops.value;
// Then calculate the infill offset.
if (perimeters > 0) {
Flow extflow = layerm.flow(frExternalPerimeter);
Flow flow = layerm.flow(frPerimeter);
perimeter_offset = std::max(perimeter_offset,
0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
}
polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
}
// Save some computing time by reducing the number of polygons.
cache.top_surfaces = union_(cache.top_surfaces);
cache.bottom_surfaces = union_(cache.bottom_surfaces);
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
if (perimeter_offset > 0.) {
// The layer.lslices are forced to merge by expanding them first.
polygons_append(cache.holes, offset2(layer.lslices, 0.3f * perimeter_min_spacing, -perimeter_offset - 0.3f * perimeter_min_spacing));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices));
svg.draw(layer.lslices, "blue");
svg.draw(union_ex(cache.holes), "red");
svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
cache.holes = union_(cache.holes);
}});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
}
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
//FIXME Improve the heuristics for a grain size.
const PrintRegion &region = this->printing_region(region_id);
if (!region.config().ensure_vertical_shell_thickness.value)
// This region will be handled by discover_horizontal_shells().
continue;
size_t grain_size = std::max(num_layers / 16, size_t(1));
if (! top_bottom_surfaces_all_regions) {
// This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
// is calculated over a single material.
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : cache top / bottom";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, region_id, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const std::initializer_list<SurfaceType> surfaces_bottom { stBottom, stBottomBridge };
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[idx_layer];
LayerRegion &layerm = *layer.m_regions[region_id];
float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff;
// Top surfaces.
auto &cache = cache_top_botom_regions[idx_layer];
cache.top_surfaces = offset(layerm.slices.filter_by_type(stTop), top_bottom_expansion);
// append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion));
// Bottom surfaces.
cache.bottom_surfaces = offset(layerm.slices.filter_by_types(surfaces_bottom), top_bottom_expansion);
// append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion));
// Holes over all regions. Only collect them once, they are valid for all region_id iterations.
if (cache.holes.empty()) {
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id)
polygons_append(cache.holes, to_polygons(layer.regions()[region_id]->fill_expolygons));
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end : cache top / bottom";
}
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : ensure vertical wall thickness";
grain_size = 1;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, region_id, &cache_top_botom_regions]
(const tbb::blocked_range<size_t>& range) {
// printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++ debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->m_regions[region_id];
const PrintRegionConfig &region_config = layerm->region().config();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-initial");
layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Flow solid_infill_flow = layerm->flow(frSolidInfill);
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
Polygons shell;
Polygons holes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
#if 0
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
if (n < 0 || n >= (int)m_layers.size())
continue;
ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
for (size_t i = 0; i < expolys.size(); ++ i) {
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
svg.draw(expolys[i]);
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
svg.Close();
svg_cummulative.draw(expolys[i]);
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
}
}
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
polygons_append(holes, cache_top_botom_regions[idx_layer].holes);
auto combine_holes = [&holes](const Polygons &holes2) {
if (holes.empty() || holes2.empty())
holes.clear();
else
holes = intersection(holes, holes2);
};
auto combine_shells = [&shell](const Polygons &shells2) {
if (shell.empty())
shell = std::move(shells2);
else if (! shells2.empty()) {
polygons_append(shell, shells2);
// Running the union_ using the Clipper library piece by piece is cheaper
// than running the union_ all at once.
shell = union_(shell);
}
};
static constexpr const bool one_more_layer_below_top_bottom_surfaces = false;
if (int n_top_layers = region_config.top_shell_layers.value; n_top_layers > 0) {
// Gather top regions projected to this layer.
coordf_t print_z = layer->print_z;
int i = int(idx_layer) + 1;
int itop = int(idx_layer) + n_top_layers;
bool at_least_one_top_projected = false;
for (; i < int(cache_top_botom_regions.size()) &&
(i < itop || m_layers[i]->print_z - print_z < region_config.top_shell_thickness - EPSILON);
++ i) {
at_least_one_top_projected = true;
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
combine_holes(cache.holes);
combine_shells(cache.top_surfaces);
}
if (!at_least_one_top_projected && i < int(cache_top_botom_regions.size())) {
// Lets consider this a special case - with only 1 top solid and minimal shell thickness settings, the
// boundaries of solid layers are not anchored over/under perimeters, so lets fix it by adding at least one
// perimeter width of area
Polygons anchor_area = intersection(expand(cache_top_botom_regions[idx_layer].top_surfaces,
layerm->flow(frExternalPerimeter).scaled_spacing()),
to_polygons(m_layers[i]->lslices));
combine_shells(anchor_area);
}
if (one_more_layer_below_top_bottom_surfaces)
if (i < int(cache_top_botom_regions.size()) &&
(i <= itop || m_layers[i]->bottom_z() - print_z < region_config.top_shell_thickness - EPSILON))
combine_holes(cache_top_botom_regions[i].holes);
}
if (int n_bottom_layers = region_config.bottom_shell_layers.value; n_bottom_layers > 0) {
// Gather bottom regions projected to this layer.
coordf_t bottom_z = layer->bottom_z();
int i = int(idx_layer) - 1;
int ibottom = int(idx_layer) - n_bottom_layers;
bool at_least_one_bottom_projected = false;
for (; i >= 0 &&
(i > ibottom || bottom_z - m_layers[i]->bottom_z() < region_config.bottom_shell_thickness - EPSILON);
-- i) {
at_least_one_bottom_projected = true;
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
combine_holes(cache.holes);
combine_shells(cache.bottom_surfaces);
}
if (!at_least_one_bottom_projected && i >= 0) {
Polygons anchor_area = intersection(expand(cache_top_botom_regions[idx_layer].bottom_surfaces,
layerm->flow(frExternalPerimeter).scaled_spacing()),
to_polygons(m_layers[i]->lslices));
combine_shells(anchor_area);
}
if (one_more_layer_below_top_bottom_surfaces)
if (i >= 0 &&
(i > ibottom || bottom_z - m_layers[i]->print_z < region_config.bottom_shell_thickness - EPSILON))
combine_holes(cache_top_botom_regions[i].holes);
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell);
svg.draw_outline(shell, "black", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 0
// shell = union_(shell, true);
shell = union_(shell, false);
#endif
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
shell_ex = union_safety_offset_ex(shell);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
//if (shell.empty())
// continue;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell_ex);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces().filter_by_type(stInternal), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternal), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces().filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalsolid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces().filter_by_type(stInternalSolid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalSolid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the shells region by the internal & internal void surfaces.
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types({ stInternal, stInternalVoid, stInternalSolid }));
shell = intersection(shell, polygonsInternal, ApplySafetyOffset::Yes);
polygons_append(shell, diff(polygonsInternal, holes));
if (shell.empty())
continue;
// Append the internal solids, so they will be merged with the new ones.
polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
// These regions will be filled by a rectilinear full infill. Currently this type of infill
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
// make sure that this region does not contain parts narrower than the infill spacing width.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Polygons shell_before = shell;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
ExPolygons regularized_shell;
{
// Open to remove (filter out) regions narrower than a bit less than an infill extrusion line width.
// Such narrow regions are difficult to fill in with a gap fill algorithm (or Arachne), however they are most likely
// not needed for print stability / quality.
const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing;
// Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill,
// thus they will be merged into the solid infill.
const float narrow_sparse_infill_region_radius = 0.5f * 1.2f * min_perimeter_infill_spacing;
// Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions.
const float tiny_overlap_radius = 0.2f * min_perimeter_infill_spacing;
regularized_shell = shrink_ex(offset2_ex(union_ex(shell),
// Open to remove (filter out) regions narrower than an infill extrusion line width.
-narrow_ensure_vertical_wall_thickness_region_radius,
// Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill.
narrow_ensure_vertical_wall_thickness_region_radius + narrow_sparse_infill_region_radius, ClipperLib::jtSquare),
// Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions.
narrow_sparse_infill_region_radius - tiny_overlap_radius, ClipperLib::jtSquare);
Polygons object_volume;
Polygons internal_volume;
{
Polygons shrinked_bottom_slice = idx_layer > 0 ? to_polygons(m_layers[idx_layer - 1]->lslices) : Polygons{};
Polygons shrinked_upper_slice = (idx_layer + 1) < m_layers.size() ?
to_polygons(m_layers[idx_layer + 1]->lslices) :
Polygons{};
object_volume = intersection(shrinked_bottom_slice, shrinked_upper_slice);
internal_volume = closing(polygonsInternal, float(SCALED_EPSILON));
}
// The regularization operation may cause scattered tiny drops on the smooth parts of the model, filter them out
// If the region checks both following conditions, it is removed:
// 1. the area is very small,
// OR the area is quite small and it is fully wrapped in model (not visible)
// the in-model condition is there due to small sloping surfaces, e.g. top of the hull of the benchy
// 2. the area does not fully cover an internal polygon
// This is there mainly for a very thin parts, where the solid layers would be missing if the part area is quite small
regularized_shell.erase(std::remove_if(regularized_shell.begin(), regularized_shell.end(),
[&internal_volume, &min_perimeter_infill_spacing,
&object_volume](const ExPolygon &p) {
return (p.area() < min_perimeter_infill_spacing * scaled(1.5) ||
(p.area() < min_perimeter_infill_spacing * scaled(8.0) &&
diff(to_polygons(p), object_volume).empty())) &&
diff(internal_volume,
expand(to_polygons(p), min_perimeter_infill_spacing))
.size() >= internal_volume.size();
}),
regularized_shell.end());
}
if (regularized_shell.empty())
continue;
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, regularized_shell);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
// Source shell.
svg.draw(union_safety_offset_ex(shell_before));
// Shell trimmed to the internal surfaces.
svg.draw_outline(union_safety_offset_ex(shell), "black", "blue", scale_(0.05));
// Regularized infill region.
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the internal & internalvoid by the shell.
