BambuStudio/libigl/igl/copyleft/comiso/miq.cpp

1535 lines
53 KiB
C++
Raw Normal View History

2024-12-20 06:44:50 +00:00
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>, Olga Diamanti <olga.diam@gmail.com>, Kevin Walliman <wkevin@student.ethz.ch>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "miq.h"
#include "../../local_basis.h"
#include "../../triangle_triangle_adjacency.h"
#include "../../cut_mesh.h"
#include "../../LinSpaced.h"
// includes for VertexIndexing
#include "../../HalfEdgeIterator.h"
#include "../../is_border_vertex.h"
#include "../../vertex_triangle_adjacency.h"
// includes for PoissonSolver
#include "../../slice_into.h"
#include "../../grad.h"
#include "../../cotmatrix.h"
#include "../../doublearea.h"
#include <gmm/gmm.h>
#include <CoMISo/Solver/ConstrainedSolver.hh>
#include <CoMISo/Solver/MISolver.hh>
#include <CoMISo/Solver/GMM_Tools.hh>
//
#include "../../cross_field_missmatch.h"
#include "../../comb_frame_field.h"
#include "../../comb_cross_field.h"
#include "../../cut_mesh_from_singularities.h"
#include "../../find_cross_field_singularities.h"
#include "../../compute_frame_field_bisectors.h"
#include "../../rotate_vectors.h"
#ifndef NDEBUG
#include <fstream>
#endif
#include <iostream>
#include "../../matlab_format.h"
#define DEBUGPRINT 0
namespace igl {
namespace copyleft {
namespace comiso {
struct SeamInfo
{
int v0,v0p;
int integerVar;
unsigned char MMatch;
IGL_INLINE SeamInfo(int _v0,
int _v0p,
int _MMatch,
int _integerVar);
IGL_INLINE SeamInfo(const SeamInfo &S1);
};
struct MeshSystemInfo
{
////number of vertices variables
int num_vert_variables;
///num of integer for cuts
int num_integer_cuts;
///this are used for drawing purposes
std::vector<SeamInfo> EdgeSeamInfo;
};
template <typename DerivedV, typename DerivedF>
class VertexIndexing
{
public:
// Input:
const Eigen::PlainObjectBase<DerivedV> &V;
const Eigen::PlainObjectBase<DerivedF> &F;
const Eigen::PlainObjectBase<DerivedV> &Vcut;
const Eigen::PlainObjectBase<DerivedF> &Fcut;
const Eigen::PlainObjectBase<DerivedF> &TT;
const Eigen::PlainObjectBase<DerivedF> &TTi;
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch;
const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular; // bool
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams; // 3 bool
///this handle for mesh TODO: move with the other global variables
MeshSystemInfo Handle_SystemInfo;
IGL_INLINE VertexIndexing(const Eigen::PlainObjectBase<DerivedV> &_V,
const Eigen::PlainObjectBase<DerivedF> &_F,
const Eigen::PlainObjectBase<DerivedV> &_Vcut,
const Eigen::PlainObjectBase<DerivedF> &_Fcut,
const Eigen::PlainObjectBase<DerivedF> &_TT,
const Eigen::PlainObjectBase<DerivedF> &_TTi,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_MMatch,
const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_Singular,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_Seams
);
// provide information about every vertex per seam
IGL_INLINE void InitSeamInfo();
private:
struct VertexInfo{
int v; // vertex index (according to V)
int f0, k0; // face and local edge information of the edge that connects this vertex to the previous vertex (previous in the vector)
int f1, k1; // face and local edge information of the other face corresponding to the same edge
VertexInfo(int _v, int _f0, int _k0, int _f1, int _k1) :
v(_v), f0(_f0), k0(_k0), f1(_f1), k1(_k1){}
bool operator==(VertexInfo const& other){
return other.v == v;
}
};
IGL_INLINE void GetSeamInfo(const int f0,
const int f1,
const int indexE,
int &v0,int &v1,
int &v0p,int &v1p,
unsigned char &_MMatch);
IGL_INLINE std::vector<std::vector<VertexInfo> > GetVerticesPerSeam();
};
template <typename DerivedV, typename DerivedF>
class PoissonSolver
{
public:
IGL_INLINE void SolvePoisson(Eigen::VectorXd Stiffness,
double vector_field_scale=0.1f,
double grid_res=1.f,
bool direct_round=true,
int localIter=0,
bool _integer_rounding=true,
bool _singularity_rounding=true,
std::vector<int> roundVertices = std::vector<int>(),
std::vector<std::vector<int> > hardFeatures = std::vector<std::vector<int> >());
IGL_INLINE PoissonSolver(const Eigen::PlainObjectBase<DerivedV> &_V,
const Eigen::PlainObjectBase<DerivedF> &_F,
const Eigen::PlainObjectBase<DerivedV> &_Vcut,
const Eigen::PlainObjectBase<DerivedF> &_Fcut,
const Eigen::PlainObjectBase<DerivedF> &_TT,
const Eigen::PlainObjectBase<DerivedF> &_TTi,
const Eigen::PlainObjectBase<DerivedV> &_PD1,
const Eigen::PlainObjectBase<DerivedV> &_PD2,
const Eigen::Matrix<int, Eigen::Dynamic, 1>&_Handle_Singular,
const MeshSystemInfo &_Handle_SystemInfo
);
const Eigen::PlainObjectBase<DerivedV> &V;
const Eigen::PlainObjectBase<DerivedF> &F;
const Eigen::PlainObjectBase<DerivedV> &Vcut;
const Eigen::PlainObjectBase<DerivedF> &Fcut;
const Eigen::PlainObjectBase<DerivedF> &TT;
const Eigen::PlainObjectBase<DerivedF> &TTi;
const Eigen::PlainObjectBase<DerivedV> &PD1;
const Eigen::PlainObjectBase<DerivedV> &PD2;
const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular; // bool
const MeshSystemInfo &Handle_SystemInfo;
// Internal:
Eigen::VectorXd Handle_Stiffness;
std::vector<std::vector<int> > VF;
std::vector<std::vector<int> > VFi;
Eigen::MatrixXd UV; // this is probably useless
// Output:
// per wedge UV coordinates, 6 coordinates (1 face) per row
Eigen::MatrixXd WUV;
// per vertex UV coordinates, Vcut.rows() x 2
Eigen::MatrixXd UV_out;
// Matrices
Eigen::SparseMatrix<double> Lhs;
Eigen::SparseMatrix<double> Constraints;
Eigen::VectorXd rhs;
Eigen::VectorXd constraints_rhs;
///vector of unknowns
std::vector< double > X;
////REAL PART
///number of fixed vertex
unsigned int n_fixed_vars;
///the number of REAL variables for vertices
unsigned int n_vert_vars;
///total number of variables of the system,
///do not consider constraints, but consider integer vars
unsigned int num_total_vars;
//////INTEGER PART
///the total number of integer variables
unsigned int n_integer_vars;
///CONSTRAINT PART
///number of cuts constraints
