#pragma once #include #include "../Point.hpp" #include "../libslic3r.h" #include "../Print.hpp" #include "../BoundingBox.hpp" #include "../Utils.hpp" #include "../Slicing.hpp" // SlicingParams #include "TreeModelVolumes.hpp" #include "SupportLayer.hpp" #include "SupportParameters.hpp" namespace Slic3r { namespace TreeSupport3D { using LayerIndex = int; enum class InterfacePreference { InterfaceAreaOverwritesSupport, SupportAreaOverwritesInterface, InterfaceLinesOverwriteSupport, SupportLinesOverwriteInterface, Nothing }; struct TreeSupportMeshGroupSettings { TreeSupportMeshGroupSettings() = default; explicit TreeSupportMeshGroupSettings(const PrintObject &print_object) { const PrintConfig &print_config = print_object.print()->config(); const PrintObjectConfig &config = print_object.config(); const SlicingParameters &slicing_params = print_object.slicing_parameters(); // const std::vector printing_extruders = print_object.object_extruders(); // Support must be enabled and set to Tree style. //assert(config.support_material); //assert(config.support_material_style == smsTree || config.support_material_style == smsOrganic); // Calculate maximum external perimeter width over all printing regions, taking into account the default layer height. coordf_t external_perimeter_width = 0.; for (size_t region_id = 0; region_id < print_object.num_printing_regions(); ++ region_id) { const PrintRegion ®ion = print_object.printing_region(region_id); external_perimeter_width = std::max(external_perimeter_width, region.flow(print_object, frExternalPerimeter, config.layer_height).width()); } this->layer_height = scaled(config.layer_height.value); this->resolution = scaled(print_config.resolution.value); // Arache feature this->min_feature_size = scaled(config.min_feature_size.value); // +1 makes the threshold inclusive this->support_angle = 0.5 * M_PI - std::clamp((config.support_threshold_angle + 1) * M_PI / 180., 0., 0.5 * M_PI); this->support_line_width = support_material_flow(&print_object, config.layer_height).scaled_width(); this->support_roof_line_width = support_material_interface_flow(&print_object, config.layer_height).scaled_width(); //FIXME add it to SlicingParameters and reuse in both tree and normal supports? this->support_bottom_enable = config.support_interface_top_layers.value > 0 && config.support_interface_bottom_layers.value != 0; this->support_bottom_height = this->support_bottom_enable ? (config.support_interface_bottom_layers.value > 0 ? config.support_interface_bottom_layers.value : config.support_interface_top_layers.value) * this->layer_height : 0; this->support_material_buildplate_only = config.support_on_build_plate_only; this->support_xy_distance = scaled(config.support_object_xy_distance.value); this->support_xy_distance_1st_layer = scaled(config.support_object_first_layer_gap.value); // Separation of interfaces, it is likely smaller than support_xy_distance. this->support_xy_distance_overhang = std::min(this->support_xy_distance, scaled(0.5 * external_perimeter_width)); this->support_top_distance = scaled(slicing_params.gap_support_object); this->support_bottom_distance = scaled(slicing_params.gap_object_support); this->support_roof_enable = config.support_interface_top_layers.value > 0; this->support_roof_layers = config.support_interface_top_layers.value; this->support_floor_enable = config.support_interface_bottom_layers.value > 0; this->support_floor_layers = config.support_interface_bottom_layers.value; this->support_roof_pattern = config.support_interface_pattern; this->support_pattern = config.support_base_pattern; this->support_line_spacing = scaled(config.support_base_pattern_spacing.value); this->support_wall_count = std::max(1, config.tree_support_wall_count.value); // at least 1 wall for organic tree support this->support_roof_line_distance = scaled(config.support_interface_spacing.value) + this->support_roof_line_width; double support_tree_angle_slow = 25;// TODO add a setting? double support_tree_branch_diameter_angle = 5; // TODO add a setting? double tree_support_tip_diameter = 0.8; this->support_tree_angle = std::clamp(config.tree_support_branch_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON); this->support_tree_angle_slow = std::clamp(support_tree_angle_slow * M_PI / 180., 0., this->support_tree_angle - EPSILON); this->support_tree_branch_diameter = scaled(config.tree_support_branch_diameter.value); this->support_tree_branch_diameter_angle = std::clamp(support_tree_branch_diameter_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON); this->support_tree_top_rate = 30; // percent // this->support_tree_tip_diameter = this->support_line_width; this->support_tree_tip_diameter = std::clamp(scaled(tree_support_tip_diameter), 