Slic3r::ExPolygons new_internal = diff_ex(layerm->fill_surfaces.filter_by_type(stInternal), regularized_shell);
Slic3r::ExPolygons new_internal_void = diff_ex(layerm->fill_surfaces.filter_by_type(stInternalVoid), regularized_shell);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Assign resulting internal surfaces to layer.
layerm->fill_surfaces.keep_types({ stTop, stBottom, stBottomBridge });
layerm->fill_surfaces.append(new_internal, stInternal);
layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
} // for each layer
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
LayerRegion *layerm = m_layers[idx_layer]->get_region(region_id);
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each region
// Write the profiler measurements to file
// PROFILE_UPDATE();
// PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
}
#if 0
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
const PrintRegion &region = this->printing_region(region_id);
// skip bridging in case there are no voids
if (region.config().sparse_infill_density.value == 100)
continue;
for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
// skip first layer
if (layer_it == m_layers.begin())
continue;
Layer *layer = *layer_it;
LayerRegion *layerm = layer->m_regions[region_id];
const PrintObjectConfig& object_config = layer->object()->config();
//BBS: enable thick bridge for internal bridge only
Flow bridge_flow = layerm->bridging_flow(frSolidInfill, true);
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
// check whether the lower area is deep enough for absorbing the extra flow
// (for obvious physical reasons but also for preventing the bridge extrudates
// from overflowing in 3D preview)
ExPolygons to_bridge;
{
Polygons to_bridge_pp = internal_solid;
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height() - EPSILON;
for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = m_layers[i];
// stop iterating if layer is lower than bottom_z
if (lower_layer->print_z < bottom_z) break;
// iterate through regions and collect internal surfaces
Polygons lower_internal;
for (LayerRegion *lower_layerm : lower_layer->m_regions)
lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
// intersect such lower internal surfaces with the candidate solid surfaces
to_bridge_pp = intersection(to_bridge_pp, lower_internal);
}
// BBS: expand to make avoid gap between bridge and inner wall
to_bridge_pp = expand(to_bridge_pp, bridge_flow.scaled_width());
to_bridge_pp = intersection(to_bridge_pp, internal_solid);
// there's no point in bridging too thin/short regions
//FIXME Vojtech: The offset2 function is not a geometric offset,
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
float min_width = float(bridge_flow.scaled_width()) * 3.f;
to_bridge_pp = opening(to_bridge_pp, min_width);
}
if (to_bridge_pp.empty()) continue;
// convert into ExPolygons
to_bridge = union_ex(to_bridge_pp);
}
#ifdef SLIC3R_DEBUG
printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
#endif
// compute the remaning internal solid surfaces as difference
ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, ApplySafetyOffset::Yes);
to_bridge = intersection_ex(to_bridge, internal_solid, ApplySafetyOffset::Yes);
// build the new collection of fill_surfaces
layerm->fill_surfaces.remove_type(stInternalSolid);
for (ExPolygon &ex : to_bridge) {
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
// BBS: detect angle for internal bridge infill
InternalBridgeDetector ibd(ex, layerm->fill_no_overlap_expolygons, bridge_flow.scaled_spacing());
if (ibd.detect_angle()) {
(layerm->fill_surfaces.surfaces.end() - 1)->bridge_angle = ibd.angle;
}
}
for (ExPolygon &ex : not_to_bridge)
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));
//BBS: modify stInternal to be stInternalWithLoop to give better support to internal bridge
if (!to_bridge.empty()){
float internal_loop_thickness = object_config.internal_bridge_support_thickness.value;
double bottom_z = layer->print_z - layer->height - internal_loop_thickness + EPSILON;
//BBS: lighting infill doesn't support this feature. Don't need to add loop when infill density is high than 50%
if (region.config().sparse_infill_pattern != InfillPattern::ipLightning && region.config().sparse_infill_density.value < 50)
for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = m_layers[i];
if (lower_layer->print_z < bottom_z) break;
for (LayerRegion* lower_layerm : lower_layer->m_regions) {
Polygons lower_internal;
lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
ExPolygons internal_with_loop = intersection_ex(lower_internal, to_bridge);
ExPolygons internal = diff_ex(lower_internal, to_bridge);
if (internal_with_loop.empty()) {
//BBS: don't need to do anything
}
else if (internal.empty()) {
lower_layerm->fill_surfaces.change_to_new_type(stInternal, stInternalWithLoop);
}
else {
lower_layerm->fill_surfaces.remove_type(stInternal);
for (ExPolygon& ex : internal_with_loop)
lower_layerm->fill_surfaces.surfaces.push_back(Surface(stInternalWithLoop, ex));
for (ExPolygon& ex : internal)
lower_layerm->fill_surfaces.surfaces.push_back(Surface(stInternal, ex));
}
}
}
}
/*
# exclude infill from the layers below if needed
# see discussion at https://github.com/alexrj/Slic3r/issues/240
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
if (0) {
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
my @new_surfaces = ();
# subtract the area from all types of surfaces
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
@{diff_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => stInternalVoid,
), @{intersection_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
}
$lower_layerm->fill_surfaces->clear;
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
}
$excess -= $self->get_layer($i)->height;
}
}
*/
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
m_print->throw_if_canceled();
}
}
}
#else
// This method applies bridge flow to the first internal solid layer above sparse infill.
// This method applies bridge flow to the first internal solid layer above sparse infill.
//该方法将桥流应用于稀疏填充物上方的第一个内部固体层。
2024-12-20 06:44:50 +00:00
void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info();
struct CandidateSurface
{
CandidateSurface(const Surface *original_surface,
int layer_index,
Polygons new_polys,
const LayerRegion *region,
double bridge_angle)
: original_surface(original_surface)
, layer_index(layer_index)
, new_polys(new_polys)
, region(region)
, bridge_angle(bridge_angle)
{}
const Surface *original_surface;
int layer_index;
Polygons new_polys;
const LayerRegion *region;
double bridge_angle;
};
std::map<size_t, std::vector<CandidateSurface>> surfaces_by_layer;
// SECTION to gather and filter surfaces for expanding, and then cluster them by layer
{
tbb::concurrent_vector<CandidateSurface> candidate_surfaces;
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = static_cast<const PrintObject *>(this),
&candidate_surfaces](tbb::blocked_range<size_t> r) {
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
const Layer *layer = po->get_layer(lidx);
if (layer->lower_layer == nullptr) {
continue;
}
double spacing = layer->regions().front()->flow(frSolidInfill).scaled_spacing();
// unsupported area will serve as a filter for polygons worth bridging.
Polygons unsupported_area;
Polygons lower_layer_solids;
for (const LayerRegion *region : layer->lower_layer->regions()) {
Polygons fill_polys = to_polygons(region->fill_expolygons);
// initially consider the whole layer unsupported, but also gather solid layers to later cut off supported parts
unsupported_area.insert(unsupported_area.end(), fill_polys.begin(), fill_polys.end());
for (const Surface &surface : region->fill_surfaces.surfaces) {
if (surface.surface_type != stInternal || region->region().config().sparse_infill_density.value == 100) {
Polygons p = to_polygons(surface.expolygon);
lower_layer_solids.insert(lower_layer_solids.end(), p.begin(), p.end());
}
}
}
unsupported_area = closing(unsupported_area, float(SCALED_EPSILON));
// By expanding the lower layer solids, we avoid making bridges from the tiny internal overhangs that are (very likely) supported by previous layer solids
// NOTE that we cannot filter out polygons worth bridging by their area, because sometimes there is a very small internal island that will grow into large hole
lower_layer_solids = shrink(lower_layer_solids, 1 * spacing); // first remove thin regions that will not support anything
lower_layer_solids = expand(lower_layer_solids, (1 + 3) * spacing); // then expand back (opening), and further for parts supported by internal solids
// By shrinking the unsupported area, we avoid making bridges from narrow ensuring region along perimeters.
unsupported_area = shrink(unsupported_area, 3 * spacing);
unsupported_area = diff(unsupported_area, lower_layer_solids);
for (LayerRegion *region : layer->regions()) {
SurfacesPtr region_internal_solids = region->fill_surfaces.filter_by_type(stInternalSolid);
for (const Surface *s : region_internal_solids) {
Polygons unsupported = intersection(to_polygons(s->expolygon), unsupported_area);
// The following flag marks those surfaces, which overlap with unuspported area, but at least part of them is supported.
// These regions can be filtered by area, because they for sure are touching solids on lower layers, and it does not make sense to bridge their tiny overhangs
bool partially_supported = area(unsupported) < area(to_polygons(s->expolygon)) - EPSILON;
if (!unsupported.empty() && (!partially_supported || area(unsupported) > 3 * 3 * spacing * spacing)) {
Polygons worth_bridging = intersection(to_polygons(s->expolygon), expand(unsupported, 4 * spacing));
// after we extracted the part worth briding, we go over the leftovers and merge the tiny ones back, to not brake the surface too much
for (const Polygon& p : diff(to_polygons(s->expolygon), expand(worth_bridging, spacing))) {
double area = p.area();
if (area < spacing * scale_(12.0) && area > spacing * spacing) {
worth_bridging.push_back(p);
}
}
worth_bridging = intersection(closing(worth_bridging, float(SCALED_EPSILON)), s->expolygon);
candidate_surfaces.push_back(CandidateSurface(s, lidx, worth_bridging, region, 0));
#ifdef DEBUG_BRIDGE_OVER_INFILL
debug_draw(std::to_string(lidx) + "_candidate_surface_" + std::to_string(area(s->expolygon)),
to_lines(region->layer()->lslices), to_lines(s->expolygon), to_lines(worth_bridging),
to_lines(unsupported_area));
#endif
#ifdef DEBUG_BRIDGE_OVER_INFILL
debug_draw(std::to_string(lidx) + "_candidate_processing_" + std::to_string(area(unsupported)),
to_lines(unsupported), to_lines(intersection(to_polygons(s->expolygon), expand(unsupported, 5 * spacing))),
to_lines(diff(to_polygons(s->expolygon), expand(worth_bridging, spacing))),
to_lines(unsupported_area));
#endif
}
}
}
}
});
for (const CandidateSurface &c : candidate_surfaces) {
surfaces_by_layer[c.layer_index].push_back(c);
}
}
// LIGHTNING INFILL SECTION - If lightning infill is used somewhere, we check the areas that are going to be bridges, and those that rely on the
// lightning infill under them get expanded. This somewhat helps to ensure that most of the extrusions are anchored to the lightning infill at the ends.
// It requires modifying this instance of print object in a specific way, so that we do not invalidate the pointers in our surfaces_by_layer structure.
bool has_lightning_infill = false;
for (size_t i = 0; i < this->num_printing_regions(); i++) {
if (this->printing_region(i).config().sparse_infill_pattern == ipLightning) {
has_lightning_infill = true;
break;
}
}
if (has_lightning_infill) {
// Prepare backup data for the Layer Region infills. Before modfiyng the layer region, we backup its fill surfaces by moving! them into this map.
