#include "Exception.hpp" #include "MeshBoolean.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/TryCatchSignal.hpp" #include "libslic3r/format.hpp" #undef PI // Include igl first. It defines "L" macro which then clashes with our localization #include #undef L // CGAL headers #include #include #include #include #include #include #include #include #include // BBS: for segment #include #include #include #include // BBS: for boolean using mcut #include "mcut/include/mcut/mcut.h" #include "boost/log/trivial.hpp" namespace Slic3r { namespace MeshBoolean { using MapMatrixXfUnaligned = Eigen::Map>; using MapMatrixXiUnaligned = Eigen::Map>; TriangleMesh eigen_to_triangle_mesh(const EigenMesh &emesh) { auto &VC = emesh.first; auto &FC = emesh.second; indexed_triangle_set its; its.vertices.reserve(size_t(VC.rows())); its.indices.reserve(size_t(FC.rows())); for (Eigen::Index i = 0; i < VC.rows(); ++i) its.vertices.emplace_back(VC.row(i).cast()); for (Eigen::Index i = 0; i < FC.rows(); ++i) its.indices.emplace_back(FC.row(i)); return TriangleMesh { std::move(its) }; } EigenMesh triangle_mesh_to_eigen(const TriangleMesh &mesh) { EigenMesh emesh; emesh.first = MapMatrixXfUnaligned(mesh.its.vertices.front().data(), Eigen::Index(mesh.its.vertices.size()), 3).cast(); emesh.second = MapMatrixXiUnaligned(mesh.its.indices.front().data(), Eigen::Index(mesh.its.indices.size()), 3); return emesh; } void minus(EigenMesh &A, const EigenMesh &B) { auto &[VA, FA] = A; auto &[VB, FB] = B; Eigen::MatrixXd VC; Eigen::MatrixXi FC; igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_MINUS); igl::copyleft::cgal::mesh_boolean(VA, FA, VB, FB, boolean_type, VC, FC); VA = std::move(VC); FA = std::move(FC); } void minus(TriangleMesh& A, const TriangleMesh& B) { EigenMesh eA = triangle_mesh_to_eigen(A); minus(eA, triangle_mesh_to_eigen(B)); A = eigen_to_triangle_mesh(eA); } void self_union(EigenMesh &A) { EigenMesh result; auto &[V, F] = A; auto &[VC, FC] = result; igl::MeshBooleanType boolean_type(igl::MESH_BOOLEAN_TYPE_UNION); igl::copyleft::cgal::mesh_boolean(V, F, Eigen::MatrixXd(), Eigen::MatrixXi(), boolean_type, VC, FC); A = std::move(result); } void self_union(TriangleMesh& mesh) { auto eM = triangle_mesh_to_eigen(mesh); self_union(eM); mesh = eigen_to_triangle_mesh(eM); } namespace cgal { namespace CGALProc = CGAL::Polygon_mesh_processing; namespace CGALParams = CGAL::Polygon_mesh_processing::parameters; using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel; using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel; using _EpicMesh = CGAL::Surface_mesh; using _EpecMesh = CGAL::Surface_mesh; struct CGALMesh { _EpicMesh m; CGALMesh() = default; CGALMesh(const _EpicMesh& _m) :m(_m) {} }; void save_CGALMesh(const std::string& fname, const CGALMesh& cgal_mesh) { std::ofstream os(fname); os << cgal_mesh.m; os.close(); } // ///////////////////////////////////////////////////////////////////////////// // Converions from and to CGAL mesh // ///////////////////////////////////////////////////////////////////////////// template void triangle_mesh_to_cgal(const TriangleMesh& M, _Mesh& out) { using Index3 = std::array; if (M.empty()) return; std::vector points; std::vector indices; points.reserve(M.its.vertices.size()); indices.reserve(M.its.indices.size()); for (auto& v : M.its.vertices) points.emplace_back(v.x(), v.y(), v.z()); for (auto& _f : M.its.indices) { auto f = _f.cast(); indices.emplace_back(Index3{ f(0), f(1), f(2) }); } CGALProc::orient_polygon_soup(points, indices); CGALProc::polygon_soup_to_polygon_mesh(points, indices, out); // Number the faces because 'orient_to_bound_a_volume' needs a face <--> index map unsigned index = 0; for (auto face : out.faces()) face = CGAL::SM_Face_index(index++); if (CGAL::is_closed(out)) CGALProc::orient_to_bound_a_volume(out); else throw Slic3r::RuntimeError("Mesh not watertight"); } template void triangle_mesh_to_cgal(const std::vector & V, const std::vector &F, _Mesh &out) { if (F.empty()) return; size_t vertices_count = V.size(); size_t edges_count = (F.size()* 3) / 2; size_t faces_count = F.size(); out.reserve(vertices_count, edges_count, faces_count); for (auto &v : V) out.add_vertex(typename _Mesh::Point{v.x(), v.y(), v.z()}); using VI = typename _Mesh::Vertex_index; for (auto &f : F) out.add_face(VI(f(0)), VI(f(1)), VI(f(2))); } inline Vec3f to_vec3f(const _EpicMesh::Point& v) { return { float(v.x()), float(v.y()), float(v.z()) }; } inline Vec3f to_vec3f(const _EpecMesh::Point& v) { CGAL::Cartesian_converter cvt; auto iv = cvt(v); return { float(iv.x()), float(iv.y()), float(iv.z()) }; } template indexed_triangle_set cgal_to_indexed_triangle_set(const _Mesh &cgalmesh) { indexed_triangle_set its; its.vertices.reserve(cgalmesh.num_vertices()); its.indices.reserve(cgalmesh.num_faces()); const auto &faces = cgalmesh.faces(); const auto &vertices = cgalmesh.vertices(); int vsize = int(vertices.size()); for (auto &vi : vertices) { auto &v = cgalmesh.point(vi); // Don't ask... its.vertices.emplace_back(to_vec3f(v)); } for (auto &face : faces) { auto vtc = cgalmesh.vertices_around_face(cgalmesh.halfedge(face)); int i = 0; Vec3i facet; for (auto v : vtc) { int iv = v; if (i > 2 || iv < 0 || iv >= vsize) { i = 0; break; } facet(i++) = iv; } if (i == 3) its.indices.emplace_back(facet); } return its; } template TriangleMesh cgal_to_triangle_mesh(const _Mesh &cgalmesh) { indexed_triangle_set its = cgal_to_indexed_triangle_set(cgalmesh); return TriangleMesh(std::move(its)); } std::unique_ptr triangle_mesh_to_cgal(const std::vector &V, const std::vector &F) { std::unique_ptr out(new CGALMesh{}); triangle_mesh_to_cgal(V, F, out->m); return out; } TriangleMesh cgal_to_triangle_mesh(const CGALMesh &cgalmesh) { return TriangleMesh{cgal_to_indexed_triangle_set(cgalmesh.m)}; } indexed_triangle_set cgal_to_indexed_triangle_set(const CGALMesh &cgalmesh) { return cgal_to_indexed_triangle_set(cgalmesh.m); } // ///////////////////////////////////////////////////////////////////////////// // Boolean operations for CGAL meshes // ///////////////////////////////////////////////////////////////////////////// static bool _cgal_diff(CGALMesh &A, CGALMesh &B, CGALMesh &R) { const auto &p = CGALParams::throw_on_self_intersection(true); return CGALProc::corefine_and_compute_difference(A.m, B.m, R.m, p, p); } static bool _cgal_union(CGALMesh &A, CGALMesh &B, CGALMesh &R) { const auto &p = CGALParams::throw_on_self_intersection(true); return CGALProc::corefine_and_compute_union(A.m, B.m, R.m, p, p); } static bool _cgal_intersection(CGALMesh &A, CGALMesh &B, CGALMesh &R) { const auto &p = CGALParams::throw_on_self_intersection(true); return CGALProc::corefine_and_compute_intersection(A.m, B.m, R.m, p, p); } template void _cgal_do(Op &&op, CGALMesh &A, CGALMesh &B) { bool success = false; bool hw_fail = false; try { CGALMesh result; try_catch_signal({SIGSEGV, SIGFPE}, [&success, &A, &B, &result, &op] { success = op(A, B, result); }, [&] { hw_fail = true; }); A = std::move(result); // In-place operation does not work } catch (...) { success = false; } if (hw_fail) throw Slic3r::HardCrash("CGAL mesh boolean operation crashed."); if (! success) throw Slic3r::RuntimeError("CGAL mesh boolean operation failed."); } void minus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_diff, A, B); } void plus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_union, A, B); } void intersect(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_intersection, A, B); } bool does_self_intersect(const CGALMesh &mesh) { return CGALProc::does_self_intersect(mesh.m); } // BBS void segment(CGALMesh& src, std::vector& dst, double smoothing_alpha = 0.5, int segment_number=5) { typedef boost::graph_traits<_EpicMesh>::face_descriptor face_descriptor; typedef _EpicMesh::Property_map Facet_double_map; typedef CGAL::Face_filtered_graph<_EpicMesh> Filtered_graph; _EpicMesh mesh = src.m; Facet_double_map sdf_property_map; sdf_property_map = mesh.add_property_map("f:sdf").first; CGAL::sdf_values(mesh, sdf_property_map); // create a property-map for segment-ids typedef _EpicMesh::Property_map Facet_int_map; Facet_int_map segment_property_map = mesh.add_property_map("f:sid").first;; // segment the mesh using default parameters for number of levels, and smoothing lambda // Any other scalar values can be used instead of using SDF values computed using the CGAL function std::size_t number_of_segments = CGAL::segmentation_from_sdf_values(mesh, sdf_property_map, segment_property_map, segment_number, smoothing_alpha); //print area of each segment and then put it in a Mesh and print it in an OFF file Filtered_graph segment_mesh(mesh); _EpicMesh mesh_merged; for (std::size_t id = 0; id < number_of_segments; ++id) { segment_mesh.set_selected_faces(id, segment_property_map); //std::cout << "Segment " << id << "'s area is : " << CGAL::Polygon_mesh_processing::area(segment_mesh) << std::endl; _EpicMesh out; CGAL::copy_face_graph(segment_mesh, out); // save_CGALMesh("out.off", out); // fill holes typedef boost::graph_traits<_EpicMesh>::halfedge_descriptor halfedge_descriptor; typedef boost::graph_traits<_EpicMesh>::vertex_descriptor vertex_descriptor; std::vector border_cycles; CGAL::Polygon_mesh_processing::extract_boundary_cycles(out, std::back_inserter(border_cycles)); for (halfedge_descriptor h : border_cycles) { std::vector patch_facets; #if 0 std::vector patch_vertices; CGAL::Polygon_mesh_processing::triangulate_and_refine_hole(out, h, std::back_inserter(patch_facets), std::back_inserter(patch_vertices)); std::cout << "* Number of facets in constructed patch: " << patch_facets.size() << std::endl; std::cout << " Number of vertices in constructed patch: " << patch_vertices.size() << std::endl; #else CGAL::Polygon_mesh_processing::triangulate_hole(out, h, std::back_inserter(patch_facets)); #endif } //if (id > 2) { // mesh_merged.join(out); //} //else { dst.emplace_back(std::move(CGALMesh(out))); } } //if (mesh_merged.is_empty() == false) { // CGAL::Polygon_mesh_processing::stitch_borders(mesh_merged); // dst.emplace_back(std::move(CGALMesh(mesh_merged))); //} } std::vector segment(const TriangleMesh& src, double smoothing_alpha, int segment_number) { CGALMesh in_cgal_mesh; MeshBoolean::cgal::triangle_mesh_to_cgal(src, in_cgal_mesh.m); std::vector out_cgal_meshes; segment(in_cgal_mesh, out_cgal_meshes, smoothing_alpha, segment_number); std::vector out_meshes; for (auto& outf_cgal_mesh: out_cgal_meshes) { out_meshes.emplace_back(std::move(cgal_to_triangle_mesh(outf_cgal_mesh.m))); } return out_meshes; } void merge(std::vector<_EpicMesh>& srcs, _EpicMesh& dst) { _EpicMesh mesh_merged; for (size_t i = 0; i < srcs.size(); i++) { mesh_merged.join(srcs[i]); } if (mesh_merged.is_empty() == false) { CGAL::Polygon_mesh_processing::stitch_borders(mesh_merged); dst = std::move(mesh_merged); } } TriangleMesh merge(std::vector meshes) { std::vector<_EpicMesh> srcs(meshes.size()); for (size_t i = 0; i < meshes.size(); i++) { MeshBoolean::cgal::triangle_mesh_to_cgal(meshes[i], srcs[i]); } _EpicMesh dst; merge(srcs, dst); return cgal_to_triangle_mesh(dst); } template void _mesh_boolean_do(Op &&op, indexed_triangle_set &A, const indexed_triangle_set &B) { CGALMesh meshA; CGALMesh meshB; triangle_mesh_to_cgal(A.vertices, A.indices, meshA.m); triangle_mesh_to_cgal(B.vertices, B.indices, meshB.m); _cgal_do(op, meshA, meshB); A = cgal_to_indexed_triangle_set(meshA.m); } template void _mesh_boolean_do(Op &&op, TriangleMesh &A, const TriangleMesh &B) { CGALMesh meshA; CGALMesh meshB; triangle_mesh_to_cgal(A.its.vertices, A.its.indices, meshA.m); triangle_mesh_to_cgal(B.its.vertices, B.its.indices, meshB.m); _cgal_do(op, meshA, meshB); A = cgal_to_triangle_mesh(meshA); } void minus(TriangleMesh &A, const TriangleMesh &B) { _mesh_boolean_do(_cgal_diff, A, B); } void plus(TriangleMesh &A, const TriangleMesh &B) { _mesh_boolean_do(_cgal_union, A, B); } void intersect(TriangleMesh &A, const TriangleMesh &B) { _mesh_boolean_do(_cgal_intersection, A, B); } void minus(indexed_triangle_set &A, const indexed_triangle_set &B) { _mesh_boolean_do(_cgal_diff, A, B); } void plus(indexed_triangle_set &A, const indexed_triangle_set &B) { _mesh_boolean_do(_cgal_union, A, B); } void intersect(indexed_triangle_set &A, const indexed_triangle_set &B) { _mesh_boolean_do(_cgal_intersection, A, B); } bool does_self_intersect(const TriangleMesh &mesh) { CGALMesh cgalm; triangle_mesh_to_cgal(mesh.its.vertices, mesh.its.indices, cgalm.m); return CGALProc::does_self_intersect(cgalm.m); } void CGALMeshDeleter::operator()(CGALMesh *ptr) { delete ptr; } bool does_bound_a_volume(const CGALMesh &mesh) { return CGAL::is_closed(mesh.m) && CGALProc::does_bound_a_volume(mesh.m); } bool empty(const CGALMesh &mesh) { return mesh.m.is_empty(); } CGALMeshPtr clone(const CGALMesh &m) { return CGALMeshPtr{new CGALMesh{m}}; } } // namespace cgal namespace mcut { /* BBS: MusangKing * mcut mesh array format for Boolean Opts calculation */ struct McutMesh { // variables for mesh data in a format suited for mcut std::vector faceSizesArray; std::vector faceIndicesArray; std::vector vertexCoordsArray; }; void McutMeshDeleter::operator()(McutMesh *ptr) { delete ptr; } bool empty(const McutMesh &mesh) { return