unsigned int num_cut_constraint;
// number of user-defined constraints
unsigned int num_userdefined_constraint;
///total number of constraints equations
unsigned int num_constraint_equations;
///vector of blocked vertices
std::vector<int> Hard_constraints;
///vector of indexes to round
std::vector<int> ids_to_round;
///vector of indexes to round
std::vector<std::vector<int > > userdefined_constraints;
///boolean that is true if rounding to integer is needed
bool integer_rounding;
///START COMMON MATH FUNCTIONS
///return the complex encoding the rotation
///for a given missmatch interval
IGL_INLINE std::complex<double> GetRotationComplex(int interval);
///END COMMON MATH FUNCTIONS
///START FIXING VERTICES
///set a given vertex as fixed
IGL_INLINE void AddFixedVertex(int v);
///find vertex to fix in case we're using
///a vector field NB: multiple components not handled
IGL_INLINE void FindFixedVertField();
///find hard constraint depending if using or not
///a vector field
IGL_INLINE void FindFixedVert();
IGL_INLINE int GetFirstVertexIndex(int v);
///fix the vertices which are flagged as fixed
IGL_INLINE void FixBlockedVertex();
///END FIXING VERTICES
///HANDLING SINGULARITY
//set the singularity round to integer location
IGL_INLINE void AddSingularityRound();
IGL_INLINE void AddToRoundVertices(std::vector<int> ids);
///START GENERIC SYSTEM FUNCTIONS
//build the laplacian matrix cyclyng over all rangemaps
//and over all faces
IGL_INLINE void BuildLaplacianMatrix(double vfscale=1);
///find different sized of the system
IGL_INLINE void FindSizes();
IGL_INLINE void AllocateSystem();
///intitialize the whole matrix
IGL_INLINE void InitMatrix();
///map back coordinates after that
///the system has been solved
IGL_INLINE void MapCoords();
///END GENERIC SYSTEM FUNCTIONS
///set the constraints for the inter-range cuts
IGL_INLINE void BuildSeamConstraintsExplicitTranslation();
///set the constraints for the inter-range cuts
IGL_INLINE void BuildUserDefinedConstraints();
///call of the mixed integer solver
IGL_INLINE void MixedIntegerSolve(double cone_grid_res=1,
bool direct_round=true,
int localIter=0);
IGL_INLINE void clearUserConstraint();
IGL_INLINE void addSharpEdgeConstraint(int fid, int vid);
};
template <typename DerivedV, typename DerivedF, typename DerivedU>
class MIQ_class
{
private:
const Eigen::PlainObjectBase<DerivedV> &V;
const Eigen::PlainObjectBase<DerivedF> &F;
DerivedV Vcut;
DerivedF Fcut;
Eigen::MatrixXd UV_out;
DerivedF FUV_out;
// internal
DerivedF TT;
DerivedF TTi;
// Stiffness per face
Eigen::VectorXd Handle_Stiffness;
DerivedV B1, B2, B3;
public:
IGL_INLINE MIQ_class(const Eigen::PlainObjectBase<DerivedV> &V_,
const Eigen::PlainObjectBase<DerivedF> &F_,
const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
Eigen::PlainObjectBase<DerivedU> &UV,
Eigen::PlainObjectBase<DerivedF> &FUV,
double GradientSize = 30.0,
double Stiffness = 5.0,
bool DirectRound = false,
int iter = 5,
int localIter = 5,
bool DoRound = true,
bool SingularityRound=true,
std::vector<int> roundVertices = std::vector<int>(),
std::vector<std::vector<int> > hardFeatures = std::vector<std::vector<int> >());
IGL_INLINE void extractUV(Eigen::PlainObjectBase<DerivedU> &UV_out,
Eigen::PlainObjectBase<DerivedF> &FUV_out);
private:
IGL_INLINE int NumFlips(const Eigen::MatrixXd& WUV);
IGL_INLINE double Distortion(int f, double h, const Eigen::MatrixXd& WUV);
IGL_INLINE double LaplaceDistortion(const int f, double h, const Eigen::MatrixXd& WUV);
IGL_INLINE bool updateStiffeningJacobianDistorsion(double grad_size, const Eigen::MatrixXd& WUV);
IGL_INLINE bool IsFlipped(const Eigen::Vector2d &uv0,
const Eigen::Vector2d &uv1,
const Eigen::Vector2d &uv2);
IGL_INLINE bool IsFlipped(const int i, const Eigen::MatrixXd& WUV);
};
};
};
}
IGL_INLINE igl::copyleft::comiso::SeamInfo::SeamInfo(int _v0,
int _v0p,
int _MMatch,
int _integerVar)
{
v0=_v0;
v0p=_v0p;
integerVar=_integerVar;
MMatch=_MMatch;
}
IGL_INLINE igl::copyleft::comiso::SeamInfo::SeamInfo(const SeamInfo &S1)
{
v0=S1.v0;
v0p=S1.v0p;
integerVar=S1.integerVar;
MMatch=S1.MMatch;
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE igl::copyleft::comiso::VertexIndexing<DerivedV, DerivedF>::VertexIndexing(const Eigen::PlainObjectBase<DerivedV> &_V,
const Eigen::PlainObjectBase<DerivedF> &_F,
const Eigen::PlainObjectBase<DerivedV> &_Vcut,
const Eigen::PlainObjectBase<DerivedF> &_Fcut,
const Eigen::PlainObjectBase<DerivedF> &_TT,
const Eigen::PlainObjectBase<DerivedF> &_TTi,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_MMatch,
const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_Singular,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_Seams
):
V(_V),
F(_F),
Vcut(_Vcut),
Fcut(_Fcut),
TT(_TT),
TTi(_TTi),
Handle_MMatch(_Handle_MMatch),
Handle_Singular(_Handle_Singular),
Handle_Seams(_Handle_Seams)
{
#ifdef DEBUG_PRINT
cerr<<igl::matlab_format(Handle_Seams,"Handle_Seams");
#endif
Handle_SystemInfo.num_vert_variables=Vcut.rows();
Handle_SystemInfo.num_integer_cuts=0;
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::VertexIndexing<DerivedV, DerivedF>::GetSeamInfo(const int f0,
const int f1,
const int indexE,
int &v0,int &v1,
int &v0p,int &v1p,
unsigned char &_MMatch)
{
int edgef0 = indexE;
v0 = Fcut(f0,edgef0);
v1 = Fcut(f0,(edgef0+1)%3);
////get the index on opposite side
assert(TT(f0,edgef0) == f1);
int edgef1 = TTi(f0,edgef0);
v1p = Fcut(f1,edgef1);
v0p = Fcut(f1,(edgef1+1)%3);
_MMatch = Handle_MMatch(f0,edgef0);
assert(F(f0,edgef0) == F(f1,((edgef1+1)%3)));
assert(F(f0,((edgef0+1)%3)) == F(f1,edgef1));
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE std::vector<std::vector<typename igl::copyleft::comiso::VertexIndexing<DerivedV, DerivedF>::VertexInfo> > igl::copyleft::comiso::VertexIndexing<DerivedV, DerivedF>::GetVerticesPerSeam()
{
// Return value
std::vector<std::vector<VertexInfo> >verticesPerSeam;
// for every vertex, keep track of their adjacent vertices on seams.