// then a copy is created, modifiyed and passed to lightning infill generator. After generator is created, we restore the original state of the fills
// again by moving the data from this map back to the layer regions. This ensures that pointers to surfaces stay valid.
std::map<size_t, std::map<const LayerRegion *, SurfaceCollection>> backup_surfaces;
for (size_t lidx = 0; lidx < this->layer_count(); lidx++) {
backup_surfaces[lidx] = {};
}
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this, &backup_surfaces,
&surfaces_by_layer](tbb::blocked_range<size_t> r) {
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end())
continue;
Layer *layer = po->get_layer(lidx);
const Layer *lower_layer = layer->lower_layer;
if (lower_layer == nullptr)
continue;
Polygons lightning_fill;
for (LayerRegion *region : lower_layer->regions()) {
if (region->region().config().sparse_infill_pattern == ipLightning) {
Polygons lf = to_polygons(region->fill_surfaces.filter_by_type(stInternal));
lightning_fill.insert(lightning_fill.end(), lf.begin(), lf.end());
}
}
if (lightning_fill.empty())
continue;
for (LayerRegion *region : layer->regions()) {
backup_surfaces[lidx][region] = std::move(
region->fill_surfaces); // Make backup copy by move!! so that pointers in candidate surfaces stay valid
// Copy the surfaces back, this will make copy, but we will later discard it anyway
region->fill_surfaces = backup_surfaces[lidx][region];
}
for (LayerRegion *region : layer->regions()) {
ExPolygons sparse_infill = to_expolygons(region->fill_surfaces.filter_by_type(stInternal));
ExPolygons solid_infill = to_expolygons(region->fill_surfaces.filter_by_type(stInternalSolid));
if (sparse_infill.empty()) {
break;
}
for (const auto &surface : surfaces_by_layer[lidx]) {
if (surface.region != region)
continue;
ExPolygons expansion = intersection_ex(sparse_infill, expand(surface.new_polys, scaled<float>(3.0)));
solid_infill.insert(solid_infill.end(), expansion.begin(), expansion.end());
}
solid_infill = union_safety_offset_ex(solid_infill);
sparse_infill = diff_ex(sparse_infill, solid_infill);
region->fill_surfaces.remove_types({stInternalSolid, stInternal});
for (const ExPolygon &ep : solid_infill) {
region->fill_surfaces.surfaces.emplace_back(stInternalSolid, ep);
}
for (const ExPolygon &ep : sparse_infill) {
region->fill_surfaces.surfaces.emplace_back(stInternal, ep);
}
}
}
});
// Use the modified surfaces to generate expanded lightning anchors
this->m_lightning_generator = this->prepare_lightning_infill_data();
// And now restore carefully the original surfaces, again using move to avoid reallocation and preserving the validity of the
// pointers in surface candidates
for (size_t lidx = 0; lidx < this->layer_count(); lidx++) {
Layer *layer = this->get_layer(lidx);
for (LayerRegion *region : layer->regions()) {
if (backup_surfaces[lidx].find(region) != backup_surfaces[lidx].end()) {
region->fill_surfaces = std::move(backup_surfaces[lidx][region]);
}
}
}
}
std::map<size_t, Polylines> infill_lines;
// SECTION to generate infill polylines
{
std::vector<std::pair<const Surface *, float>> surfaces_w_bottom_z;
for (const auto &pair : surfaces_by_layer) {
for (const CandidateSurface &c : pair.second) {
surfaces_w_bottom_z.emplace_back(c.original_surface, c.region->m_layer->bottom_z());
}
}
this->m_adaptive_fill_octrees = this->prepare_adaptive_infill_data(surfaces_w_bottom_z);
std::vector<size_t> layers_to_generate_infill;
for (const auto &pair : surfaces_by_layer) {
assert(pair.first > 0);
infill_lines[pair.first - 1] = {};
layers_to_generate_infill.push_back(pair.first - 1);
}
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_to_generate_infill.size()), [po = static_cast<const PrintObject *>(this),
&layers_to_generate_infill,
&infill_lines](tbb::blocked_range<size_t> r) {
for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) {
size_t lidx = layers_to_generate_infill[job_idx];
infill_lines.at(
lidx) = po->get_layer(lidx)->generate_sparse_infill_polylines_for_anchoring(po->m_adaptive_fill_octrees.first.get(),
po->m_adaptive_fill_octrees.second.get(),
po->m_lightning_generator.get());
}
});
#ifdef DEBUG_BRIDGE_OVER_INFILL
for (const auto &il : infill_lines) {
debug_draw(std::to_string(il.first) + "_infill_lines", to_lines(get_layer(il.first)->lslices), to_lines(il.second), {}, {});
}
#endif
}
// cluster layers by depth needed for thick bridges. Each cluster is to be processed by single thread sequentially, so that bridges cannot appear one on another
std::vector<std::vector<size_t>> clustered_layers_for_threads;
float target_flow_height_factor = 0.9f;
{
std::vector<size_t> layers_with_candidates;
std::map<size_t, Polygons> layer_area_covered_by_candidates;
for (const auto& pair : surfaces_by_layer) {
layers_with_candidates.push_back(pair.first);
layer_area_covered_by_candidates[pair.first] = {};
}
// prepare inflated filter for each candidate on each layer. layers will be put into single thread cluster if they are close to each other (z-axis-wise)
// and if the inflated AABB polygons overlap somewhere
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_with_candidates.size()), [&layers_with_candidates, &surfaces_by_layer,
&layer_area_covered_by_candidates](
tbb::blocked_range<size_t> r) {
for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) {
size_t lidx = layers_with_candidates[job_idx];
for (const auto &candidate : surfaces_by_layer.at(lidx)) {
Polygon candiate_inflated_aabb = get_extents(candidate.new_polys).inflated(scale_(7)).polygon();
layer_area_covered_by_candidates.at(lidx) = union_(layer_area_covered_by_candidates.at(lidx),
Polygons{candiate_inflated_aabb});
}
}
});
// note: surfaces_by_layer is ordered map
for (auto pair : surfaces_by_layer) {
if (clustered_layers_for_threads.empty() ||
this->get_layer(clustered_layers_for_threads.back().back())->print_z <
this->get_layer(pair.first)->print_z -
this->get_layer(pair.first)->regions()[0]->bridging_flow(frSolidInfill, true).height() * target_flow_height_factor -
EPSILON ||
intersection(layer_area_covered_by_candidates[clustered_layers_for_threads.back().back()],
layer_area_covered_by_candidates[pair.first])
.empty()) {
clustered_layers_for_threads.push_back({pair.first});
} else {
clustered_layers_for_threads.back().push_back(pair.first);
}
}
#ifdef DEBUG_BRIDGE_OVER_INFILL
std::cout << "BRIDGE OVER INFILL CLUSTERED LAYERS FOR SINGLE THREAD" << std::endl;
for (auto cluster : clustered_layers_for_threads) {
std::cout << "CLUSTER: ";
for (auto l : cluster) {
std::cout << l << " ";
}
std::cout << std::endl;
}
#endif
}
// LAMBDA to gather areas with sparse infill deep enough that we can fit thick bridges there.
auto gather_areas_w_depth = [target_flow_height_factor](const PrintObject *po, int lidx, float target_flow_height) {
// Gather layers sparse infill areas, to depth defined by used bridge flow
ExPolygons layers_sparse_infill{};
ExPolygons not_sparse_infill{};
double bottom_z = po->get_layer(lidx)->print_z - target_flow_height * target_flow_height_factor - EPSILON;
for (int i = int(lidx) - 1; i >= 0; --i) {
// Stop iterating if layer is lower than bottom_z and at least one iteration was made
const Layer *layer = po->get_layer(i);
if (layer->print_z < bottom_z && i < int(lidx) - 1)
break;
for (const LayerRegion *region : layer->regions()) {
bool has_low_density = region->region().config().sparse_infill_density.value < 100;
for (const Surface &surface : region->fill_surfaces.surfaces) {
if ((surface.surface_type == stInternal && has_low_density) || surface.surface_type == stInternalVoid ) {
layers_sparse_infill.push_back(surface.expolygon);
} else {
not_sparse_infill.push_back(surface.expolygon);
}
}
}
}
layers_sparse_infill = union_ex(layers_sparse_infill);
layers_sparse_infill = closing_ex(layers_sparse_infill, float(SCALED_EPSILON));
not_sparse_infill = union_ex(not_sparse_infill);
not_sparse_infill = closing_ex(not_sparse_infill, float(SCALED_EPSILON));
return diff(layers_sparse_infill, not_sparse_infill);
};
// LAMBDA do determine optimal bridging angle
auto determine_bridging_angle = [](const Polygons &bridged_area, const Lines &anchors, InfillPattern dominant_pattern, double infill_direction) {
AABBTreeLines::LinesDistancer<Line> lines_tree(anchors);
// Check it the infill that require a fixed infill angle.
switch (dominant_pattern) {
case ip3DHoneycomb:
case ipCrossHatch:
return (infill_direction + 45.0) * 2.0 * M_PI / 360.;
default: break;
}
std::map<double, int> counted_directions;
for (const Polygon &p : bridged_area) {
double acc_distance = 0;
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
Vec2d start = p.points[point_idx].cast<double>();
Vec2d next = p.points[point_idx + 1].cast<double>();
Vec2d v = next - start; // vector from next to current
double dist_to_next = v.norm();
acc_distance += dist_to_next;
if (acc_distance > scaled(2.0)) {
acc_distance = 0.0;
v.normalize();
int lines_count = int(std::ceil(dist_to_next / scaled(2.0)));
float step_size = dist_to_next / lines_count;
for (int i = 0; i < lines_count; ++i) {
Point a = (start + v * (i * step_size)).cast<coord_t>();
auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a);
double angle = lines_tree.get_line(index).orientation();
if (angle > PI) {
angle -= PI;
}
angle += PI * 0.5;
counted_directions[angle]++;
}
}
}
}
std::pair<double, int> best_dir{0, 0};
// sliding window accumulation
for (const auto &dir : counted_directions) {
int score_acc = 0;
double dir_acc = 0;
double window_start_angle = dir.first - PI * 0.1;
double window_end_angle = dir.first + PI * 0.1;
for (auto dirs_window = counted_directions.lower_bound(window_start_angle);
dirs_window != counted_directions.upper_bound(window_end_angle); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
// current span of directions is 0.5 PI to 1.5 PI (due to the aproach.). Edge values should also account for the
// opposite direction.