mesh.vertexCoordsArray.empty() || mesh.faceIndicesArray.empty(); } void triangle_mesh_to_mcut(const TriangleMesh &src_mesh, McutMesh &srcMesh, const Transform3d &src_nm = Transform3d::Identity()) { // vertices precision convention and copy srcMesh.vertexCoordsArray.reserve(src_mesh.its.vertices.size() * 3); for (int i = 0; i < src_mesh.its.vertices.size(); ++i) { const Vec3d v = src_nm * src_mesh.its.vertices[i].cast(); srcMesh.vertexCoordsArray.push_back(v[0]); srcMesh.vertexCoordsArray.push_back(v[1]); srcMesh.vertexCoordsArray.push_back(v[2]); } // faces copy srcMesh.faceIndicesArray.reserve(src_mesh.its.indices.size() * 3); srcMesh.faceSizesArray.reserve(src_mesh.its.indices.size()); for (int i = 0; i < src_mesh.its.indices.size(); ++i) { const int &f0 = src_mesh.its.indices[i][0]; const int &f1 = src_mesh.its.indices[i][1]; const int &f2 = src_mesh.its.indices[i][2]; srcMesh.faceIndicesArray.push_back(f0); srcMesh.faceIndicesArray.push_back(f1); srcMesh.faceIndicesArray.push_back(f2); srcMesh.faceSizesArray.push_back((uint32_t) 3); } } McutMeshPtr triangle_mesh_to_mcut(const indexed_triangle_set &M) { std::unique_ptr out(new McutMesh{}); TriangleMesh trimesh(M); triangle_mesh_to_mcut(trimesh, *out.get()); return out; } TriangleMesh mcut_to_triangle_mesh(const McutMesh &mcutmesh) { uint32_t ccVertexCount = mcutmesh.vertexCoordsArray.size() / 3; auto &ccVertices = mcutmesh.vertexCoordsArray; auto &ccFaceIndices = mcutmesh.faceIndicesArray; auto &faceSizes = mcutmesh.faceSizesArray; uint32_t ccFaceCount = faceSizes.size(); // rearrange vertices/faces and save into result mesh std::vector vertices(ccVertexCount); for (uint32_t i = 0; i < ccVertexCount; i++) { vertices[i][0] = (float) ccVertices[(uint64_t) i * 3 + 0]; vertices[i][1] = (float) ccVertices[(uint64_t) i * 3 + 1]; vertices[i][2] = (float) ccVertices[(uint64_t) i * 3 + 2]; } // output faces int faceVertexOffsetBase = 0; // for each face in CC std::vector faces(ccFaceCount); for (uint32_t f = 0; f < ccFaceCount; ++f) { int faceSize = faceSizes.at(f); // for each vertex in face for (int v = 0; v < faceSize; v++) { faces[f][v] = ccFaceIndices[(uint64_t) faceVertexOffsetBase + v]; } faceVertexOffsetBase += faceSize; } TriangleMesh out(vertices, faces); return out; } void merge_mcut_meshes(McutMesh& src, const McutMesh& cut) { indexed_triangle_set all_its; TriangleMesh tri_src = mcut_to_triangle_mesh(src); TriangleMesh tri_cut = mcut_to_triangle_mesh(cut); its_merge(all_its, tri_src.its); its_merge(all_its, tri_cut.its); src = *triangle_mesh_to_mcut(all_its); } MCAPI_ATTR void MCAPI_CALL mcDebugOutput(McDebugSource source, McDebugType type, unsigned int id, McDebugSeverity severity, size_t length, const char* message, const void* userParam) { BOOST_LOG_TRIVIAL(debug)< booleanOpts = { {"A_NOT_B", MC_DISPATCH_FILTER_FRAGMENT_SEALING_INSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_ABOVE}, {"B_NOT_A", MC_DISPATCH_FILTER_FRAGMENT_SEALING_OUTSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_BELOW}, {"UNION", MC_DISPATCH_FILTER_FRAGMENT_SEALING_OUTSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_ABOVE}, {"INTERSECTION", MC_DISPATCH_FILTER_FRAGMENT_SEALING_INSIDE | MC_DISPATCH_FILTER_FRAGMENT_LOCATION_BELOW}, }; std::map::const_iterator it = booleanOpts.find(boolean_opts); McFlags boolOpFlags = it->second; if (srcMesh.vertexCoordsArray.empty() && (boolean_opts == "UNION" || boolean_opts == "B_NOT_A")) { srcMesh = cutMesh; mcReleaseContext(context); return true; } err = mcDispatch(context, MC_DISPATCH_VERTEX_ARRAY_DOUBLE | // vertices are in array of doubles MC_DISPATCH_ENFORCE_GENERAL_POSITION | // perturb if necessary boolOpFlags, // filter flags which specify the type of output we want // source mesh reinterpret_cast(srcMesh.vertexCoordsArray.data()), reinterpret_cast(srcMesh.faceIndicesArray.data()), srcMesh.faceSizesArray.data(), static_cast(srcMesh.vertexCoordsArray.size() / 3), static_cast(srcMesh.faceSizesArray.size()), // cut mesh reinterpret_cast(cutMesh.vertexCoordsArray.data()), cutMesh.faceIndicesArray.data(), cutMesh.faceSizesArray.data(), static_cast(cutMesh.vertexCoordsArray.size() / 3), static_cast(cutMesh.faceSizesArray.size())); if (err != MC_NO_ERROR) { BOOST_LOG_TRIVIAL(debug) << "MCUT mcDispatch fails! err=" << err; mcReleaseContext(context); if (boolean_opts == "UNION") { merge_mcut_meshes(srcMesh, cutMesh); return true; } return false; } // query the number of available connected component uint32_t numConnComps; err = mcGetConnectedComponents(context, MC_CONNECTED_COMPONENT_TYPE_FRAGMENT, 0, NULL, &numConnComps); if (err != MC_NO_ERROR || numConnComps==0) { BOOST_LOG_TRIVIAL(debug) << "MCUT mcGetConnectedComponents fails! err=" << err << ", numConnComps" << numConnComps; mcReleaseContext(context); if (numConnComps == 0 && boolean_opts == "UNION") { merge_mcut_meshes(srcMesh, cutMesh); return true; } return false; } std::vector connectedComponents(numConnComps, MC_NULL_HANDLE); err = mcGetConnectedComponents(context, MC_CONNECTED_COMPONENT_TYPE_FRAGMENT, (uint32_t) connectedComponents.size(), connectedComponents.data(), NULL); McutMesh outMesh; int N_vertices = 0; // traversal of all connected components for (int n = 0; n < numConnComps; ++n) { // query the data of each connected component from MCUT McConnectedComponent connComp = connectedComponents[n]; // query the vertices McSize numBytes = 0; err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_VERTEX_DOUBLE, 0, NULL, &numBytes); uint32_t ccVertexCount = (uint32_t) (numBytes / (sizeof(double) * 3)); std::vector ccVertices((uint64_t) ccVertexCount * 3u, 0); err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_VERTEX_DOUBLE, numBytes, (void *) ccVertices.data(), NULL); // query the faces numBytes = 0; err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FACE_TRIANGULATION, 0, NULL, &numBytes); std::vector ccFaceIndices(numBytes / sizeof(uint32_t), 0); err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FACE_TRIANGULATION, numBytes, ccFaceIndices.data(), NULL); std::vector faceSizes(ccFaceIndices.size() / 3, 3); const uint32_t ccFaceCount = static_cast(faceSizes.size()); // Here we show, how to know when connected components, pertain particular boolean operations. McPatchLocation patchLocation = (McPatchLocation) 0; err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_PATCH_LOCATION, sizeof(McPatchLocation), &patchLocation, NULL); McFragmentLocation fragmentLocation = (McFragmentLocation) 0; err = mcGetConnectedComponentData(context, connComp, MC_CONNECTED_COMPONENT_DATA_FRAGMENT_LOCATION, sizeof(McFragmentLocation), &fragmentLocation, NULL); outMesh.vertexCoordsArray.insert(outMesh.vertexCoordsArray.end(), ccVertices.begin(), ccVertices.end()); // add