// regular vertices have two neighbors on a seam, start- and endvertices may have any other numbers of neighbors (e.g. 1 or 3)
std::vector<std::list<VertexInfo> > VVSeam(V.rows());
Eigen::MatrixXi F_hit = Eigen::MatrixXi::Zero(F.rows(), 3);
for (unsigned int f=0; f<F.rows();f++)
{
int f0 = f;
for(int k0=0; k0<3; k0++){
int f1 = TT(f0,k0);
if(f1 == -1)
continue;
bool seam = Handle_Seams(f0,k0);
if (seam && F_hit(f0,k0) == 0)
{
int v0 = F(f0, k0);
int v1 = F(f0, (k0+1)%3);
int k1 = TTi(f0,k0);
VVSeam[v0].push_back(VertexInfo(v1, f0, k0, f1, k1));
VVSeam[v1].push_back(VertexInfo(v0, f0, k0, f1, k1));
F_hit(f0, k0) = 1;
F_hit(f1, k1) = 1;
}
}
}
// Find start vertices, i.e. vertices that start or end a seam branch
std::vector<int> startVertexIndices;
std::vector<bool> isStartVertex(V.rows());
for (unsigned int i=0;i<V.rows();i++)
{
isStartVertex[i] = false;
// vertices with two neighbors are regular vertices, unless the vertex is a singularity, in which case it qualifies as a start vertex
if (VVSeam[i].size() > 0 && VVSeam[i].size() != 2 || Handle_Singular(i) == true)
{
startVertexIndices.push_back(i);
isStartVertex[i] = true;
}
}
// For each startVertex, walk along its seam
for (unsigned int i=0;i<startVertexIndices.size();i++)
{
auto startVertexNeighbors = &VVSeam[startVertexIndices[i]];
const int neighborSize = startVertexNeighbors->size();
// explore every seam to which this vertex is a start vertex
// note: a vertex can never be a start vertex and a regular vertex simultaneously
for (unsigned int j=0;j<neighborSize;j++)
{
std::vector<VertexInfo> thisSeam; // temporary container
// Create vertexInfo struct for start vertex
auto startVertex = VertexInfo(startVertexIndices[i], -1, -1, -1, -1);// -1 values are arbitrary (will never be used)
auto currentVertex = startVertex;
// Add start vertex to the seam
thisSeam.push_back(currentVertex);
// advance on the seam
auto currentVertexNeighbors = startVertexNeighbors;
auto nextVertex = currentVertexNeighbors->front();
currentVertexNeighbors->pop_front();
auto prevVertex = startVertex; // bogus initialization to get the type
while (true)
{
// move to the next vertex
prevVertex = currentVertex;
currentVertex = nextVertex;
currentVertexNeighbors = &VVSeam[nextVertex.v];
// add current vertex to this seam
thisSeam.push_back(currentVertex);
// remove the previous vertex
auto it = std::find(currentVertexNeighbors->begin(), currentVertexNeighbors->end(), prevVertex);
assert(it != currentVertexNeighbors->end());
currentVertexNeighbors->erase(it);
if (currentVertexNeighbors->size() == 1 && !isStartVertex[currentVertex.v])
{
nextVertex = currentVertexNeighbors->front();
currentVertexNeighbors->pop_front();
}
else
break;
}
verticesPerSeam.push_back(thisSeam);
}
}
return verticesPerSeam;
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::VertexIndexing<DerivedV, DerivedF>::InitSeamInfo()
{
auto verticesPerSeam = GetVerticesPerSeam();
Handle_SystemInfo.EdgeSeamInfo.clear();
int integerVar = 0;
// Loop over each seam
for(auto seam : verticesPerSeam){
//choose initial side of the seam such that the start vertex corresponds to Fcut(f, k) and the end vertex corresponds to Fcut(f, (k+1)%3) and not vice versa.