0, this->support_tree_branch_diameter); } /*********************************************************************/ /* Print parameters, not support specific: */ /*********************************************************************/ coord_t layer_height { scaled(0.15) }; // Maximum Deviation (meshfix_maximum_deviation) // The maximum deviation allowed when reducing the resolution for the Maximum Resolution setting. If you increase this, // the print will be less accurate, but the g-code will be smaller. Maximum Deviation is a limit for Maximum Resolution, // so if the two conflict the Maximum Deviation will always be held true. coord_t resolution { scaled(0.025) }; // Minimum Feature Size (aka minimum line width) - Arachne specific // Minimum thickness of thin features. Model features that are thinner than this value will not be printed, while features thicker // than the Minimum Feature Size will be widened to the Minimum Wall Line Width. coord_t min_feature_size { scaled(0.1) }; /*********************************************************************/ /* General support parameters: */ /*********************************************************************/ // Support Overhang Angle // The minimum angle of overhangs for which support is added. At a value of 0° all overhangs are supported, 90° will not provide any support. double support_angle { 50. * M_PI / 180. }; // Support Line Width // Width of a single support structure line. coord_t support_line_width { scaled(0.4) }; // Support Roof Line Width: Width of a single support roof line. coord_t support_roof_line_width { scaled(0.4) }; // Enable Support Floor (aka bottom interfaces) // Generate a dense slab of material between the bottom of the support and the model. This will create a skin between the model and support. bool support_bottom_enable { false }; // Support Floor Thickness // The thickness of the support floors. This controls the number of dense layers that are printed on top of places of a model on which support rests. coord_t support_bottom_height { scaled(1.) }; bool support_material_buildplate_only { false }; // Support X/Y Distance // Distance of the support structure from the print in the X/Y directions. // minimum: 0, maximum warning: 1.5 * machine_nozzle_tip_outer_diameter coord_t support_xy_distance { scaled(0.7) }; coord_t support_xy_distance_1st_layer { scaled(0.7) }; // Minimum Support X/Y Distance // Distance of the support structure from the overhang in the X/Y directions. // minimum_value: 0, minimum warning": support_xy_distance - support_line_width * 2, maximum warning: support_xy_distance coord_t support_xy_distance_overhang { scaled(0.2) }; // Support Top Distance // Distance from the top of the support to the print. coord_t support_top_distance { scaled(0.1) }; // Support Bottom Distance // Distance from the print to the bottom of the support. coord_t support_bottom_distance { scaled(0.1) }; //FIXME likely not needed, optimization for clipping of interface layers // When checking where there's model above and below the support, take steps of the given height. Lower values will slice slower, while higher values // may cause normal support to be printed in some places where there should have been support interface. coord_t support_interface_skip_height { scaled(0.3) }; // Support Infill Line Directions // A list of integer line directions to use. Elements from the list are used sequentially as the layers progress and when the end // of the list is reached, it starts at the beginning again. The list items are separated by commas and the whole list is contained // in square brackets. Default is an empty list which means use the default angle 0 degrees. // std::vector support_infill_angles {}; // Enable Support Roof // Generate a dense slab of material between the top of support and the model. This will create a skin between the model and support. bool support_roof_enable { false }; // Support Roof Thickness // The thickness of the support roofs. This controls the amount of dense layers at the top of the support on which the model rests. coord_t support_roof_layers{ 2 }; bool support_floor_enable{ false }; coord_t support_floor_layers{ 2 }; // Minimum Support Roof Area // Minimum area size for the roofs of the support. Polygons which have an area smaller than this value will be printed as normal support. double minimum_roof_area { scaled(scaled(1.)) }; // A list of integer line directions to use. Elements from the list are used sequentially as the layers progress // and when the end of the list is reached, it starts at the beginning again. The list items are separated // by commas and the whole list is contained in square brackets. Default is an empty list which