if (window_start_angle < 0.5 * PI) {
for (auto dirs_window = counted_directions.lower_bound(1.5 * PI - (0.5 * PI - window_start_angle));
dirs_window != counted_directions.end(); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
}
if (window_start_angle > 1.5 * PI) {
for (auto dirs_window = counted_directions.begin();
dirs_window != counted_directions.upper_bound(window_start_angle - 1.5 * PI); dirs_window++) {
dir_acc += dirs_window->first * dirs_window->second;
score_acc += dirs_window->second;
}
}
if (score_acc > best_dir.second) {
best_dir = {dir_acc / score_acc, score_acc};
}
}
double bridging_angle = best_dir.first;
if (bridging_angle == 0) {
bridging_angle = 0.001;
}
switch (dominant_pattern) {
case ipHilbertCurve: bridging_angle += 0.25 * PI; break;
case ipOctagramSpiral: bridging_angle += (1.0 / 16.0) * PI; break;
default: break;
}
return bridging_angle;
};
// LAMBDA that will fill given polygons with lines, exapand the lines to the nearest anchor, and reconstruct polygons from the newly
// generated lines
auto construct_anchored_polygon = [](Polygons bridged_area, Lines anchors, const Flow &bridging_flow, double bridging_angle) {
auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) {
for (Line &l : lines) {
double ax = double(l.a.x());
double ay = double(l.a.y());
l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay));
l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax));
double bx = double(l.b.x());
double by = double(l.b.y());
l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by));
l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx));
}
};
auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) {
return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) ||
(bhigh >= alow && bhigh <= ahigh);
};
Polygons expanded_bridged_area{};
double aligning_angle = -bridging_angle + PI * 0.5;
{
polygons_rotate(bridged_area, aligning_angle);
lines_rotate(anchors, cos(aligning_angle), sin(aligning_angle));
BoundingBox bb_x = get_extents(bridged_area);
BoundingBox bb_y = get_extents(anchors);
const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + bridging_flow.scaled_spacing() - 1) / bridging_flow.scaled_spacing();
std::vector<Line> vertical_lines(n_vlines);
for (size_t i = 0; i < n_vlines; i++) {
coord_t x = bb_x.min.x() + i * bridging_flow.scaled_spacing();
coord_t y_min = bb_y.min.y() - bridging_flow.scaled_spacing();
coord_t y_max = bb_y.max.y() + bridging_flow.scaled_spacing();
vertical_lines[i].a = Point{x, y_min};
vertical_lines[i].b = Point{x, y_max};
}
auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors)};
auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)};
std::vector<std::vector<Line>> polygon_sections(n_vlines);
for (size_t i = 0; i < n_vlines; i++) {
auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]);
for (int intersection_idx = 0; intersection_idx < int(area_intersections.size()) - 1; intersection_idx++) {
if (bridged_area_tree.outside(
(area_intersections[intersection_idx].first + area_intersections[intersection_idx + 1].first) / 2) < 0) {
polygon_sections[i].emplace_back(area_intersections[intersection_idx].first,
area_intersections[intersection_idx + 1].first);
}
}
auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]);
for (Line &section : polygon_sections[i]) {
auto maybe_below_anchor = std::upper_bound(anchors_intersections.rbegin(), anchors_intersections.rend(), section.a,
[](const Point &a, const std::pair<Point, size_t> &b) {
return a.y() > b.first.y();
});
if (maybe_below_anchor != anchors_intersections.rend()) {
section.a = maybe_below_anchor->first;
section.a.y() -= bridging_flow.scaled_width() * (0.5 + 0.5);
}
auto maybe_upper_anchor = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), section.b,
[](const Point &a, const std::pair<Point, size_t> &b) {
return a.y() < b.first.y();
});
if (maybe_upper_anchor != anchors_intersections.end()) {
section.b = maybe_upper_anchor->first;
section.b.y() += bridging_flow.scaled_width() * (0.5 + 0.5);
}
}
for (int section_idx = 0; section_idx < int(polygon_sections[i].size()) - 1; section_idx++) {
Line &section_a = polygon_sections[i][section_idx];
Line &section_b = polygon_sections[i][section_idx + 1];
if (segments_overlap(section_a.a.y(), section_a.b.y(), section_b.a.y(), section_b.b.y())) {
section_b.a = section_a.a.y() < section_b.a.y() ? section_a.a : section_b.a;
section_b.b = section_a.b.y() < section_b.b.y() ? section_b.b : section_a.b;
section_a.a = section_a.b;
}
}
polygon_sections[i].erase(std::remove_if(polygon_sections[i].begin(), polygon_sections[i].end(),
[](const Line &s) { return s.a == s.b; }),
polygon_sections[i].end());
std::sort(polygon_sections[i].begin(), polygon_sections[i].end(),
[](const Line &a, const Line &b) { return a.a.y() < b.b.y(); });
}
// reconstruct polygon from polygon sections
struct TracedPoly
{
Points lows;
Points highs;
};
std::vector<TracedPoly> current_traced_polys;
for (const auto &polygon_slice : polygon_sections) {
std::unordered_set<const Line *> used_segments;
for (TracedPoly &traced_poly : current_traced_polys) {
auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(),
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(),
[](const Point &high, const Line &seg) { return seg.a.y() > high.y(); });
bool segment_added = false;
for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) {
if (used_segments.find(&(*candidate)) != used_segments.end()) {
continue;
}
if ((traced_poly.lows.back() - candidate->a).cast<double>().squaredNorm() <
36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) {
traced_poly.lows.push_back(candidate->a);
} else {
traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
traced_poly.lows.push_back(candidate->a - Point{bridging_flow.scaled_spacing() / 2, 0});
traced_poly.lows.push_back(candidate->a);
}
if ((traced_poly.highs.back() - candidate->b).cast<double>().squaredNorm() <
36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) {
traced_poly.highs.push_back(candidate->b);
} else {
traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
traced_poly.highs.push_back(candidate->b - Point{bridging_flow.scaled_spacing() / 2, 0});
traced_poly.highs.push_back(candidate->b);
}
segment_added = true;
used_segments.insert(&(*candidate));
}
if (!segment_added) {
// Zero overlapping segments, we just close this polygon
traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
traced_poly.lows.clear();
traced_poly.highs.clear();
}
}
current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
[](const TracedPoly &tp) { return tp.lows.empty(); }),
current_traced_polys.end());
for (const auto &segment : polygon_slice) {
if (used_segments.find(&segment) == used_segments.end()) {
TracedPoly &new_tp = current_traced_polys.emplace_back();
new_tp.lows.push_back(segment.a - Point{bridging_flow.scaled_spacing() / 2, 0});
new_tp.lows.push_back(segment.a);
new_tp.highs.push_back(segment.b - Point{bridging_flow.scaled_spacing() / 2, 0});
new_tp.highs.push_back(segment.b);
}
}
}
// add not closed polys
for (TracedPoly &traced_poly : current_traced_polys) {
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
}
expanded_bridged_area = union_safety_offset(expanded_bridged_area);
}
polygons_rotate(expanded_bridged_area, -aligning_angle);
return expanded_bridged_area;
};
tbb::parallel_for(tbb::blocked_range<size_t>(0, clustered_layers_for_threads.size()), [po = static_cast<const PrintObject *>(this),
target_flow_height_factor, &surfaces_by_layer,
&clustered_layers_for_threads,
gather_areas_w_depth, &infill_lines,
determine_bridging_angle,
construct_anchored_polygon](
tbb::blocked_range<size_t> r) {
for (size_t cluster_idx = r.begin(); cluster_idx < r.end(); cluster_idx++) {
for (size_t job_idx = 0; job_idx < clustered_layers_for_threads[cluster_idx].size(); job_idx++) {
size_t lidx = clustered_layers_for_threads[cluster_idx][job_idx];
const Layer *layer = po->get_layer(lidx);
// this thread has exclusive access to all surfaces in layers enumerated in
// clustered_layers_for_threads[cluster_idx]
// Presort the candidate polygons. This will help choose the same angle for neighbournig surfaces, that
// would otherwise compete over anchoring sparse infill lines, leaving one area unachored
std::sort(surfaces_by_layer[lidx].begin(), surfaces_by_layer[lidx].end(),
[](const CandidateSurface &left, const CandidateSurface &right) {
auto a = get_extents(left.new_polys);
auto b = get_extents(right.new_polys);
if (a.min.x() == b.min.x()) {
return a.min.y() < b.min.y();
};
return a.min.x() < b.min.x();
});
if (surfaces_by_layer[lidx].size() > 2) {
Vec2d origin = get_extents(surfaces_by_layer[lidx].front().new_polys).max.cast<double>();
std::stable_sort(surfaces_by_layer[lidx].begin() + 1, surfaces_by_layer[lidx].end(),
[origin](const CandidateSurface &left, const CandidateSurface &right) {
auto a = get_extents(left.new_polys);
auto b = get_extents(right.new_polys);
return (origin - a.min.cast<double>()).squaredNorm() <
(origin - b.min.cast<double>()).squaredNorm();
});
}
// Gather deep infill areas, where thick bridges fit
coordf_t spacing = surfaces_by_layer[lidx].front().region->bridging_flow(frSolidInfill, true).scaled_spacing();
coordf_t target_flow_height = surfaces_by_layer[lidx].front().region->bridging_flow(frSolidInfill, true).height() *
target_flow_height_factor;
Polygons deep_infill_area = gather_areas_w_depth(po, lidx, target_flow_height);
{
// Now also remove area that has been already filled on lower layers by bridging expansion - For this
// reason we did the clustering of layers per thread.
Polygons filled_polyons_on_lower_layers;
double bottom_z = layer->print_z - target_flow_height - EPSILON;
if (job_idx > 0) {
for (int lower_job_idx = job_idx - 1; lower_job_idx >= 0; lower_job_idx--) {
size_t lower_layer_idx = clustered_layers_for_threads[cluster_idx][lower_job_idx];
const Layer *lower_layer = po->get_layer(lower_layer_idx);
if (lower_layer->print_z >= bottom_z) {
for (const auto &c : surfaces_by_layer[lower_layer_idx]) {
filled_polyons_on_lower_layers.insert(filled_polyons_on_lower_layers.end(), c.new_polys.begin(),
c.new_polys.end());
}
} else {
break;
}
}
}
deep_infill_area = diff(deep_infill_area, filled_polyons_on_lower_layers);
}
deep_infill_area = expand(deep_infill_area, spacing * 1.5);
// Now gather expansion polygons - internal infill on current layer, from which we can cut off anchors
Polygons lightning_area;
Polygons expansion_area;
Polygons total_fill_area;
Polygons top_area;
for (LayerRegion *region : layer->regions()) {
Polygons internal_polys = to_polygons(region->fill_surfaces.filter_by_types({stInternal, stInternalSolid}));
expansion_area.insert(expansion_area.end(), internal_polys.begin(), internal_polys.end());
Polygons fill_polys = to_polygons(region->fill_expolygons);
total_fill_area.insert(total_fill_area.end(), fill_polys.begin(), fill_polys.end());
Polygons top_polys = to_polygons(region->fill_surfaces.filter_by_type(stTop));
top_area.insert(top_area.end(), top_polys.begin(), top_polys.end());
if (region->region().config().sparse_infill_pattern == ipLightning) {
Polygons l = to_polygons(region->fill_surfaces.filter_by_type(stInternal));
lightning_area.insert(lightning_area.end(), l.begin(), l.end());
}
}
total_fill_area = closing(total_fill_area, float(SCALED_EPSILON));
expansion_area = closing(expansion_area, float(SCALED_EPSILON));
expansion_area = intersection(expansion_area, deep_infill_area);
Polylines anchors = intersection_pl(infill_lines[lidx - 1], shrink(expansion_area, spacing));
Polygons internal_unsupported_area = shrink(deep_infill_area, spacing * 4.5);
#ifdef DEBUG_BRIDGE_OVER_INFILL
debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" + "_total_area",
to_lines(total_fill_area), to_lines(expansion_area), to_lines(deep_infill_area), to_lines(anchors));
#endif
std::vector<CandidateSurface> expanded_surfaces;
expanded_surfaces.reserve(surfaces_by_layer[lidx].size());
for (const CandidateSurface &candidate : surfaces_by_layer[lidx]) {
const Flow &flow = candidate.region->bridging_flow(frSolidInfill, true);
Polygons area_to_be_bridge = expand(candidate.new_polys, flow.scaled_spacing());
area_to_be_bridge = intersection(area_to_be_bridge, deep_infill_area);
area_to_be_bridge.erase(std::remove_if(area_to_be_bridge.begin(), area_to_be_bridge.end(),
[internal_unsupported_area](const Polygon &p) {
return intersection({p}, internal_unsupported_area).empty();
}),
area_to_be_bridge.end());
Polygons limiting_area = union_(area_to_be_bridge, expansion_area);
if (area_to_be_bridge.empty())
continue;
Polylines boundary_plines = to_polylines(expand(total_fill_area, 1.3 * flow.scaled_spacing()));
{
Polylines limiting_plines = to_polylines(expand(limiting_area, 0.3*flow.spacing()));
boundary_plines.insert(boundary_plines.end(), limiting_plines.begin(), limiting_plines.end());
}
#ifdef DEBUG_BRIDGE_OVER_INFILL
int r = rand();
debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" +
"_anchors_" + std::to_string(r),
to_lines(area_to_be_bridge), to_lines(boundary_plines), to_lines(anchors), to_lines(expansion_area));
#endif
double bridging_angle = 0;
if (!anchors.empty()) {
bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(anchors),
candidate.region->region().config().sparse_infill_pattern.value,
candidate.region->region().config().infill_direction.value);
} else {
// use expansion boundaries as anchors.