int priorVertexIdx;
if(seam.size() > 2){
auto v1 = seam[1];
auto v2 = seam[2];
if(Fcut(v1.f0, (v1.k0+1) % 3) == Fcut(v2.f0, v2.k0) || Fcut(v1.f0, (v1.k0+1) % 3) == Fcut(v2.f1, v2.k1)){
priorVertexIdx = Fcut(v1.f0, v1.k0);
}
else{
priorVertexIdx = Fcut(v1.f1, v1.k1);
assert(Fcut(v1.f1, (v1.k1+1) % 3) == Fcut(v2.f0, v2.k0) || Fcut(v1.f1, (v1.k1+1) % 3) == Fcut(v2.f1, v2.k1));
}
}
else{
auto v1 = seam[1];
priorVertexIdx = Fcut(v1.f0, v1.k0);
}
// Loop over each vertex of the seam
for(auto it=seam.begin()+1; it != seam.end(); ++it){
auto vertex = *it;
// choose the correct side of the seam
int f,k,ff,kk;
if(priorVertexIdx == Fcut(vertex.f0, vertex.k0)){
f = vertex.f0; ff = vertex.f1;
k = vertex.k0; kk = vertex.k1;
}
else{
f = vertex.f1; ff = vertex.f0;
k = vertex.k1; kk = vertex.k0;
assert(priorVertexIdx == Fcut(vertex.f1, vertex.k1));
}
int vtx0,vtx0p,vtx1,vtx1p;
unsigned char MM;
GetSeamInfo(f,ff,k,vtx0,vtx1,vtx0p,vtx1p,MM);
Handle_SystemInfo.EdgeSeamInfo.push_back(SeamInfo(vtx0,vtx0p,MM,integerVar));
if(it == seam.end() -1){
Handle_SystemInfo.EdgeSeamInfo.push_back(SeamInfo(vtx1,vtx1p,MM,integerVar));
}
priorVertexIdx = vtx1;
}
// use the same integer for each seam
integerVar++;
}
Handle_SystemInfo.num_integer_cuts = integerVar;
#ifndef NDEBUG
int totalNVerticesOnSeams = 0;
for(auto seam : verticesPerSeam){
totalNVerticesOnSeams += seam.size();
}
assert(Handle_SystemInfo.EdgeSeamInfo.size() == totalNVerticesOnSeams);
#endif
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::SolvePoisson(Eigen::VectorXd Stiffness,
double vector_field_scale,
double grid_res,
bool direct_round,
int localIter,
bool _integer_rounding,
bool _singularity_rounding,
std::vector<int> roundVertices,
std::vector<std::vector<int> > hardFeatures)
{
Handle_Stiffness = Stiffness;
//initialization of flags and data structures
integer_rounding=_integer_rounding;
ids_to_round.clear();
clearUserConstraint();
// copy the user constraints number
for (size_t i = 0; i < hardFeatures.size(); ++i)
{
addSharpEdgeConstraint(hardFeatures[i][0],hardFeatures[i][1]);
}
///Initializing Matrix
int t0=clock();
///initialize the matrix ALLOCATING SPACE
InitMatrix();
if (DEBUGPRINT)
printf("\n ALLOCATED THE MATRIX \n");
///build the laplacian system
BuildLaplacianMatrix(vector_field_scale);
// add seam constraints
BuildSeamConstraintsExplicitTranslation();
// add user defined constraints
BuildUserDefinedConstraints();
////add the lagrange multiplier
FixBlockedVertex();
if (DEBUGPRINT)
printf("\n BUILT THE MATRIX \n");
if (integer_rounding)
AddToRoundVertices(roundVertices);
if (_singularity_rounding)
AddSingularityRound();
int t1=clock();
if (DEBUGPRINT) printf("\n time:%d \n",t1-t0);
if (DEBUGPRINT) printf("\n SOLVING \n");
MixedIntegerSolve(grid_res,direct_round,localIter);
int t2=clock();
if (DEBUGPRINT) printf("\n time:%d \n",t2-t1);
if (DEBUGPRINT) printf("\n ASSIGNING COORDS \n");
MapCoords();
int t3=clock();
if (DEBUGPRINT) printf("\n time:%d \n",t3-t2);
if (DEBUGPRINT) printf("\n FINISHED \n");
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>
::PoissonSolver(const Eigen::PlainObjectBase<DerivedV> &_V,
const Eigen::PlainObjectBase<DerivedF> &_F,
const Eigen::PlainObjectBase<DerivedV> &_Vcut,
const Eigen::PlainObjectBase<DerivedF> &_Fcut,
const Eigen::PlainObjectBase<DerivedF> &_TT,
const Eigen::PlainObjectBase<DerivedF> &_TTi,
const Eigen::PlainObjectBase<DerivedV> &_PD1,
const Eigen::PlainObjectBase<DerivedV> &_PD2,
const Eigen::Matrix<int, Eigen::Dynamic, 1>&_Handle_Singular,
const MeshSystemInfo &_Handle_SystemInfo
):
V(_V),
F(_F),
Vcut(_Vcut),
Fcut(_Fcut),
TT(_TT),
TTi(_TTi),
PD1(_PD1),
PD2(_PD2),
Handle_Singular(_Handle_Singular),
Handle_SystemInfo(_Handle_SystemInfo)
{
UV = Eigen::MatrixXd(V.rows(),2);
WUV = Eigen::MatrixXd(F.rows(),6);
UV_out = Eigen::MatrixXd(Vcut.rows(),2);
igl::vertex_triangle_adjacency(V,F,VF,VFi);
}
///START COMMON MATH FUNCTIONS
///return the complex encoding the rotation
///for a given missmatch interval
template <typename DerivedV, typename DerivedF>
IGL_INLINE std::complex<double> igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::GetRotationComplex(int interval)
{
assert((interval>=0)&&(interval<4));
switch(interval)
{
case 0:return std::complex<double>(1,0);
case 1:return std::complex<double>(0,1);
case 2:return std::complex<double>(-1,0);
default:return std::complex<double>(0,-1);
}
}
///END COMMON MATH FUNCTIONS
///START FIXING VERTICES
///set a given vertex as fixed
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::AddFixedVertex(int v)
{
n_fixed_vars++;
Hard_constraints.push_back(v);
}
///find vertex to fix in case we're using
///a vector field NB: multiple components not handled
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::FindFixedVertField()
{
Hard_constraints.clear();
n_fixed_vars=0;
//fix the first singularity
for (unsigned int v=0;v<V.rows();v++)
{
if (Handle_Singular(v))
{
AddFixedVertex(v);
UV.row(v) << 0,0;
return;
}
}
///if anything fixed fix the first
AddFixedVertex(0);
UV.row(0) << 0,0;
std::cerr << "No vertices to fix, I am fixing the first vertex to the origin!" << std::endl;
}
///find hard constraint depending if using or not
///a vector field