means // use the default angles (alternates between 45 and 135 degrees if interfaces are quite thick or 90 degrees). std::vector support_roof_angles {}; // Support Roof Pattern (aka top interface) // The pattern with which the roofs of the support are printed. SupportMaterialInterfacePattern support_roof_pattern { smipAuto }; // Support Pattern // The pattern of the support structures of the print. The different options available result in sturdy or easy to remove support. SupportMaterialPattern support_pattern { smpRectilinear }; // Support Line Distance // Distance between the printed support structure lines. This setting is calculated by the support density. coord_t support_line_spacing { scaled(2.66 - 0.4) }; // Support Floor Horizontal Expansion // Amount of offset applied to the floors of the support. coord_t support_bottom_offset { scaled(0.) }; // Support Wall Line Count // The number of walls with which to surround support infill. Adding a wall can make support print more reliably // and can support overhangs better, but increases print time and material used. // tree: 1, zig-zag: 0, concentric: 1 int support_wall_count { 1 }; // Support Roof Line Distance // Distance between the printed support roof lines. This setting is calculated by the Support Roof Density, but can be adjusted separately. coord_t support_roof_line_distance { scaled(0.4) }; // Minimum Support Area // Minimum area size for support polygons. Polygons which have an area smaller than this value will not be generated. coord_t minimum_support_area { scaled(0.) }; // Minimum Support Floor Area // Minimum area size for the floors of the support. Polygons which have an area smaller than this value will be printed as normal support. coord_t minimum_bottom_area { scaled(1.0) }; // Support Horizontal Expansion // Amount of offset applied to all support polygons in each layer. Positive values can smooth out the support areas and result in more sturdy support. coord_t support_offset { scaled(0.) }; /*********************************************************************/ /* Parameters for the Cura tree supports implementation: */ /*********************************************************************/ // Tree Support Maximum Branch Angle // The maximum angle of the branches, when the branches have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle to be able to have more reach. // minimum: 0, minimum warning: 20, maximum: 89, maximum warning": 85 double support_tree_angle { 60. * M_PI / 180. }; // Tree Support Branch Diameter Angle // The angle of the branches' diameter as they gradually become thicker towards the bottom. An angle of 0 will cause the branches to have uniform thickness over their length. // A bit of an angle can increase stability of the tree support. // minimum: 0, maximum: 89.9999, maximum warning: 15 double support_tree_branch_diameter_angle { 5. * M_PI / 180. }; // Tree Support Branch Distance // How far apart the branches need to be when they touch the model. Making this distance small will cause // the tree support to touch the model at more points, causing better overhang but making support harder to remove. coord_t support_tree_branch_distance { scaled(1.) }; // Tree Support Branch Diameter // The diameter of the thinnest branches of tree support. Thicker branches are more sturdy. Branches towards the base will be thicker than this. // minimum: 0.001, minimum warning: support_line_width * 2 coord_t support_tree_branch_diameter { scaled(2.) }; /*********************************************************************/ /* Parameters new to the Thomas Rahm's tree supports implementation: */ /*********************************************************************/ // Tree Support Preferred Branch Angle // The preferred angle of the branches, when they do not have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle for branches to merge faster. // minimum: 0, minimum warning: 10, maximum: support_tree_angle, maximum warning: support_tree_angle-1 double support_tree_angle_slow { 50. * M_PI / 180. }; // Tree Support Diameter Increase To Model // The most the diameter of a branch that has to connect to the model may increase by merging with branches that could reach the buildplate. // Increasing this reduces print time, but increases the area of support that rests on model // minimum: 0 coord_t support_tree_max_diameter_increase_by_merges_when_support_to_model { scaled(1.0) }; // Tree Support Minimum Height To Model // How tall a branch has to be if it is placed on the model. Prevents small blobs of support. This setting is ignored when a branch is supporting a support roof. // minimum: 0, maximum warning: 5 coord_t support_tree_min_height_to_model { scaled(1.0) }; // Tree