// Also, use Infill pattern that is neutral for angle determination, since there are no infill lines.
bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(boundary_plines), InfillPattern::ipLine, 0);
}
boundary_plines.insert(boundary_plines.end(), anchors.begin(), anchors.end());
if (!lightning_area.empty() && !intersection(area_to_be_bridge, lightning_area).empty()) {
boundary_plines = intersection_pl(boundary_plines, expand(area_to_be_bridge, scale_(10)));
}
Polygons bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle);
// Check collision with other expanded surfaces
{
bool reconstruct = false;
Polygons tmp_expanded_area = expand(bridging_area, 3.0 * flow.scaled_spacing());
for (const CandidateSurface &s : expanded_surfaces) {
if (!intersection(s.new_polys, tmp_expanded_area).empty()) {
bridging_angle = s.bridge_angle;
reconstruct = true;
break;
}
}
if (reconstruct) {
bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle);
}
}
bridging_area = opening(bridging_area, flow.scaled_spacing());
bridging_area = closing(bridging_area, flow.scaled_spacing());
bridging_area = intersection(bridging_area, limiting_area);
bridging_area = intersection(bridging_area, total_fill_area);
// BBS: substract top area
bridging_area = diff(bridging_area, top_area);
// BBS: open and close again to filter some narrow parts
bridging_area = opening(bridging_area, flow.scaled_spacing());
bridging_area = closing(bridging_area, flow.scaled_spacing());
expansion_area = diff(expansion_area, bridging_area);
#ifdef DEBUG_BRIDGE_OVER_INFILL
debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" + "_expanded_bridging" + std::to_string(r),
to_lines(layer->lslices), to_lines(boundary_plines), to_lines(candidate.new_polys), to_lines(bridging_area));
#endif
expanded_surfaces.push_back(CandidateSurface(candidate.original_surface, candidate.layer_index, bridging_area,
candidate.region, bridging_angle));
}
surfaces_by_layer[lidx].swap(expanded_surfaces);
expanded_surfaces.clear();
}
}
});
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Directions and expanded surfaces computed" << log_memory_info();
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this, &surfaces_by_layer](tbb::blocked_range<size_t> r) {
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end() && surfaces_by_layer.find(lidx + 1) == surfaces_by_layer.end())
continue;
Layer *layer = po->get_layer(lidx);
Polygons cut_from_infill{};
if (surfaces_by_layer.find(lidx) != surfaces_by_layer.end()) {
for (const auto &surface : surfaces_by_layer.at(lidx)) {
cut_from_infill.insert(cut_from_infill.end(), surface.new_polys.begin(), surface.new_polys.end());
}
}
Polygons additional_ensuring_areas{};
if (surfaces_by_layer.find(lidx + 1) != surfaces_by_layer.end()) {
for (const auto &surface : surfaces_by_layer.at(lidx + 1)) {
auto additional_area = diff(surface.new_polys,
shrink(surface.new_polys, surface.region->flow(frSolidInfill).scaled_spacing()));
additional_ensuring_areas.insert(additional_ensuring_areas.end(), additional_area.begin(), additional_area.end());
}
}
for (LayerRegion *region : layer->regions()) {
Surfaces new_surfaces;
Polygons near_perimeters = to_polygons(union_safety_offset_ex(to_polygons(region->fill_surfaces.surfaces)));
near_perimeters = diff(near_perimeters, shrink(near_perimeters, region->flow(frSolidInfill).scaled_spacing()));
ExPolygons additional_ensuring = intersection_ex(additional_ensuring_areas, near_perimeters);
SurfacesPtr internal_infills = region->fill_surfaces.filter_by_type(stInternal);
ExPolygons new_internal_infills = diff_ex(internal_infills, cut_from_infill);
new_internal_infills = diff_ex(new_internal_infills, additional_ensuring);
for (const ExPolygon &ep : new_internal_infills) {
new_surfaces.emplace_back(stInternal, ep);
}
SurfacesPtr internal_solids = region->fill_surfaces.filter_by_type(stInternalSolid);
if (surfaces_by_layer.find(lidx) != surfaces_by_layer.end()) {
for (const CandidateSurface &cs : surfaces_by_layer.at(lidx)) {
for (const Surface *surface : internal_solids) {
if (cs.original_surface == surface) {
Surface tmp{*surface, {}};
tmp.surface_type = stInternalBridge;
tmp.bridge_angle = cs.bridge_angle;
for (const ExPolygon &ep : union_ex(cs.new_polys)) {
new_surfaces.emplace_back(tmp, ep);
}
break;
}
}
}
}
ExPolygons new_internal_solids = to_expolygons(internal_solids);
new_internal_solids.insert(new_internal_solids.end(), additional_ensuring.begin(), additional_ensuring.end());
new_internal_solids = diff_ex(new_internal_solids, cut_from_infill);
new_internal_solids = union_safety_offset_ex(new_internal_solids);
for (const ExPolygon &ep : new_internal_solids) {
new_surfaces.emplace_back(stInternalSolid, ep);
}
#ifdef DEBUG_BRIDGE_OVER_INFILL
debug_draw("Aensuring_" + std::to_string(reinterpret_cast<uint64_t>(&region)), to_polylines(additional_ensuring),
to_polylines(near_perimeters), to_polylines(to_polygons(internal_infills)),
to_polylines(to_polygons(internal_solids)));
debug_draw("Aensuring_" + std::to_string(reinterpret_cast<uint64_t>(&region)) + "_new", to_polylines(additional_ensuring),
to_polylines(near_perimeters), to_polylines(to_polygons(new_internal_infills)),
to_polylines(to_polygons(new_internal_solids)));
#endif
region->fill_surfaces.remove_types({stInternalSolid, stInternal});
region->fill_surfaces.append(new_surfaces);
}
}
});
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info();
} // void PrintObject::bridge_over_infill()
#endif
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
{
if (opt.value > (int)num_extruders)
// assign the default extruder
opt.value = 1;
}
PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
{
PrintObjectConfig config = default_object_config;
{
DynamicPrintConfig src_normalized(object.config.get());
src_normalized.normalize_fdm();
config.apply(src_normalized, true);
}
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.support_filament, num_extruders);
clamp_exturder_to_default(config.support_interface_filament, num_extruders);
return config;
}
const std::string key_extruder { "extruder" };
static constexpr const std::initializer_list<const std::string_view> keys_extruders { "sparse_infill_filament"sv, "solid_infill_filament"sv, "wall_filament"sv };
static void apply_to_print_region_config(PrintRegionConfig &out, const DynamicPrintConfig &in)
{
// 1) Copy the "extruder key to sparse_infill_filament and wall_filament.
auto *opt_extruder = in.opt<ConfigOptionInt>(key_extruder);
if (opt_extruder)
if (int extruder = opt_extruder->value; extruder != 0) {
// Not a default extruder.
out.sparse_infill_filament .value = extruder;
out.solid_infill_filament.value = extruder;
out.wall_filament .value = extruder;
}
// 2) Copy the rest of the values.
for (auto it = in.cbegin(); it != in.cend(); ++ it)
if (it->first != key_extruder)
if (ConfigOption* my_opt = out.option(it->first, false); my_opt != nullptr) {
if (one_of(it->first, keys_extruders)) {
// Ignore "default" extruders.
int extruder = static_cast<const ConfigOptionInt*>(it->second.get())->value;
if (extruder > 0)
my_opt->setInt(extruder);
} else
my_opt->set(it->second.get());
}
}
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
{
PrintRegionConfig config = default_or_parent_region_config;
if (volume.is_model_part()) {
// default_or_parent_region_config contains the Print's PrintRegionConfig.
// Override with ModelObject's PrintRegionConfig values.
apply_to_print_region_config(config, volume.get_object()->config.get());
} else {
// default_or_parent_region_config contains parent PrintRegion config, which already contains ModelVolume's config.
}
apply_to_print_region_config(config, volume.config.get());
if (! volume.material_id().empty())
apply_to_print_region_config(config, volume.material()->config.get());
if (layer_range_config != nullptr) {
// Not applicable to modifiers.
assert(volume.is_model_part());
apply_to_print_region_config(config, *layer_range_config);
}
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.sparse_infill_filament, num_extruders);
clamp_exturder_to_default(config.wall_filament, num_extruders);
clamp_exturder_to_default(config.solid_infill_filament, num_extruders);
if (config.sparse_infill_density.value < 0.00011f)
// Switch of infill for very low infill rates, also avoid division by zero in infill generator for these very low rates.
// See GH issue #5910.
config.sparse_infill_density.value = 0;
else
config.sparse_infill_density.value = std::min(config.sparse_infill_density.value, 100.);
if (config.fuzzy_skin.value != FuzzySkinType::None && (config.fuzzy_skin_point_distance.value < 0.01 || config.fuzzy_skin_thickness.value < 0.001))
config.fuzzy_skin.value = FuzzySkinType::None;
return config;
}
struct POProfiler
{
uint32_t duration1;
uint32_t duration2;
};
void PrintObject::generate_support_preview()
{
POProfiler profiler;
boost::posix_time::ptime ts1 = boost::posix_time::microsec_clock::local_time();
this->slice();
boost::posix_time::ptime ts2 = boost::posix_time::microsec_clock::local_time();
profiler.duration1 = (ts2 - ts1).total_milliseconds();
this->generate_support_material();
boost::posix_time::ptime ts3 = boost::posix_time::microsec_clock::local_time();
profiler.duration2 = (ts3 - ts2).total_milliseconds();
}
void PrintObject::update_slicing_parameters()
{
if (!m_slicing_params.valid)
m_slicing_params = SlicingParameters::create_from_config(
this->print()->config(), m_config, this->model_object()->bounding_box().max.z(), this->object_extruders());
}
SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z)
{
PrintConfig print_config;
PrintObjectConfig object_config;
PrintRegionConfig default_region_config;
print_config.apply(full_config, true);
object_config.apply(full_config, true);
default_region_config.apply(full_config, true);
// BBS
size_t filament_extruders = print_config.filament_diameter.size();
object_config = object_config_from_model_object(object_config, model_object, filament_extruders);
std::vector<unsigned int> object_extruders;
for (const ModelVolume* model_volume : model_object.volumes)
if (model_volume->is_model_part()) {
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, nullptr, *model_volume, filament_extruders),
object_config.brim_type != btNoBrim && object_config.brim_width > 0.,
object_extruders);
for (const std::pair<const t_layer_height_range, ModelConfig> &range_and_config : model_object.layer_config_ranges)
if (range_and_config.second.has("wall_filament") ||
range_and_config.second.has("sparse_infill_filament") ||
range_and_config.second.has("solid_infill_filament"))
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, &range_and_config.second.get(), *model_volume, filament_extruders),
object_config.brim_type != btNoBrim && object_config.brim_width > 0.,
object_extruders);
}
sort_remove_duplicates(object_extruders);
//FIXME add painting extruders
if (object_max_z <= 0.f)
object_max_z = (float)model_object.raw_bounding_box().size().z();
return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
}
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
std::vector<unsigned int> PrintObject::object_extruders() const
{
std::vector<unsigned int> extruders;
extruders.reserve(this->all_regions().size() * 3);
#if 0
for (const PrintRegion &region : this->all_regions())
region.collect_object_printing_extruders(*this->print(), extruders);
#else
const ModelObject* mo = this->model_object();
for (const ModelVolume* mv : mo->volumes) {
std::vector<int> volume_extruders = mv->get_extruders();
for (int extruder : volume_extruders) {
assert(extruder > 0);
extruders.push_back(extruder - 1);
}
}
#endif
sort_remove_duplicates(extruders);
return extruders;
}
bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
{
bool updated = false;
if (layer_height_profile.empty()) {
// use the constructor because the assignement is crashing on ASAN OsX
layer_height_profile = std::vector<coordf_t>(model_object.layer_height_profile.get());
// layer_height_profile = model_object.layer_height_profile;
updated = true;
}
// Verify the layer_height_profile.
if (!layer_height_profile.empty() &&
// Must not be of even length.