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::FindFixedVert()
{
Hard_constraints.clear();
FindFixedVertField();
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE int igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::GetFirstVertexIndex(int v)
{
return Fcut(VF[v][0],VFi[v][0]);
}
///fix the vertices which are flagged as fixed
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::FixBlockedVertex()
{
int offset_row = num_cut_constraint*2;
unsigned int constr_num = 0;
for (unsigned int i=0;i<Hard_constraints.size();i++)
{
int v = Hard_constraints[i];
///get first index of the vertex that must blocked
//int index=v->vertex_index[0];
int index = GetFirstVertexIndex(v);
///multiply times 2 because of uv
int indexvert = index*2;
///find the first free row to add the constraint
int indexRow = (offset_row+constr_num*2);
int indexCol = indexRow;
///add fixing constraint LHS
Constraints.coeffRef(indexRow, indexvert) += 1;
Constraints.coeffRef(indexRow+1,indexvert+1) += 1;
///add fixing constraint RHS
constraints_rhs[indexCol] = UV(v,0);
constraints_rhs[indexCol+1] = UV(v,1);
constr_num++;
}
assert(constr_num==n_fixed_vars);
}
///END FIXING VERTICES
///HANDLING SINGULARITY
//set the singularity round to integer location
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::AddSingularityRound()
{
for (unsigned int v=0;v<V.rows();v++)
{
if (Handle_Singular(v))
{
int index0=GetFirstVertexIndex(v);
ids_to_round.push_back( index0*2 );
ids_to_round.push_back((index0*2)+1);
}
}
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::AddToRoundVertices(std::vector<int> ids)
{
for (size_t i = 0; i < ids.size(); ++i)
{
if (ids[i] < 0 || ids[i] >= V.rows())
std::cerr << "WARNING: Ignored round vertex constraint, vertex " << ids[i] << " does not exist in the mesh." << std::endl;
int index0 = GetFirstVertexIndex(ids[i]);
ids_to_round.push_back( index0*2 );
ids_to_round.push_back((index0*2)+1);
}
}
///START GENERIC SYSTEM FUNCTIONS
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::BuildLaplacianMatrix(double vfscale)
{
Eigen::VectorXi idx = igl::LinSpaced<Eigen::VectorXi >(Vcut.rows(), 0, 2*Vcut.rows()-2);
Eigen::VectorXi idx2 = igl::LinSpaced<Eigen::VectorXi >(Vcut.rows(), 1, 2*Vcut.rows()-1);
// get gradient matrix
Eigen::SparseMatrix<double> G(Fcut.rows() * 3, Vcut.rows());
igl::grad(Vcut, Fcut, G);
// get triangle weights
Eigen::VectorXd dblA(Fcut.rows());
igl::doublearea(Vcut, Fcut, dblA);
// compute intermediate result
Eigen::SparseMatrix<double> G2;
G2 = G.transpose() * dblA.replicate<3,1>().asDiagonal() * Handle_Stiffness.replicate<3,1>().asDiagonal();
/// Compute LHS
Eigen::SparseMatrix<double> Cotmatrix;
Cotmatrix = 0.5 * G2 * G;
igl::slice_into(Cotmatrix, idx, idx, Lhs);
igl::slice_into(Cotmatrix, idx2, idx2, Lhs);
/// Compute RHS
// reshape nrosy vectors
const Eigen::MatrixXd u = Eigen::Map<const Eigen::MatrixXd>(PD1.data(),Fcut.rows()*3,1); // this mimics a reshape at the cost of a copy.
const Eigen::MatrixXd v = Eigen::Map<const Eigen::MatrixXd>(PD2.data(),Fcut.rows()*3,1); // this mimics a reshape at the cost of a copy.
// multiply with weights
Eigen::VectorXd rhs1 = G2 * u * 0.5 * vfscale;
Eigen::VectorXd rhs2 = -G2 * v * 0.5 * vfscale;
igl::slice_into(rhs1, idx, 1, rhs);
igl::slice_into(rhs2, idx2, 1, rhs);
}
///find different sized of the system
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::FindSizes()
{
///find the vertex that need to be fixed
FindFixedVert();
///REAL PART
n_vert_vars = Handle_SystemInfo.num_vert_variables;
///INTEGER PART
///the total number of integer variables
n_integer_vars = Handle_SystemInfo.num_integer_cuts;
///CONSTRAINT PART
num_cut_constraint = Handle_SystemInfo.EdgeSeamInfo.size();
num_constraint_equations = num_cut_constraint * 2 + n_fixed_vars * 2 + num_userdefined_constraint;
///total variable of the system
num_total_vars = (n_vert_vars+n_integer_vars) * 2;
///initialize matrix size
if (DEBUGPRINT) printf("\n*** SYSTEM VARIABLES *** \n");
if (DEBUGPRINT) printf("* NUM REAL VERTEX VARIABLES %d \n",n_vert_vars);
if (DEBUGPRINT) printf("\n*** INTEGER VARIABLES *** \n");
if (DEBUGPRINT) printf("* NUM INTEGER VARIABLES %d \n",(int)n_integer_vars);
if (DEBUGPRINT) printf("\n*** CONSTRAINTS *** \n ");
if (DEBUGPRINT) printf("* NUM FIXED CONSTRAINTS %d\n",n_fixed_vars);
if (DEBUGPRINT) printf("* NUM CUTS CONSTRAINTS %d\n",num_cut_constraint);
if (DEBUGPRINT) printf("* NUM USER DEFINED CONSTRAINTS %d\n",num_userdefined_constraint);
if (DEBUGPRINT) printf("\n*** TOTAL SIZE *** \n");
if (DEBUGPRINT) printf("* TOTAL VARIABLE SIZE (WITH INTEGER TRASL) %d \n",num_total_vars);
if (DEBUGPRINT) printf("* TOTAL CONSTRAINTS %d \n",num_constraint_equations);
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::AllocateSystem()
{
Lhs.resize(n_vert_vars * 2, n_vert_vars * 2);
Constraints.resize(num_constraint_equations, num_total_vars);
rhs.resize(n_vert_vars * 2);
constraints_rhs.resize(num_constraint_equations);
printf("\n INITIALIZED SPARSE MATRIX OF %d x %d \n",n_vert_vars*2, n_vert_vars*2);
printf("\n INITIALIZED SPARSE MATRIX OF %d x %d \n",num_constraint_equations, num_total_vars);
printf("\n INITIALIZED VECTOR OF %d x 1 \n",n_vert_vars*2);