Support Inital Layer Diameter // Diameter every branch tries to achieve when reaching the buildplate. Improves bed adhesion. // minimum: 0, maximum warning: 20 coord_t support_tree_bp_diameter { scaled(7.5) }; // Tree Support Branch Density // Adjusts the density of the support structure used to generate the tips of the branches. A higher value results in better overhangs, // but the supports are harder to remove. Use Support Roof for very high values or ensure support density is similarly high at the top. // 5%-35% double support_tree_top_rate { 15. }; // Tree Support Tip Diameter // The diameter of the top of the tip of the branches of tree support. // minimum: min_wall_line_width, minimum warning: min_wall_line_width+0.05, maximum_value: support_tree_branch_diameter, value: support_line_width coord_t support_tree_tip_diameter { scaled(0.4) }; // Support Interface Priority // How support interface and support will interact when they overlap. Currently only implemented for support roof. //enum support_interface_priority { support_lines_overwrite_interface_area }; }; /*! * \brief This struct contains settings used in the tree support. Thanks to this most functions do not need to know of meshes etc. Also makes the code shorter. */ struct TreeSupportSettings { TreeSupportSettings() = default; // required for the definition of the config variable in the TreeSupportGenerator class. explicit TreeSupportSettings(const TreeSupportMeshGroupSettings& mesh_group_settings, const SlicingParameters &slicing_params) : angle(mesh_group_settings.support_tree_angle), angle_slow(mesh_group_settings.support_tree_angle_slow), support_line_width(mesh_group_settings.support_line_width), layer_height(mesh_group_settings.layer_height), branch_radius(mesh_group_settings.support_tree_branch_diameter / 2), min_radius(mesh_group_settings.support_tree_tip_diameter / 2), // The actual radius is 50 microns larger as the resulting branches will be increased by 50 microns to avoid rounding errors effectively increasing the xydistance maximum_move_distance((angle < M_PI / 2.) ? (coord_t)(tan(angle) * layer_height) : std::numeric_limits::max()), maximum_move_distance_slow((angle_slow < M_PI / 2.) ? (coord_t)(tan(angle_slow) * layer_height) : std::numeric_limits::max()), support_bottom_layers(mesh_group_settings.support_bottom_enable ? (mesh_group_settings.support_bottom_height + layer_height / 2) / layer_height : 0), tip_layers(std::max((branch_radius - min_radius) / (support_line_width / 3), branch_radius / layer_height)), // Ensure lines always stack nicely even if layer height is large branch_radius_increase_per_layer(tan(mesh_group_settings.support_tree_branch_diameter_angle) * layer_height), max_to_model_radius_increase(mesh_group_settings.support_tree_max_diameter_increase_by_merges_when_support_to_model / 2), min_dtt_to_model(round_up_divide(mesh_group_settings.support_tree_min_height_to_model, layer_height)), increase_radius_until_radius(mesh_group_settings.support_tree_branch_diameter / 2), increase_radius_until_layer(increase_radius_until_radius <= branch_radius ? tip_layers * (increase_radius_until_radius / branch_radius) : (increase_radius_until_radius - branch_radius) / branch_radius_increase_per_layer), support_rests_on_model(! mesh_group_settings.support_material_buildplate_only), xy_distance(mesh_group_settings.support_xy_distance), xy_min_distance(std::min(mesh_group_settings.support_xy_distance, mesh_group_settings.support_xy_distance_overhang)), bp_radius(mesh_group_settings.support_tree_bp_diameter / 2), bp_radius_increase_per_layer(std::min(tan(0.7) * layer_height, 0.5 * support_line_width)), z_distance_bottom_layers(size_t(round(double(mesh_group_settings.support_bottom_distance) / double(layer_height)))), z_distance_top_layers(size_t(round(double(mesh_group_settings.support_top_distance) / double(layer_height)))), // support_infill_angles(mesh_group_settings.support_infill_angles), support_roof_angles(mesh_group_settings.support_roof_angles), roof_pattern(mesh_group_settings.support_roof_pattern), support_pattern(mesh_group_settings.support_pattern), support_roof_line_width(mesh_group_settings.support_roof_line_width), support_line_spacing(mesh_group_settings.support_line_spacing), support_bottom_offset(mesh_group_settings.support_bottom_offset), support_wall_count(mesh_group_settings.support_wall_count), resolution(mesh_group_settings.resolution), support_roof_line_distance(mesh_group_settings.support_roof_line_distance), // in the end the actual infill has to be calculated to subtract interface from support areas according to interface_preference. settings(mesh_group_settings), min_feature_size(mesh_group_settings.min_feature_size) { // At least one tip