((layer_height_profile.size() & 1) != 0 ||
// Last entry must be at the top of the object.
std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_max + slicing_parameters.object_print_z_min) > 1e-3))
layer_height_profile.clear();
if (layer_height_profile.empty() || layer_height_profile[1] != slicing_parameters.first_object_layer_height) {
//layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes);
layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges);
updated = true;
}
return updated;
}
//BBS:
void PrintObject::get_certain_layers(float start, float end, std::vector<LayerPtrs> &out, std::vector<BoundingBox> &boundingbox_objects)
{
BoundingBox temp;
LayerPtrs out_temp;
for (const auto &layer : layers()) {
if (layer->print_z < start) continue;
if (layer->print_z > end + EPSILON) break;
temp.merge(layer->loverhangs_bbox);
out_temp.emplace_back(layer);
}
boundingbox_objects.emplace_back(std::move(temp));
out.emplace_back(std::move(out_temp));
};
std::vector<Point> PrintObject::get_instances_shift_without_plate_offset()
{
std::vector<Point> out;
out.reserve(m_instances.size());
for (const auto& instance : m_instances)
out.push_back(instance.shift_without_plate_offset());
return out;
}
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::clip_fill_surfaces()
{
if (! PrintObject::infill_only_where_needed)
return;
bool has_infill = false;
for (size_t i = 0; i < this->num_printing_regions(); ++ i)
if (this->printing_region(i).config().sparse_infill_density > 0) {
has_infill = true;
break;
}
if (! has_infill)
return;
// We only want infill under ceilings; this is almost like an
// internal support material.
// Proceed top-down, skipping the bottom layer.
Polygons upper_internal;
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
Layer *layer = m_layers[layer_id];
Layer *lower_layer = m_layers[layer_id - 1];
// Detect things that we need to support.
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.
Polygons overhangs;
for (const LayerRegion *layerm : layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.is_solid())
polygons_append(overhangs, polygons);
polygons_append(fill_surfaces, std::move(polygons));
}
Polygons lower_layer_fill_surfaces;
Polygons lower_layer_internal_surfaces;
for (const LayerRegion *layerm : lower_layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(lower_layer_internal_surfaces, polygons);
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
}
// We also need to support perimeters when there's at least one full unsupported loop
{
// Get perimeters area as the difference between slices and fill_surfaces
// Only consider the area that is not supported by lower perimeters
Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces);
// Only consider perimeter areas that are at least one extrusion width thick.
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
//Should the pw not be half of the current value?
float pw = FLT_MAX;
for (const LayerRegion *layerm : layer->m_regions)
pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
// Append such thick perimeters to the areas that need support
polygons_append(overhangs, opening(perimeters, pw));
}
// Merge the new overhangs, find new internal infill.
polygons_append(upper_internal, std::move(overhangs));
static constexpr const auto closing_radius = scaled<float>(2.f);
upper_internal = intersection(
// Regularize the overhang regions, so that the infill areas will not become excessively jagged.
smooth_outward(
closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.),
scaled<coord_t>(0.1)),
lower_layer_internal_surfaces);
// Apply new internal infill to regions.
for (LayerRegion *layerm : lower_layer->m_regions) {
if (layerm->region().config().sparse_infill_density.value == 0)
continue;
Polygons internal;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(internal, std::move(surface.expolygon));
layerm->fill_surfaces.remove_types({ stInternal, stInternalVoid });
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal);
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid);
// If there are voids it means that our internal infill is not adjacent to
// perimeters. In this case it would be nice to add a loop around infill to
// make it more robust and nicer. TODO.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
#endif
}
m_print->throw_if_canceled();
}
}
void PrintObject::discover_horizontal_shells()
{
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
for (size_t i = 0; i < m_layers.size(); ++i) {
m_print->throw_if_canceled();
Layer* layer = m_layers[i];
LayerRegion* layerm = layer->regions()[region_id];
const PrintRegionConfig& region_config = layerm->region().config();
#if 0
if (region_config.solid_infill_every_layers.value > 0 && region_config.sparse_infill_density.value > 0 &&
(i % region_config.solid_infill_every_layers) == 0) {
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
SurfaceType type = (region_config.sparse_infill_density == 100 || region_config.solid_infill_every_layers == 1) ? stInternalSolid : stInternalBridge;
for (Surface& surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal)
surface.surface_type = type;
}
#endif
// If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
if (region_config.ensure_vertical_shell_thickness.value)
continue;
coordf_t print_z = layer->print_z;
coordf_t bottom_z = layer->bottom_z();
for (size_t idx_surface_type = 0; idx_surface_type < 3; ++idx_surface_type) {
m_print->throw_if_canceled();
SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
int num_solid_layers = (type == stTop) ? region_config.top_shell_layers.value : region_config.bottom_shell_layers.value;
if (num_solid_layers == 0)
continue;
// Find slices of current type for current layer.
// Use slices instead of fill_surfaces, because they also include the perimeter area,
// which needs to be propagated in shells; we need to grow slices like we did for
// fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
// not work in some situations, as there won't be any grown region in the perimeter
// area (this was seen in a model where the top layer had one extra perimeter, thus
// its fill_surfaces were thinner than the lower layer's infill), however it's the best
// solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
// too much solid infill inside nearly-vertical slopes.
// Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
// (not covered by a layer above / below).
// This does not contain the areas covered by perimeters!
Polygons solid;
for (const Surface& surface : layerm->slices.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
// Infill areas (slices without the perimeters).
for (const Surface& surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
if (solid.empty())
continue;
// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom';
// Scatter top / bottom regions to other layers. Scattering process is inherently serial, it is difficult to parallelize without locking.
for (int n = (type == stTop) ? int(i) - 1 : int(i) + 1;
(type == stTop) ?
(n >= 0 && (int(i) - n < num_solid_layers ||
print_z - m_layers[n]->print_z < region_config.top_shell_thickness.value - EPSILON)) :
(n < int(m_layers.size()) && (n - int(i) < num_solid_layers ||
m_layers[n]->bottom_z() - bottom_z < region_config.bottom_shell_thickness.value - EPSILON));
(type == stTop) ? --n : ++n)
{
// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
// Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
LayerRegion* neighbor_layerm = m_layers[n]->regions()[region_id];
// find intersection between neighbor and current layer's surfaces
// intersections have contours and holes
// we update $solid so that we limit the next neighbor layer to the areas that were
// found on this one - in other words, solid shells on one layer (for a given external surface)
// are always a subset of the shells found on the previous shell layer
// this approach allows for DWIM in hollow sloping vases, where we want bottom
// shells to be generated in the base but not in the walls (where there are many
// narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
// upper perimeter as an obstacle and shell will not be propagated to more upper layers
//FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work.
Polygons new_internal_solid;
{
Polygons internal;
for (const Surface& surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
polygons_append(internal, to_polygons(surface.expolygon));
new_internal_solid = intersection(solid, internal, ApplySafetyOffset::Yes);
}
if (new_internal_solid.empty()) {
// No internal solid needed on this layer. In order to decide whether to continue
// searching on the next neighbor (thus enforcing the configured number of solid
// layers, use different strategies according to configured infill density:
if (region_config.sparse_infill_density.value == 0) {
// If user expects the object to be void (for example a hollow sloping vase),
// don't continue the search. In this case, we only generate the external solid
// shell if the object would otherwise show a hole (gap between perimeters of
// the two layers), and internal solid shells are a subset of the shells found
// on each previous layer.
goto EXTERNAL;
}
else {
// If we have internal infill, we can generate internal solid shells freely.
continue;
}
}
if (region_config.sparse_infill_density.value == 0) {
// if we're printing a hollow object we discard any solid shell thinner
// than a perimeter width, since it's probably just crossing a sloping wall
// and it's not wanted in a hollow print even if it would make sense when
// obeying the solid shell count option strictly (DWIM!)
float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
Polygons too_narrow = diff(
new_internal_solid,
opening(new_internal_solid, margin, margin + ClipperSafetyOffset, jtMiter, 5));
// Trim the regularized region by the original region.
if (!too_narrow.empty())
new_internal_solid = solid = diff(new_internal_solid, too_narrow);
}
// make sure the new internal solid is wide enough, as it might get collapsed
// when spacing is added in Fill.pm
{
//FIXME Vojtech: Disable this and you will be sorry.
float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(
new_internal_solid,
opening(new_internal_solid, margin, margin + ClipperSafetyOffset, ClipperLib::jtMiter, 5));
if (!too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
Polygons internal;
for (const Surface& surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.is_internal() && !surface.is_bridge())
polygons_append(internal, to_polygons(surface.expolygon));
polygons_append(new_internal_solid,
intersection(
expand(too_narrow, +margin),
// Discard bridges as they are grown for anchoring and we can't
// remove such anchors. (This may happen when a bridge is being
// anchored onto a wall where little space remains after the bridge
// is grown, and that little space is an internal solid shell so
// it triggers this too_narrow logic.)
internal));
// solid = new_internal_solid;
}
}
// internal-solid are the union of the existing internal-solid surfaces
// and new ones
SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
ExPolygons internal_solid = union_ex(new_internal_solid);
// assign new internal-solid surfaces to layer
neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
// subtract intersections from layer surfaces to get resulting internal surfaces
Polygons polygons_internal = to_polygons(std::move(internal_solid));
ExPolygons internal = diff_ex(backup.filter_by_type(stInternal), polygons_internal, ApplySafetyOffset::Yes);
// assign resulting internal surfaces to layer
neighbor_layerm->fill_surfaces.append(internal, stInternal);
polygons_append(polygons_internal, to_polygons(std::move(internal)));
// assign top and bottom surfaces to layer
backup.keep_types({ stTop, stBottom, stBottomBridge });
std::vector<SurfacesPtr> top_bottom_groups;
backup.group(&top_bottom_groups);
for (SurfacesPtr& group : top_bottom_groups)
neighbor_layerm->fill_surfaces.append(
diff_ex(group, polygons_internal),
// Use an existing surface as a template, it carries the bridge angle etc.