printf("\n INITIALIZED VECTOR OF %d x 1 \n",num_constraint_equations);
}
///intitialize the whole matrix
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::InitMatrix()
{
FindSizes();
AllocateSystem();
}
///map back coordinates after that
///the system has been solved
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::MapCoords()
{
///map coords to faces
for (unsigned int f=0;f<Fcut.rows();f++)
{
for (int k=0;k<3;k++)
{
//get the index of the variable in the system
int indexUV = Fcut(f,k);
///then get U and V coords
double U=X[indexUV*2];
double V=X[indexUV*2+1];
WUV(f,k*2 + 0) = U;
WUV(f,k*2 + 1) = V;
}
}
for(int i = 0; i < Vcut.rows(); i++){
UV_out(i,0) = X[i*2];
UV_out(i,1) = X[i*2+1];
}
}
///END GENERIC SYSTEM FUNCTIONS
///set the constraints for the inter-range cuts
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::BuildSeamConstraintsExplicitTranslation()
{
///current constraint row
int constr_row = 0;
for (unsigned int i=0; i<num_cut_constraint; i++)
{
unsigned char interval = Handle_SystemInfo.EdgeSeamInfo[i].MMatch;
if (interval==1)
interval=3;
else
if(interval==3)
interval=1;
int p0 = Handle_SystemInfo.EdgeSeamInfo[i].v0;
int p0p = Handle_SystemInfo.EdgeSeamInfo[i].v0p;
std::complex<double> rot = GetRotationComplex(interval);
///get the integer variable
int integerVar = n_vert_vars + Handle_SystemInfo.EdgeSeamInfo[i].integerVar;
if (integer_rounding)
{
ids_to_round.push_back(integerVar*2);
ids_to_round.push_back(integerVar*2+1);
}
// cross boundary compatibility conditions
Constraints.coeffRef(constr_row, 2*p0) += rot.real();
Constraints.coeffRef(constr_row, 2*p0+1) += -rot.imag();
Constraints.coeffRef(constr_row+1, 2*p0) += rot.imag();
Constraints.coeffRef(constr_row+1, 2*p0+1) += rot.real();
Constraints.coeffRef(constr_row, 2*p0p) += -1;
Constraints.coeffRef(constr_row+1, 2*p0p+1) += -1;
Constraints.coeffRef(constr_row, 2*integerVar) += 1;
Constraints.coeffRef(constr_row+1, 2*integerVar+1) += 1;
constraints_rhs[constr_row] = 0;
constraints_rhs[constr_row+1] = 0;
constr_row += 2;
}
}
///set the constraints for the inter-range cuts
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::BuildUserDefinedConstraints()
{
/// the user defined constraints are at the end
int offset_row = num_cut_constraint*2 + n_fixed_vars*2;
///current constraint row
int constr_row = offset_row;
assert(num_userdefined_constraint == userdefined_constraints.size());
for (unsigned int i=0; i<num_userdefined_constraint; i++)
{
for (unsigned int j=0; j<userdefined_constraints[i].size()-1; ++j)
{
Constraints.coeffRef(constr_row, j) = userdefined_constraints[i][j];
}
constraints_rhs[constr_row] = userdefined_constraints[i][userdefined_constraints[i].size()-1];
constr_row +=1;
}
}
///call of the mixed integer solver
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::MixedIntegerSolve(double cone_grid_res,
bool direct_round,
int localIter)
{
X = std::vector<double>((n_vert_vars+n_integer_vars)*2);
if (DEBUGPRINT)
printf("\n ALLOCATED X \n");
///variables part
int ScalarSize = n_vert_vars*2;
int SizeMatrix = (n_vert_vars+n_integer_vars)*2;
///matrix A
gmm::col_matrix< gmm::wsvector< double > > A(SizeMatrix,SizeMatrix); // lhs matrix variables
///constraints part
int CsizeX = num_constraint_equations;
int CsizeY = SizeMatrix+1;
gmm::row_matrix< gmm::wsvector< double > > C(CsizeX,CsizeY); // constraints
if (DEBUGPRINT)
printf("\n ALLOCATED QMM STRUCTURES \n");
std::vector<double> B(SizeMatrix,0); // rhs
if (DEBUGPRINT)
printf("\n ALLOCATED RHS STRUCTURES \n");
//// copy LHS
for (int k=0; k < Lhs.outerSize(); ++k){
for (Eigen::SparseMatrix<double>::InnerIterator it(Lhs,k); it; ++it){
int row = it.row();
int col = it.col();
A(row, col) += it.value();
}
}
//// copy Constraints
for (int k=0; k < Constraints.outerSize(); ++k){
for (Eigen::SparseMatrix<double>::InnerIterator it(Constraints,k); it; ++it){
int row = it.row();
int col = it.col();
C(row, col) += it.value();
}
}
if (DEBUGPRINT)
printf("\n SET %d INTEGER VALUES \n",n_integer_vars);
///add penalization term for integer variables
double penalization = 0.000001;
int offline_index = ScalarSize;
for(unsigned int i = 0; i < (n_integer_vars)*2; ++i)
{
int index=offline_index+i;
A(index,index)=penalization;
}
if (DEBUGPRINT)
printf("\n SET RHS \n");
// copy RHS
for(int i = 0; i < (int)ScalarSize; ++i)
{
B[i] = rhs[i] * cone_grid_res;
}
// copy constraint RHS
if (DEBUGPRINT)
printf("\n SET %d CONSTRAINTS \n",num_constraint_equations);
for(unsigned int i = 0; i < num_constraint_equations; ++i)
{
C(i, SizeMatrix) = -constraints_rhs[i] * cone_grid_res;
}
COMISO::ConstrainedSolver solver;
solver.misolver().set_local_iters(localIter);
solver.misolver().set_direct_rounding(direct_round);
std::sort(ids_to_round.begin(),ids_to_round.end());
std::vector<int>::iterator new_end=std::unique(ids_to_round.begin(),ids_to_round.end());
int dist=distance(ids_to_round.begin(),new_end);
ids_to_round.resize(dist);
solver.solve( C, A, X, B, ids_to_round, 0.0, false, false);
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::clearUserConstraint()
{
num_userdefined_constraint = 0;
userdefined_constraints.clear();