layer must be defined. assert(tip_layers > 0); layer_start_bp_radius = (bp_radius - branch_radius) / bp_radius_increase_per_layer; if (TreeSupportSettings::soluble) { // safeOffsetInc can only work in steps of the size xy_min_distance in the worst case => xy_min_distance has to be a bit larger than 0 in this worst case and should be large enough for performance to not suffer extremely // When for all meshes the z bottom and top distance is more than one layer though the worst case is xy_min_distance + min_feature_size // This is not the best solution, but the only one to ensure areas can not lag though walls at high maximum_move_distance. xy_min_distance = std::max(xy_min_distance, scaled(0.1)); xy_distance = std::max(xy_distance, xy_min_distance); } // const std::unordered_map interface_map = { { "support_area_overwrite_interface_area", InterfacePreference::SupportAreaOverwritesInterface }, { "interface_area_overwrite_support_area", InterfacePreference::InterfaceAreaOverwritesSupport }, { "support_lines_overwrite_interface_area", InterfacePreference::SupportLinesOverwriteInterface }, { "interface_lines_overwrite_support_area", InterfacePreference::InterfaceLinesOverwriteSupport }, { "nothing", InterfacePreference::Nothing } }; // interface_preference = interface_map.at(mesh_group_settings.get("support_interface_priority")); //FIXME this was the default // interface_preference = InterfacePreference::SupportLinesOverwriteInterface; interface_preference = InterfacePreference::InterfaceAreaOverwritesSupport; if (slicing_params.raft_layers() > 0) { // Fill in raft_layers with the heights of the layers below the first object layer. // First layer double z = slicing_params.first_print_layer_height; this->raft_layers.emplace_back(z); // Raft base layers for (size_t i = 1; i < slicing_params.base_raft_layers; ++ i) { z += slicing_params.base_raft_layer_height; this->raft_layers.emplace_back(z); } // Raft interface layers for (size_t i = 0; i + 1 < slicing_params.interface_raft_layers; ++ i) { z += slicing_params.interface_raft_layer_height; this->raft_layers.emplace_back(z); } // Raft contact layer if (slicing_params.raft_layers() > 1) { z = slicing_params.raft_contact_top_z; this->raft_layers.emplace_back(z); } if (double dist_to_go = slicing_params.object_print_z_min - z; dist_to_go > EPSILON) { // Layers between the raft contacts and bottom of the object. auto nsteps = int(ceil(dist_to_go / slicing_params.max_suport_layer_height)); double step = dist_to_go / nsteps; for (int i = 0; i < nsteps; ++ i) { z += step; this->raft_layers.emplace_back(z); } } } } private: double angle; double angle_slow; std::vector known_z; public: // some static variables dependent on other meshes that are not currently processed. // Has to be static because TreeSupportConfig will be used in TreeModelVolumes as this reduces redundancy. inline static bool soluble = false; /*! * \brief Width of a single line of support. */ coord_t support_line_width; /*! * \brief Height of a single layer */ coord_t layer_height; /*! * \brief Radius of a branch when it has left the tip. */ coord_t branch_radius; /*! * \brief smallest allowed radius, required to ensure that even at DTT 0 every circle will still be printed */ coord_t min_radius; /*! * \brief How far an influence area may move outward every layer at most. */ coord_t maximum_move_distance; /*! * \brief How far every influence area will move outward every layer if possible. */ coord_t maximum_move_distance_slow; /*! * \brief Amount of bottom layers. 0 if disabled. */ size_t support_bottom_layers; /*! * \brief Amount of effectiveDTT increases are required to reach branch radius. */ size_t tip_layers; /*! * \brief Factor by which to increase the branch radius. */ double branch_radius_increase_per_layer; /*! * \brief How much a branch resting on the model may grow in radius by merging with branches that can reach the buildplate. */ coord_t max_to_model_radius_increase; /*! * \brief If smaller (in layers) than that, all branches to model will be deleted */ size_t min_dtt_to_model; /*! * \brief Increase radius in the resulting drawn branches, even if the avoidance does not allow it. Will be cut later to still fit. */ coord_t increase_radius_until_radius; /*! * \brief Same as increase_radius_until_radius, but contains the DTT at which the radius will be reached. */ size_t increase_radius_until_layer; /*! * \brief True if the branches may connect to the model. */ bool support_rests_on_model; /*! * \brief How far should support be from the model. */ coord_t xy_distance; /*! * \brief Radius a branch should have when reaching the buildplate. */ coord_t bp_radius; /*! * \brief The layer index at which an increase in radius may be required to reach