*group.front());
}
EXTERNAL:;
} // foreach type (stTop, stBottom, stBottomBridge)
} // for each layer
} // for each region
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
for (const Layer* layer : m_layers) {
const LayerRegion* layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
// combine fill surfaces across layers to honor the "infill every N layers" option
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::combine_infill()
{
// Work on each region separately.
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
const PrintRegion &region = this->printing_region(region_id);
//BBS
const bool enable_combine_infill = region.config().infill_combination.value;
if (enable_combine_infill == false || region.config().sparse_infill_density == 0.)
continue;
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
//FIXME limit the layer height to max_layer_height
double nozzle_diameter = std::min(
this->print()->config().nozzle_diameter.get_at(region.config().sparse_infill_filament.value - 1),
this->print()->config().nozzle_diameter.get_at(region.config().solid_infill_filament.value - 1));
// define the combinations
std::vector<size_t> combine(m_layers.size(), 0);
{
double current_height = 0.;
size_t num_layers = 0;
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
const Layer *layer = m_layers[layer_idx];
if (layer->id() == 0)
// Skip first print layer (which may not be first layer in array because of raft).
continue;
// Check whether the combination of this layer with the lower layers' buffer
// would exceed max layer height or max combined layer count.
// BBS: automatically calculate how many layers should be combined
if (current_height + layer->height >= nozzle_diameter + EPSILON) {
// Append combination to lower layer.
combine[layer_idx - 1] = num_layers;
current_height = 0.;
num_layers = 0;
}
current_height += layer->height;
++ num_layers;
}
// Append lower layers (if any) to uppermost layer.
combine[m_layers.size() - 1] = num_layers;
}
// loop through layers to which we have assigned layers to combine
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
size_t num_layers = combine[layer_idx];
if (num_layers <= 1)
continue;
// Get all the LayerRegion objects to be combined.
std::vector<LayerRegion*> layerms;
layerms.reserve(num_layers);
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
layerms.emplace_back(m_layers[i]->regions()[region_id]);
// We need to perform a multi-layer intersection, so let's split it in pairs.
// Initialize the intersection with the candidates of the lowest layer.
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
// Start looping from the second layer and intersect the current intersection with it.
for (size_t i = 1; i < layerms.size(); ++ i)
intersection = intersection_ex(layerms[i]->fill_surfaces.filter_by_type(stInternal), intersection);
double area_threshold = layerms.front()->infill_area_threshold();
if (! intersection.empty() && area_threshold > 0.)
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
intersection.end());
if (intersection.empty())
continue;
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
// scalar(@$intersection),
// ($type == stInternal ? 'internal' : 'internal-solid'),
// $layer_idx-($every-1), $layer_idx;
// intersection now contains the regions that can be combined across the full amount of layers,
// so let's remove those areas from all layers.
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size());
float clearance_offset =
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
// Because fill areas for rectilinear and honeycomb are grown
// later to overlap perimeters, we need to counteract that too.
((region.config().sparse_infill_pattern == ipRectilinear ||
region.config().sparse_infill_pattern == ipMonotonic ||
region.config().sparse_infill_pattern == ipGrid ||
region.config().sparse_infill_pattern == ipLine ||
region.config().sparse_infill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
layerms.back()->flow(frSolidInfill).scaled_width();
for (ExPolygon &expoly : intersection)
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
for (LayerRegion *layerm : layerms) {
Polygons internal = to_polygons(std::move(layerm->fill_surfaces.filter_by_type(stInternal)));
layerm->fill_surfaces.remove_type(stInternal);
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance), stInternal);
if (layerm == layerms.back()) {
// Apply surfaces back with adjusted depth to the uppermost layer.
Surface templ(stInternal, ExPolygon());
templ.thickness = 0.;
for (LayerRegion *layerm2 : layerms)
templ.thickness += layerm2->layer()->height;
templ.thickness_layers = (unsigned short)layerms.size();
layerm->fill_surfaces.append(intersection, templ);
} else {
// Save void surfaces.
layerm->fill_surfaces.append(
intersection_ex(internal, intersection_with_clearance),
stInternalVoid);
}
}
}
}
}
void PrintObject::_generate_support_material()
{
if (is_tree(m_config.support_type.value)) {
TreeSupport tree_support(*this, m_slicing_params);
tree_support.throw_on_cancel = [this]() { this->throw_if_canceled(); };
tree_support.generate();
}
else {
PrintObjectSupportMaterial support_material(this, m_slicing_params);
support_material.generate(*this);
}
}
// BBS
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
#define SUPPORT_MATERIAL_MARGIN 1.2
template<typename PolysType>
void PrintObject::remove_bridges_from_contacts(
const Layer* lower_layer,
const Layer* current_layer,
float extrusion_width,
PolysType* overhang_regions,
float max_bridge_length,
bool break_bridge)
{
// Extrusion width accounts for the roundings of the extrudates.
// It is the maximum widh of the extrudate.
float fw = extrusion_width;
Lines overhang_perimeters = to_lines(*overhang_regions);
auto layer_regions = current_layer->regions();
Polygons lower_layer_polygons = to_polygons(lower_layer->lslices);
const PrintObjectConfig& object_config = current_layer->object()->config();
Polygons all_bridges;
for (LayerRegion* layerm : layer_regions)
{
Polygons bridges;
// Surface supporting this layer, expanded by 0.5 * nozzle_diameter, as we consider this kind of overhang to be sufficiently supported.
Polygons lower_grown_slices = offset(lower_layer_polygons,
//FIXME to mimic the decision in the perimeter generator, we should use half the external perimeter width.
0.5f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS);
Polylines overhang_perimeters = diff_pl(layerm->perimeters.as_polylines(), lower_grown_slices);
// only consider straight overhangs
// only consider overhangs having endpoints inside layer's slices
// convert bridging polylines into polygons by inflating them with their thickness
// since we're dealing with bridges, we can't assume width is larger than spacing,
// so we take the largest value and also apply safety offset to be ensure no gaps
// are left in between
Flow bridge_flow = layerm->bridging_flow(frPerimeter, object_config.thick_bridges);
float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing()));
for (Polyline& polyline : overhang_perimeters)
if (polyline.is_straight()) {
// This is a bridge
polyline.extend_start(fw);
polyline.extend_end(fw);
// Is the straight perimeter segment supported at both sides?
Point pts[2] = { polyline.first_point(), polyline.last_point() };
bool supported[2] = { false, false };
for (size_t i = 0; i < lower_layer->lslices.size() && !(supported[0] && supported[1]); ++i)
for (int j = 0; j < 2; ++j)
if (!supported[j] && lower_layer->lslices_bboxes[i].contains(pts[j]) && lower_layer->lslices[i].contains(pts[j]))
supported[j] = true;
if (supported[0] && supported[1]) {
Polylines lines;
if (polyline.length() > max_bridge_length + 10) {
if (break_bridge) {
// equally divide the polyline
float len = polyline.length() / ceil(polyline.length() / max_bridge_length);
lines = polyline.equally_spaced_lines(len);
for (auto& line : lines) {
if (line.is_valid())
line.clip_start(fw);
if (line.is_valid())
line.clip_end(fw);
}
}
}
else
lines.push_back(polyline);
// Offset a polyline into a thick line.
polygons_append(bridges, offset(lines, 0.5f * w + 10.f));
}
}
bridges = union_(bridges);
// remove the entire bridges and only support the unsupported edges
//FIXME the brided regions are already collected as layerm->bridged. Use it?
for (const Surface& surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1) {
auto bbox = get_extents(surface.expolygon);
auto bbox_size = bbox.size();
if (bbox_size[0] < max_bridge_length && bbox_size[1] < max_bridge_length)
polygons_append(bridges, surface.expolygon);
else {
if (break_bridge) {
Polygons holes;
coord_t x0 = bbox.min.x();
coord_t x1 = bbox.max.x();
coord_t y0 = bbox.min.y();
coord_t y1 = bbox.max.y();
const int grid_lw = int(w/2); // grid line width
Vec2f bridge_direction{ cos(surface.bridge_angle),sin(surface.bridge_angle) };
if (fabs(bridge_direction(0)) > fabs(bridge_direction(1)))
{ // cut bridge along x-axis if bridge direction is aligned to x-axis more than to y-axis
// Note: surface.bridge_angle may be pi, so we can't compare it to 0 & pi/2.
int step = bbox_size(0) / ceil(bbox_size(0) / max_bridge_length);
for (int x = x0 + step; x < x1; x += step) {
Polygon poly;
poly.points = {Point(x - grid_lw, y0), Point(x + grid_lw, y0), Point(x + grid_lw, y1), Point(x - grid_lw, y1)};
holes.emplace_back(poly);
}
} else {
int step = bbox_size(1) / ceil(bbox_size(1) / max_bridge_length);
for (int y = y0 + step; y < y1; y += step) {
Polygon poly;
poly.points = {Point(x0, y - grid_lw), Point(x0, y + grid_lw), Point(x1, y + grid_lw), Point(x1, y - grid_lw)};
holes.emplace_back(poly);
}
}
auto expoly = diff_ex(surface.expolygon, holes);
polygons_append(bridges, expoly);
}
}
}
//FIXME add the gap filled areas. Extrude the gaps with a bridge flow?
// Remove the unsupported ends of the bridges from the bridged areas.
//FIXME add supports at regular intervals to support long bridges!
bridges = diff(bridges,
// Offset unsupported edges into polygons.