offset to face index for (size_t i = 0; i < ccFaceIndices.size(); i++) { ccFaceIndices[i] += N_vertices; } int faceVertexOffsetBase = 0; // for each face in CC std::vector faces(ccFaceCount); for (uint32_t f = 0; f < ccFaceCount; ++f) { bool reverseWindingOrder = (fragmentLocation == MC_FRAGMENT_LOCATION_BELOW) && (patchLocation == MC_PATCH_LOCATION_OUTSIDE); int faceSize = faceSizes.at(f); if (reverseWindingOrder) { std::vector faceIndex(faceSize); // for each vertex in face for (int v = faceSize - 1; v >= 0; v--) { faceIndex[v] = ccFaceIndices[(uint64_t) faceVertexOffsetBase + v]; } std::copy(faceIndex.begin(), faceIndex.end(), ccFaceIndices.begin() + faceVertexOffsetBase); } faceVertexOffsetBase += faceSize; } outMesh.faceIndicesArray.insert(outMesh.faceIndicesArray.end(), ccFaceIndices.begin(), ccFaceIndices.end()); outMesh.faceSizesArray.insert(outMesh.faceSizesArray.end(), faceSizes.begin(), faceSizes.end()); N_vertices += ccVertexCount; } // free connected component data err = mcReleaseConnectedComponents(context, 0, NULL); // destroy context err = mcReleaseContext(context); srcMesh = outMesh; return true; } void do_boolean(McutMesh& srcMesh, const McutMesh& cutMesh, const std::string& boolean_opts) { TriangleMesh tri_src = mcut_to_triangle_mesh(srcMesh); std::vector src_parts = its_split(tri_src.its); TriangleMesh tri_cut = mcut_to_triangle_mesh(cutMesh); std::vector cut_parts = its_split(tri_cut.its); if (src_parts.empty() && boolean_opts == "UNION") { srcMesh = cutMesh; return; } if(cut_parts.empty()) return; // when src mesh has multiple connected components, mcut refuses to work. // But we can force it to work by spliting the src mesh into disconnected components, // and do booleans seperately, then merge all the results. indexed_triangle_set all_its; if (boolean_opts == "UNION" || boolean_opts == "A_NOT_B") { for (size_t i = 0; i < src_parts.size(); i++) { auto src_part = triangle_mesh_to_mcut(src_parts[i]); for (size_t j = 0; j < cut_parts.size(); j++) { auto cut_part = triangle_mesh_to_mcut(cut_parts[j]); do_boolean_single(*src_part, *cut_part, boolean_opts); } TriangleMesh tri_part = mcut_to_triangle_mesh(*src_part); its_merge(all_its, tri_part.its); } } else if (boolean_opts == "INTERSECTION") { for (size_t i = 0; i < src_parts.size(); i++) { for (size_t j = 0; j < cut_parts.size(); j++) { auto src_part = triangle_mesh_to_mcut(src_parts[i]); auto cut_part = triangle_mesh_to_mcut(cut_parts[j]); bool success = do_boolean_single(*src_part, *cut_part, boolean_opts); if (success) { TriangleMesh tri_part = mcut_to_triangle_mesh(*src_part); its_merge(all_its, tri_part.its); } } } } srcMesh = *triangle_mesh_to_mcut(all_its); } void make_boolean(const TriangleMesh &src_mesh, const TriangleMesh &cut_mesh, std::vector &dst_mesh, const std::string &boolean_opts) { McutMesh srcMesh, cutMesh; triangle_mesh_to_mcut(src_mesh, srcMesh); triangle_mesh_to_mcut(cut_mesh, cutMesh); //dst_mesh = make_boolean(srcMesh, cutMesh, boolean_opts); do_boolean(srcMesh, cutMesh, boolean_opts); TriangleMesh tri_src = mcut_to_triangle_mesh(srcMesh); if (!tri_src.empty()) dst_mesh.push_back(std::move(tri_src)); } } // namespace mcut } // namespace MeshBoolean } // namespace Slic3r