the bp_radius. */ LayerIndex layer_start_bp_radius; /*! * \brief Factor by which to increase the branch radius to reach the required bp_radius at layer 0. Note that this radius increase will not happen in the tip, to ensure the tip is structurally sound. */ double bp_radius_increase_per_layer; /*! * \brief minimum xy_distance. Only relevant when Z overrides XY, otherwise equal to xy_distance- */ coord_t xy_min_distance; /*! * \brief Amount of layers distance required the top of the support to the model */ size_t z_distance_top_layers; /*! * \brief Amount of layers distance required from the top of the model to the bottom of a support structure. */ size_t z_distance_bottom_layers; /*! * \brief used for performance optimization at the support floor. Should have no impact on the resulting tree. */ size_t performance_interface_skip_layers; /*! * \brief User specified angles for the support infill. */ // std::vector support_infill_angles; /*! * \brief User specified angles for the support roof infill. */ std::vector support_roof_angles; /*! * \brief Pattern used in the support roof. May contain non relevant data if support roof is disabled. */ SupportMaterialInterfacePattern roof_pattern; /*! * \brief Pattern used in the support infill. */ SupportMaterialPattern support_pattern; /*! * \brief Line width of the support roof. */ coord_t support_roof_line_width; /*! * \brief Distance between support infill lines. */ coord_t support_line_spacing; /*! * \brief Offset applied to the support floor area. */ coord_t support_bottom_offset; /* * \brief Amount of walls the support area will have. */ int support_wall_count; /* * \brief Maximum allowed deviation when simplifying. */ coord_t resolution; /* * \brief Distance between the lines of the roof. */ coord_t support_roof_line_distance; /* * \brief How overlaps of an interface area with a support area should be handled. */ InterfacePreference interface_preference; /* * \brief The infill class wants a settings object. This one will be the correct one for all settings it uses. */ TreeSupportMeshGroupSettings settings; /* * \brief Minimum thickness of any model features. */ coord_t min_feature_size; // Extra raft layers below the object. std::vector raft_layers; public: bool operator==(const TreeSupportSettings& other) const { return branch_radius == other.branch_radius && tip_layers == other.tip_layers && branch_radius_increase_per_layer == other.branch_radius_increase_per_layer && layer_start_bp_radius == other.layer_start_bp_radius && bp_radius == other.bp_radius && bp_radius_increase_per_layer == other.bp_radius_increase_per_layer && min_radius == other.min_radius && xy_min_distance == other.xy_min_distance && xy_distance - xy_min_distance == other.xy_distance - other.xy_min_distance && // if the delta of xy_min_distance and xy_distance is different the collision areas have to be recalculated. support_rests_on_model == other.support_rests_on_model && increase_radius_until_layer == other.increase_radius_until_layer && min_dtt_to_model == other.min_dtt_to_model && max_to_model_radius_increase == other.max_to_model_radius_increase && maximum_move_distance == other.maximum_move_distance && maximum_move_distance_slow == other.maximum_move_distance_slow && z_distance_bottom_layers == other.z_distance_bottom_layers && support_line_width == other.support_line_width && support_line_spacing == other.support_line_spacing && support_roof_line_width == other.support_roof_line_width && // can not be set on a per-mesh basis currently, so code to enable processing different roof line width in the same iteration seems useless. support_bottom_offset == other.support_bottom_offset && support_wall_count == other.support_wall_count && support_pattern == other.support_pattern && roof_pattern == other.roof_pattern && // can not be set on a per-mesh basis currently, so code to enable processing different roof patterns in the same iteration seems useless. support_roof_angles == other.support_roof_angles && //support_infill_angles == other.support_infill_angles && increase_radius_until_radius == other.increase_radius_until_radius && support_bottom_layers == other.support_bottom_layers && layer_height == other.layer_height && z_distance_top_layers == other.z_distance_top_layers && resolution == other.resolution && // Infill generation depends on deviation and resolution. support_roof_line_distance == other.support_roof_line_distance && interface_preference == other.interface_preference && min_feature_size == other.min_feature_size // interface_preference should be identical to ensure the tree will correctly interact with the roof. // The infill class now wants the settings object and reads a lot of settings, and as the infill class is