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::copyleft::comiso::PoissonSolver<DerivedV, DerivedF>::addSharpEdgeConstraint(int fid, int vid)
{
// prepare constraint
std::vector<int> c(Handle_SystemInfo.num_vert_variables*2 + 1);
for (size_t i = 0; i < c.size(); ++i)
{
c[i] = 0;
}
int v1 = Fcut(fid,vid);
int v2 = Fcut(fid,(vid+1)%3);
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> e = Vcut.row(v2) - Vcut.row(v1);
e = e.normalized();
double d1 = fabs(e.dot(PD1.row(fid).normalized()));
double d2 = fabs(e.dot(PD2.row(fid).normalized()));
int offset = 0;
if (d1>d2)
offset = 1;
ids_to_round.push_back((v1 * 2) + offset);
ids_to_round.push_back((v2 * 2) + offset);
// add constraint
c[(v1 * 2) + offset] = 1;
c[(v2 * 2) + offset] = -1;
// add to the user-defined constraints
num_userdefined_constraint++;
userdefined_constraints.push_back(c);
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::MIQ_class(const Eigen::PlainObjectBase<DerivedV> &V_,
const Eigen::PlainObjectBase<DerivedF> &F_,
const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
Eigen::PlainObjectBase<DerivedU> &UV,
Eigen::PlainObjectBase<DerivedF> &FUV,
double GradientSize,
double Stiffness,
bool DirectRound,
int iter,
int localIter,
bool DoRound,
bool SingularityRound,
std::vector<int> roundVertices,
std::vector<std::vector<int> > hardFeatures):
V(V_),
F(F_)
{
igl::cut_mesh(V, F, Handle_Seams, Vcut, Fcut);
igl::local_basis(V,F,B1,B2,B3);
igl::triangle_triangle_adjacency(F,TT,TTi);
// Prepare indexing for the linear system
VertexIndexing<DerivedV, DerivedF> VInd(V, F, Vcut, Fcut, TT, TTi, Handle_MMatch, Handle_Singular, Handle_Seams);
VInd.InitSeamInfo();
// Assemble the system and solve
PoissonSolver<DerivedV, DerivedF> PSolver(V,
F,
Vcut,
Fcut,
TT,
TTi,
PD1_combed,
PD2_combed,
Handle_Singular,
VInd.Handle_SystemInfo);
Handle_Stiffness = Eigen::VectorXd::Constant(F.rows(),1);
if (iter > 0) // do stiffening
{
for (int i=0;i<iter;i++)
{
PSolver.SolvePoisson(Handle_Stiffness, GradientSize,1.f,DirectRound,localIter,DoRound,SingularityRound,roundVertices,hardFeatures);
int nflips=NumFlips(PSolver.WUV);
bool folded = updateStiffeningJacobianDistorsion(GradientSize,PSolver.WUV);
printf("ITERATION %d FLIPS %d \n",i,nflips);
if (!folded)break;
}
}
else
{
PSolver.SolvePoisson(Handle_Stiffness,GradientSize,1.f,DirectRound,localIter,DoRound,SingularityRound,roundVertices,hardFeatures);
}
int nflips=NumFlips(PSolver.WUV);
printf("**** END OPTIMIZING #FLIPS %d ****\n",nflips);
UV_out = PSolver.UV_out;
FUV_out = PSolver.Fcut;
fflush(stdout);
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE void igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::extractUV(Eigen::PlainObjectBase<DerivedU> &UV_out,
Eigen::PlainObjectBase<DerivedF> &FUV_out)
{
UV_out = this->UV_out;
FUV_out = this->FUV_out;
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE int igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::NumFlips(const Eigen::MatrixXd& WUV)
{
int numFl=0;
for (unsigned int i=0;i<F.rows();i++)
{
if (IsFlipped(i, WUV))
numFl++;
}
return numFl;
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE double igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::Distortion(int f, double h, const Eigen::MatrixXd& WUV)
{
assert(h > 0);
Eigen::Vector2d uv0,uv1,uv2;
uv0 << WUV(f,0), WUV(f,1);
uv1 << WUV(f,2), WUV(f,3);
uv2 << WUV(f,4), WUV(f,5);
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p0 = Vcut.row(Fcut(f,0));
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p1 = Vcut.row(Fcut(f,1));
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p2 = Vcut.row(Fcut(f,2));
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> norm = (p1 - p0).cross(p2 - p0);
double area2 = norm.norm();
double area2_inv = 1.0 / area2;
norm *= area2_inv;
if (area2 > 0)
{
// Singular values of the Jacobian
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t0 = norm.cross(p2 - p1);
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t1 = norm.cross(p0 - p2);
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t2 = norm.cross(p1 - p0);
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> diffu = (neg_t0 * uv0(0) +neg_t1 *uv1(0) + neg_t2 * uv2(0) )*area2_inv;
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> diffv = (neg_t0 * uv0(1) + neg_t1*uv1(1) + neg_t2*uv2(1) )*area2_inv;
// first fundamental form
double I00 = diffu.dot(diffu); // guaranteed non-neg
double I01 = diffu.dot(diffv); // I01 = I10
double I11 = diffv.dot(diffv); // guaranteed non-neg
// eigenvalues of a 2x2 matrix
// [a00 a01]
// [a10 a11]
// 1/2 * [ (a00 + a11) +/- sqrt((a00 - a11)^2 + 4 a01 a10) ]
double trI = I00 + I11; // guaranteed non-neg
double diffDiag = I00 - I11; // guaranteed non-neg
double sqrtDet = sqrt(std::max(0.0, diffDiag*diffDiag +
4 * I01 * I01)); // guaranteed non-neg
double sig1 = 0.5 * (trI + sqrtDet); // higher singular value
double sig2 = 0.5 * (trI - sqrtDet); // lower singular value
// Avoid sig2 < 0 due to numerical error
if (fabs(sig2) < 1.0e-8)
sig2 = 0;
assert(sig1 >= 0);
assert(sig2 >= 0);
if (sig2 < 0) {
printf("Distortion will be NaN! sig1^2 is negative (%lg)\n",
sig2);
}
// The singular values of the Jacobian are the sqrts of the
// eigenvalues of the first fundamental form.