offset(layerm->unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS));
append(all_bridges, bridges);
}
if (typeid(overhang_regions) == typeid(ExPolygons*)) {
*(ExPolygons*)overhang_regions = diff_ex(*overhang_regions, all_bridges, ApplySafetyOffset::Yes);
}
else if (typeid(overhang_regions) == typeid(Polygons*)) {
*(Polygons*)overhang_regions = diff(*overhang_regions, all_bridges, ApplySafetyOffset::Yes);
}
}
template void PrintObject::remove_bridges_from_contacts<ExPolygons>(
const Layer* lower_layer,
const Layer* current_layer,
float extrusion_width,
ExPolygons* overhang_regions,
float max_bridge_length, bool break_bridge);
template void PrintObject::remove_bridges_from_contacts<Polygons>(
const Layer* lower_layer,
const Layer* current_layer,
float extrusion_width,
Polygons* overhang_regions,
float max_bridge_length, bool break_bridge);
SupportNecessaryType PrintObject::is_support_necessary()
{
static const double super_overhang_area_threshold = SQ(scale_(5.0));
const double cantilevel_dist_thresh = scale_(6);
#if 0
double threshold_rad = (m_config.support_threshold_angle.value < EPSILON ? 30 : m_config.support_threshold_angle.value + 1) * M_PI / 180.;
int enforce_support_layers = m_config.enforce_support_layers;
const coordf_t extrusion_width = m_config.line_width.value;
const coordf_t extrusion_width_scaled = scale_(extrusion_width);
float max_bridge_length = scale_(m_config.max_bridge_length.value);
const bool bridge_no_support = max_bridge_length > 0;// config.bridge_no_support.value;
for (size_t layer_nr = enforce_support_layers + 1; layer_nr < this->layer_count(); layer_nr++) {
Layer* layer = m_layers[layer_nr];
Layer* lower_layer = layer->lower_layer;
coordf_t support_offset_scaled = extrusion_width_scaled * 0.9;
ExPolygons lower_layer_offseted = offset_ex(lower_layer->lslices, support_offset_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS);
// 1. check sharp tail
for (const LayerRegion* layerm : layer->regions()) {
for (const ExPolygon& expoly : layerm->raw_slices) {
// detect sharp tail
if (intersection_ex({ expoly }, lower_layer_offseted).empty())
return SharpTail;
}
}
// 2. check overhang area
ExPolygons super_overhang_expolys = std::move(diff_ex(layer->lslices, lower_layer_offseted));
super_overhang_expolys.erase(std::remove_if(
super_overhang_expolys.begin(),
super_overhang_expolys.end(),
[extrusion_width_scaled](ExPolygon& area) {
return offset_ex(area, -0.1 * extrusion_width_scaled).empty();
}),
super_overhang_expolys.end());
// remove bridge
if (bridge_no_support)
remove_bridges_from_contacts(lower_layer, layer, extrusion_width_scaled, &super_overhang_expolys, max_bridge_length);
Polygons super_overhang_polys = to_polygons(super_overhang_expolys);
super_overhang_polys.erase(std::remove_if(
super_overhang_polys.begin(),
super_overhang_polys.end(),
[extrusion_width_scaled](Polygon& area) {
return offset_ex(area, -0.1 * extrusion_width_scaled).empty();
}),
super_overhang_polys.end());
double super_overhang_area = 0.0;
for (Polygon& poly : super_overhang_polys) {
bool is_ccw = poly.is_counter_clockwise();
double area_ = poly.area();
if (is_ccw) {
if (area_ > super_overhang_area_threshold)
return LargeOverhang;
super_overhang_area += area_;
}
else {
super_overhang_area -= area_;
}
}
//if (super_overhang_area > super_overhang_area_threshold)
// return LargeOverhang;
// 3. check overhang distance
const double distance_threshold_scaled = extrusion_width_scaled * 2;
ExPolygons lower_layer_offseted_2 = offset_ex(lower_layer->lslices, distance_threshold_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS);
ExPolygons exceed_overhang = std::move(diff_ex(super_overhang_polys, lower_layer_offseted_2));
exceed_overhang.erase(std::remove_if(
exceed_overhang.begin(),
exceed_overhang.end(),
[extrusion_width_scaled](ExPolygon& area) {
// tolerance for 1 extrusion width offset
return offset_ex(area, -0.5 * extrusion_width_scaled).empty();
}),
exceed_overhang.end());
if (!exceed_overhang.empty())
return LargeOverhang;
}
#else
TreeSupport tree_support(*this, m_slicing_params);
tree_support.support_type = SupportType::stTreeAuto; // need to set support type to fully utilize the power of feature detection
tree_support.detect_overhangs(true);
this->clear_support_layers();
if (tree_support.has_sharp_tails)
return SharpTail;
else if (tree_support.has_cantilever && tree_support.max_cantilever_dist > cantilevel_dist_thresh)
return Cantilever;
#endif
return NoNeedSupp;
}
static void project_triangles_to_slabs(ConstLayerPtrsAdaptor layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
{
if (custom_facets.indices.empty())
return;
const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f);
// The projection will be at most a pentagon. Let's minimize heap
// reallocations by saving in in the following struct.
// Points are used so that scaling can be done in parallel
// and they can be moved from to create an ExPolygon later.
struct LightPolygon {
LightPolygon() { pts.reserve(5); }
LightPolygon(const std::array<Vec2f, 3>& tri) {
pts.reserve(3);
pts.emplace_back(scaled<coord_t>(tri.front()));
pts.emplace_back(scaled<coord_t>(tri[1]));
pts.emplace_back(scaled<coord_t>(tri.back()));
}
Points pts;
void add(const Vec2f& pt) {
pts.emplace_back(scaled<coord_t>(pt));
assert(pts.size() <= 5);
}
};
// Structure to collect projected polygons. One element for each triangle.
// Saves vector of polygons and layer_id of the first one.
struct TriangleProjections {
size_t first_layer_id;
std::vector<LightPolygon> polygons;
};
// Vector to collect resulting projections from each triangle.
std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size());
// Iterate over all triangles.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, custom_facets.indices.size()),
[&custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range<size_t>& range) {
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
std::array<Vec3f, 3> facet;
// Transform the triangle into worlds coords.
for (int i=0; i<3; ++i)
facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)];
// Ignore triangles with upward-pointing normal. Don't forget about mirroring.
float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z();
if (! seam && tr_det_sign * z_comp > 0.)
continue;
// The algorithm does not process vertical triangles, but it should for seam.
// In that case, tilt the triangle a bit so the projection does not degenerate.
if (seam && z_comp == 0.f)
facet[0].x() += float(EPSILON);
// Sort the three vertices according to z-coordinate.
std::sort(facet.begin(), facet.end(),
[](const Vec3f& pt1, const Vec3f&pt2) {
return pt1.z() < pt2.z();
});
std::array<Vec2f, 3> trianglef;
for (int i=0; i<3; ++i)
trianglef[i] = to_2d(facet[i]);
// Find lowest slice not below the triangle.
auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON,
[](const Layer* l1, float z) {
return l1->slice_z < z;
});
// Count how many projections will be generated for this triangle
// and allocate respective amount in projections_of_triangles.
size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin();
size_t last_layer_id = first_layer_id;
// The cast in the condition below is important. The comparison must
// be an exact opposite of the one lower in the code where
// the polygons are appended. And that one is on floats.
while (last_layer_id + 1 < layers.size()
&& float(layers[last_layer_id]->slice_z) <= facet[2].z())
++last_layer_id;
if (first_layer_id == last_layer_id) {
// The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles.
float dz = facet[2].z() - facet[0].z();
assert(dz >= 0);
// The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1.
// Rather add this face to both the planes.
bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON;
projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1);
projections_of_triangles[idx].polygons.emplace_back(trianglef);
if (add_below) {
-- projections_of_triangles[idx].first_layer_id;
projections_of_triangles[idx].polygons.emplace_back(trianglef);
}
continue;
}
projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1);
// Calculate how to move points on triangle sides per unit z increment.
Vec2f ta(trianglef[1] - trianglef[0]);
Vec2f tb(trianglef[2] - trianglef[0]);
ta *= 1.f/(facet[1].z() - facet[0].z());
tb *= 1.f/(facet[2].z() - facet[0].z());
// Projection on current slice will be built directly in place.
LightPolygon* proj = &projections_of_triangles[idx].polygons[0];
proj->add(trianglef[0]);
bool passed_first = false;
bool stop = false;
// Project a sub-polygon on all slices intersecting the triangle.
while (it != layers.end()) {
const float z = float((*it)->slice_z);
// Projections of triangle sides intersections with slices.
// a moves along one side, b tracks the other.
Vec2f a;
Vec2f b;
// If the middle vertex was already passed, append the vertex
// and use ta for tracking the remaining side.
if (z > facet[1].z() && ! passed_first) {
proj->add(trianglef[1]);
ta = trianglef[2]-trianglef[1];
ta *= 1.f/(facet[2].z() - facet[1].z());
passed_first = true;
}
// This slice is above the triangle already.
if (z > facet[2].z() || it+1 == layers.end()) {
proj->add(trianglef[2]);
stop = true;
}
else {
// Move a, b along the side it currently tracks to get
// projected intersection with current slice.
a = passed_first ? (trianglef[1]+ta*(z-facet[1].z()))
: (trianglef[0]+ta*(z-facet[0].z()));
b = trianglef[0]+tb*(z-facet[0].z());
proj->add(a);
proj->add(b);
}
if (stop)
break;
// Advance to the next layer.
++it;
++proj;
assert(proj <= &projections_of_triangles[idx].polygons.back() );
// a, b are first two points of the polygon for the next layer.
proj->add(b);
proj->add(a);
}
}
}); // end of parallel_for
// Make sure that the output vector can be used.
out.resize(layers.size());
// Now append the collected polygons to respective layers.
for (auto& trg : projections_of_triangles) {
int layer_id = int(trg.first_layer_id);
for (LightPolygon &poly : trg.polygons) {
if (layer_id >= int(out.size()))
break; // part of triangle could be projected above top layer
assert(! poly.pts.empty());
// The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well.
// if (cross2(Vec2d((poly.pts[1] - poly.pts[0]).cast<double>()), Vec2d((poly.pts[2] - poly.pts[1]).cast<double>())) < 0)
// std::swap(poly.pts.front(), poly.pts.back());
out[layer_id].emplace_back(std::move(poly.pts));
++layer_id;
}
}
}
void PrintObject::project_and_append_custom_facets(
bool seam, EnforcerBlockerType type, std::vector<Polygons>& out) const
{
for (const ModelVolume* mv : this->model_object()->volumes)
if (mv->is_model_part()) {
const indexed_triangle_set custom_facets = seam
? mv->seam_facets.get_facets_strict(*mv, type)
: mv->supported_facets.get_facets_strict(*mv, type);
if (! custom_facets.indices.empty()) {
if (seam)
project_triangles_to_slabs(this->layers(), custom_facets,
(this->trafo_centered() * mv->get_matrix()).cast<float>(),
seam, out);
else {
std::vector<Polygons> projected;
// Support blockers or enforcers. Project downward facing painted areas upwards to their respective slicing plane.
slice_mesh_slabs(custom_facets, zs_from_layers(this->layers()), this->trafo_centered() * mv->get_matrix(), nullptr, &projected, [](){});
// Merge these projections with the output, layer by layer.
assert(! projected.empty());
assert(out.empty() || out.size() == projected.size());
if (out.empty())
out = std::move(projected);
else
for (size_t i = 0; i < out.size(); ++ i)
append(out[i], std::move(projected[i]));
}
}
}
}
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const {
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; });
return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it;
}
Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z)); }
// Get a layer approximately at print_z.
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const {
coordf_t limit = print_z - epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it;
}
Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); }
const Layer *PrintObject::get_first_layer_bellow_printz(coordf_t print_z, coordf_t epsilon) const
{
coordf_t limit = print_z + epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
return (it == m_layers.begin()) ? nullptr : *(--it);
}
int PrintObject::get_layer_idx_get_printz(coordf_t print_z, coordf_t epsilon) {
coordf_t limit = print_z + epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
return (it == m_layers.begin()) ? -1 : std::distance(m_layers.begin(), it);
}
// BBS
const Layer* PrintObject::get_layer_at_bottomz(coordf_t bottom_z, coordf_t epsilon) const {
coordf_t limit_upper = bottom_z + epsilon;
coordf_t limit_lower = bottom_z - epsilon;
for (const Layer* layer : m_layers) {
if (layer->bottom_z() > limit_lower)
return layer->bottom_z() < limit_upper ? layer : nullptr;
}
return nullptr;
}
Layer* PrintObject::get_layer_at_bottomz(coordf_t bottom_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_bottomz(bottom_z, epsilon)); }
} // namespace Slic3r