used to calculate support roof lines for interface-preference. Not all of these may be required to be identical, but as I am not sure, better safe than sorry #if 0 && (interface_preference == InterfacePreference::InterfaceAreaOverwritesSupport || interface_preference == InterfacePreference::SupportAreaOverwritesInterface // Perimeter generator parameters || (settings.get("fill_outline_gaps") == other.settings.get("fill_outline_gaps") && settings.get("min_bead_width") == other.settings.get("min_bead_width") && settings.get("wall_transition_angle") == other.settings.get("wall_transition_angle") && settings.get("wall_transition_length") == other.settings.get("wall_transition_length") && settings.get("wall_split_middle_threshold") == other.settings.get("wall_split_middle_threshold") && settings.get("wall_add_middle_threshold") == other.settings.get("wall_add_middle_threshold") && settings.get("wall_distribution_count") == other.settings.get("wall_distribution_count") && settings.get("wall_transition_filter_distance") == other.settings.get("wall_transition_filter_distance") && settings.get("wall_transition_filter_deviation") == other.settings.get("wall_transition_filter_deviation") && settings.get("wall_line_width_x") == other.settings.get("wall_line_width_x") && settings.get("meshfix_maximum_extrusion_area_deviation") == other.settings.get("meshfix_maximum_extrusion_area_deviation")) ) #endif && raft_layers == other.raft_layers ; } /*! * \brief Get the Radius part will have based on numeric values. * \param distance_to_top[in] The effective distance_to_top of the element * \param elephant_foot_increases[in] The elephant_foot_increases of the element. * \return The radius an element with these attributes would have. */ [[nodiscard]] inline coord_t getRadius(size_t distance_to_top, const double elephant_foot_increases = 0) const { return (distance_to_top <= tip_layers ? min_radius + (branch_radius - min_radius) * distance_to_top / tip_layers : // tip branch_radius + // base (distance_to_top - tip_layers) * branch_radius_increase_per_layer) + // gradual increase elephant_foot_increases * (std::max(bp_radius_increase_per_layer - branch_radius_increase_per_layer, 0.0)); } /*! * \brief Get the Radius an element should at least have at a given layer. * \param layer_idx[in] The layer. * \return The radius every element should aim to achieve. */ [[nodiscard]] inline coord_t recommendedMinRadius(LayerIndex layer_idx) const { double num_layers_widened = layer_start_bp_radius - layer_idx; return num_layers_widened > 0 ? branch_radius + num_layers_widened * bp_radius_increase_per_layer : 0; } /*! * \brief Return on which z in microns the layer will be printed. Used only for support infill line generation. * \param layer_idx[in] The layer. * \return The radius every element should aim to achieve. */ [[nodiscard]] inline coord_t getActualZ(LayerIndex layer_idx) { return layer_idx < coord_t(known_z.size()) ? known_z[layer_idx] : (layer_idx - known_z.size()) * layer_height + known_z.size() ? known_z.back() : 0; } /*! * \brief Set the z every Layer is printed at. Required for getActualZ to work * \param z[in] The z every LayerIndex is printed. Vector is used as a map with the index of each element being the corresponding LayerIndex * \return The radius every element should aim to achieve. */ void setActualZ(std::vector& z) { known_z = z; } }; inline void tree_supports_show_error(std::string_view message, bool critical) { // todo Remove! ONLY FOR PUBLIC BETA!! printf("Error: %s, critical: %d\n", message.data(), int(critical)); #ifdef TREE_SUPPORT_SHOW_ERRORS_WIN32 static bool g_showed_critical_error = false; static bool g_showed_performance_warning = false; auto bugtype = std::string(critical ? " This is a critical bug. It may cause missing or malformed branches.\n" : "This bug should only decrease performance.\n"); bool show = (critical && !g_showed_critical_error) || (!critical && !g_showed_performance_warning); (critical ? g_showed_critical_error : g_showed_performance_warning) = true; if (show) MessageBoxA(nullptr, std::string("TreeSupport_2 MOD detected an error while generating the tree support.\nPlease report this back to me with profile and model.