sig1 = sqrt(sig1);
sig2 = sqrt(sig2);
// distortion
double tao = IsFlipped(f,WUV) ? -1 : 1;
double factor = tao / h;
double lam = fabs(factor * sig1 - 1) + fabs(factor * sig2 - 1);
return lam;
}
else {
return 10; // something "large"
}
}
////////////////////////////////////////////////////////////////////////////
// Approximate the distortion laplacian using a uniform laplacian on
// the dual mesh:
// ___________
// \-1 / \-1 /
// \ / 3 \ /
// \-----/
// \-1 /
// \ /
//
// @param[in] f facet on which to compute distortion laplacian
// @param[in] h scaling factor applied to cross field
// @return distortion laplacian for f
///////////////////////////////////////////////////////////////////////////
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE double igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::LaplaceDistortion(const int f, double h, const Eigen::MatrixXd& WUV)
{
double mydist = Distortion(f, h, WUV);
double lapl=0;
for (int i=0;i<3;i++)
{
if (TT(f,i) != -1)
lapl += (mydist - Distortion(TT(f,i), h, WUV));
}
return lapl;
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE bool igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::updateStiffeningJacobianDistorsion(double grad_size, const Eigen::MatrixXd& WUV)
{
bool flipped = NumFlips(WUV)>0;
if (!flipped)
return false;
double maxL=0;
double maxD=0;
if (flipped)
{
const double c = 1.0;
const double d = 5.0;
for (unsigned int i = 0; i < Fcut.rows(); ++i)
{
double dist=Distortion(i,grad_size,WUV);
if (dist > maxD)
maxD=dist;
double absLap=fabs(LaplaceDistortion(i, grad_size,WUV));
if (absLap > maxL)
maxL = absLap;
double stiffDelta = std::min(c * absLap, d);
Handle_Stiffness[i]+=stiffDelta;
}
}
printf("Maximum Distorsion %4.4f \n",maxD);
printf("Maximum Laplacian %4.4f \n",maxL);
return flipped;
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE bool igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::IsFlipped(const Eigen::Vector2d &uv0,
const Eigen::Vector2d &uv1,
const Eigen::Vector2d &uv2)
{
Eigen::Vector2d e0 = (uv1-uv0);
Eigen::Vector2d e1 = (uv2-uv0);
double Area = e0(0)*e1(1) - e0(1)*e1(0);
return (Area<=0);
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE bool igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU>::IsFlipped(
const int i, const Eigen::MatrixXd& WUV)
{
Eigen::Vector2d uv0,uv1,uv2;
uv0 << WUV(i,0), WUV(i,1);
uv1 << WUV(i,2), WUV(i,3);
uv2 << WUV(i,4), WUV(i,5);
return (IsFlipped(uv0,uv1,uv2));
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE void igl::copyleft::comiso::miq(
const Eigen::PlainObjectBase<DerivedV> &V,
const Eigen::PlainObjectBase<DerivedF> &F,
const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
Eigen::PlainObjectBase<DerivedU> &UV,
Eigen::PlainObjectBase<DerivedF> &FUV,
double GradientSize,
double Stiffness,
bool DirectRound,
int iter,
int localIter,
bool DoRound,
bool SingularityRound,
std::vector<int> roundVertices,
std::vector<std::vector<int> > hardFeatures)
{
GradientSize = GradientSize/(V.colwise().maxCoeff()-V.colwise().minCoeff()).norm();
igl::copyleft::comiso::MIQ_class<DerivedV, DerivedF, DerivedU> miq(V,
F,
PD1_combed,
PD2_combed,
Handle_MMatch,
Handle_Singular,
Handle_Seams,
UV,
FUV,
GradientSize,
Stiffness,
DirectRound,
iter,
localIter,
DoRound,
SingularityRound,
roundVertices,
hardFeatures);
miq.extractUV(UV,FUV);
}
template <typename DerivedV, typename DerivedF, typename DerivedU>
IGL_INLINE void igl::copyleft::comiso::miq(
const Eigen::PlainObjectBase<DerivedV> &V,
const Eigen::PlainObjectBase<DerivedF> &F,
const Eigen::PlainObjectBase<DerivedV> &PD1,
const Eigen::PlainObjectBase<DerivedV> &PD2,
Eigen::PlainObjectBase<DerivedU> &UV,
Eigen::PlainObjectBase<DerivedF> &FUV,
double GradientSize,
double Stiffness,
bool DirectRound,
int iter,
int localIter,
bool DoRound,
bool SingularityRound,
std::vector<int> roundVertices,
std::vector<std::vector<int> > hardFeatures)
{
DerivedV BIS1, BIS2;
igl::compute_frame_field_bisectors(V, F, PD1, PD2, BIS1, BIS2);
DerivedV BIS1_combed, BIS2_combed;
igl::comb_cross_field(V, F, BIS1, BIS2, BIS1_combed, BIS2_combed);
DerivedF Handle_MMatch;
igl::cross_field_missmatch(V, F, BIS1_combed, BIS2_combed, true, Handle_MMatch);
Eigen::Matrix<int, Eigen::Dynamic, 1> isSingularity, singularityIndex;
igl::find_cross_field_singularities(V, F, Handle_MMatch, isSingularity, singularityIndex);
Eigen::Matrix<int, Eigen::Dynamic, 3> Handle_Seams;
igl::cut_mesh_from_singularities(V, F, Handle_MMatch, Handle_Seams);
DerivedV PD1_combed, PD2_combed;
igl::comb_frame_field(V, F, PD1, PD2, BIS1_combed, BIS2_combed, PD1_combed, PD2_combed);
igl::copyleft::comiso::miq(V,
F,
PD1_combed,
PD2_combed,
Handle_MMatch,
isSingularity,
Handle_Seams,
UV,
FUV,
GradientSize,
Stiffness,
DirectRound,
iter,
localIter,
DoRound,
SingularityRound,
roundVertices,
hardFeatures);
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::copyleft::comiso::miq<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, double, double, bool, int, int, bool, bool, std::vector<int, std::allocator<int> >, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >);
template void igl::copyleft::comiso::miq<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, 3, 0, -1, 3> const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, Eigen::Matrix<int, -1, 3, 0, -1, 3> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, double, double, bool, int, int, bool, bool, std::vector<int, std::allocator<int> >, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >);
template void igl::copyleft::comiso::miq<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, double, double, bool, int, int, bool, bool, std::vector<int, std::allocator<int> >, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > >);
#endif