\nRevision 5.0\n" + std::string(message) + "\n" + bugtype).c_str(), "Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING); #endif // TREE_SUPPORT_SHOW_ERRORS_WIN32 } inline double layer_z(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const size_t layer_idx) { return layer_idx >= config.raft_layers.size() ? slicing_params.object_print_z_min + slicing_params.first_object_layer_height + (layer_idx - config.raft_layers.size()) * slicing_params.layer_height : config.raft_layers[layer_idx]; } // Lowest collision layer inline LayerIndex layer_idx_ceil(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z) { return LayerIndex(config.raft_layers.size()) + std::max(0, ceil((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height)); } // Highest collision layer inline LayerIndex layer_idx_floor(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z) { return LayerIndex(config.raft_layers.size()) + std::max(0, floor((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height)); } inline SupportGeneratorLayer& layer_initialize( SupportGeneratorLayer &layer_new, const SlicingParameters &slicing_params, const TreeSupportSettings &config, const size_t layer_idx) { layer_new.print_z = layer_z(slicing_params, config, layer_idx); layer_new.bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0; layer_new.height = layer_new.print_z - layer_new.bottom_z; return layer_new; } // Using the std::deque as an allocator. inline SupportGeneratorLayer& layer_allocate_unguarded( SupportGeneratorLayerStorage &layer_storage, SupporLayerType layer_type, const SlicingParameters &slicing_params, const TreeSupportSettings &config, size_t layer_idx) { SupportGeneratorLayer &layer = layer_storage.allocate_unguarded(layer_type); return layer_initialize(layer, slicing_params, config, layer_idx); } inline SupportGeneratorLayer& layer_allocate( SupportGeneratorLayerStorage &layer_storage, SupporLayerType layer_type, const SlicingParameters &slicing_params, const TreeSupportSettings &config, size_t layer_idx) { SupportGeneratorLayer &layer = layer_storage.allocate(layer_type); return layer_initialize(layer, slicing_params, config, layer_idx); } // Used by generate_initial_areas() in parallel by multiple layers. class InterfacePlacer { public: InterfacePlacer( const SlicingParameters &slicing_parameters, const SupportParameters &support_parameters, const TreeSupportSettings &config, SupportGeneratorLayerStorage &layer_storage, SupportGeneratorLayersPtr &top_contacts, SupportGeneratorLayersPtr &top_interfaces, SupportGeneratorLayersPtr &top_base_interfaces) : slicing_parameters(slicing_parameters), support_parameters(support_parameters), config(config), layer_storage(layer_storage), top_contacts(top_contacts), top_interfaces(top_interfaces), top_base_interfaces(top_base_interfaces) {} InterfacePlacer(const InterfacePlacer& rhs) : slicing_parameters(rhs.slicing_parameters), support_parameters(rhs.support_parameters), config(rhs.config), layer_storage(rhs.layer_storage), top_contacts(rhs.top_contacts), top_interfaces(rhs.top_interfaces), top_base_interfaces(rhs.top_base_interfaces) {} const SlicingParameters &slicing_parameters; const SupportParameters &support_parameters; const TreeSupportSettings &config; SupportGeneratorLayersPtr& top_contacts_mutable() { return this->top_contacts; } public: // Insert the contact layer and some of the inteface and base interface layers below. void add_roofs(std::vector &&new_roofs, const size_t insert_layer_idx) { if (! new_roofs.empty()) { std::lock_guard lock(m_mutex_layer_storage); for (size_t idx = 0; idx < new_roofs.size(); ++ idx) if (! new_roofs[idx].empty()) add_roof_unguarded(std::move(new_roofs[idx]), insert_layer_idx - idx, idx); } } void add_roof(Polygons &&new_roof, const size_t insert_layer_idx, const size_t dtt_tip) { std::lock_guard lock(m_mutex_layer_storage); add_roof_unguarded(std::move(new_roof), insert_layer_idx, dtt_tip); } // called by sample_overhang_area() void add_roof_build_plate(Polygons &&overhang_areas, size_t dtt_roof) { std::lock_guard lock(m_mutex_layer_storage); this->add_roof_unguarded(std::move(overhang_areas), 0, std::min(dtt_roof, this->support_parameters.num_top_interface_layers)); } void add_roof_unguarded(Polygons &&new_roofs, const size_t insert_layer_idx, const size_t dtt_roof) { assert(support_parameters.has_top_contacts); assert(dtt_roof <= support_parameters.num_top_interface_layers); SupportGeneratorLayersPtr &layers = dtt_roof == 0 ? this->top_contacts : dtt_roof <= support_parameters.num_top_interface_layers_only() ? this->top_interfaces : this->top_base_interfaces; SupportGeneratorLayer*& l = layers[insert_layer_idx]; if (l == nullptr) l = &layer_allocate_unguarded(layer_storage, dtt_roof == 0 ? SupporLayerType::sltTopContact : SupporLayerType::sltTopInterface, slicing_parameters, config, insert_layer_idx); // will be unioned in finalize_interface_and_support_areas() append(l->polygons, std::move(new_roofs)); } private: // Outputs SupportGeneratorLayerStorage &layer_storage; SupportGeneratorLayersPtr &top_contacts; SupportGeneratorLayersPtr &top_interfaces; SupportGeneratorLayersPtr &top_base_interfaces; // Mutexes, guards std::mutex m_mutex_layer_storage; }; } // namespace TreeSupport3D } // namespace slic3r