/**
* Copyright (c) 2021-2022 Floyd M. Chitalu.
* All rights reserved.
*
* NOTE: This file is licensed under GPL-3.0-or-later (default).
* A commercial license can be purchased from Floyd M. Chitalu.
*
* License details:
*
* (A) GNU General Public License ("GPL"); a copy of which you should have
* recieved with this file.
* - see also:
* (B) Commercial license.
* - email: floyd.m.chitalu@gmail.com
*
* The commercial license options is for users that wish to use MCUT in
* their products for comercial purposes but do not wish to release their
* software products under the GPL license.
*
* Author(s) : Floyd M. Chitalu
*/
#include "mcut/internal/math.h"
#include // std::sort
#include
#include // std::make_tuple std::get<>
double square_root(const double& number)
{
#if !defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
return std::sqrt(number);
#else
arbitrary_precision_number_t out(number);
mpfr_sqrt(out.get_mpfr_handle(), number.get_mpfr_handle(), arbitrary_precision_number_t::get_default_rounding_mode());
return out;
#endif // #if !defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
}
double absolute_value(const double& number)
{
#if !defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
return std::fabs(number);
#else
double out(number);
mpfr_abs(out.get_mpfr_handle(), number.get_mpfr_handle(), arbitrary_precision_number_t::get_default_rounding_mode());
return out;
#endif // #if defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
}
sign_t sign(const double& number)
{
#if !defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
int s = (double(0) < number) - (number < double(0));
sign_t result = sign_t::ZERO;
if (s > 0) {
result = sign_t::POSITIVE;
} else if (s < 0) {
result = sign_t::NEGATIVE;
}
return result;
#else
double out(number);
int s = mpfr_sgn(number.get_mpfr_handle());
sign_t result = sign_t::ZERO;
if (s > 0) {
result = sign_t::POSITIVE;
} else if (s < 0) {
result = sign_t::NEGATIVE;
}
return result;
#endif // #if defined(MCUT_WITH_ARBITRARY_PRECISION_NUMBERS)
}
std::ostream& operator<<(std::ostream& os, const vec3& v)
{
return os << static_cast(v.x()) << ", " << static_cast(v.y()) << ", " << static_cast(v.z());
}
bool operator==(const vec3& a, const vec3& b)
{
return (a.x() == b.x()) && (a.y() == b.y()) && (a.z() == b.z());
}
vec3 cross_product(const vec3& a, const vec3& b)
{
return vec3(
a.y() * b.z() - a.z() * b.y(),
a.z() * b.x() - a.x() * b.z(),
a.x() * b.y() - a.y() * b.x());
}
double orient2d(const vec2& pa, const vec2& pb, const vec2& pc)
{
const double pa_[2] = { static_cast(pa.x()), static_cast(pa.y()) };
const double pb_[2] = { static_cast(pb.x()), static_cast(pb.y()) };
const double pc_[2] = { static_cast(pc.x()), static_cast(pc.y()) };
return ::orient2d(pa_, pb_, pc_); // shewchuk predicate
}
double orient3d(const vec3& pa, const vec3& pb, const vec3& pc,
const vec3& pd)
{
const double pa_[3] = { static_cast(pa.x()), static_cast(pa.y()), static_cast(pa.z()) };
const double pb_[3] = { static_cast(pb.x()), static_cast(pb.y()), static_cast(pb.z()) };
const double pc_[3] = { static_cast(pc.x()), static_cast(pc.y()), static_cast(pc.z()) };
const double pd_[3] = { static_cast(pd.x()), static_cast(pd.y()), static_cast(pd.z()) };
return ::orient3d(pa_, pb_, pc_, pd_); // shewchuk predicate
}
#if 0
void polygon_normal(vec3& normal, const vec3* vertices, const int num_vertices)
{
normal = vec3(0.0);
for (int i = 0; i < num_vertices; ++i) {
normal = normal + cross_product(vertices[i] - vertices[0], vertices[(i + 1) % num_vertices] - vertices[0]);
}
normal = normalize(normal);
}
#endif
int compute_polygon_plane_coefficients(vec3& normal, double& d_coeff,
const vec3* polygon_vertices, const int polygon_vertex_count)
{
// compute polygon normal (http://cs.haifa.ac.il/~gordon/plane.pdf)
normal = vec3(0.0);
for (int i = 0; i < polygon_vertex_count - 1; ++i) {
normal = normal + cross_product(polygon_vertices[i] - polygon_vertices[0], polygon_vertices[(i + 1) % polygon_vertex_count] - polygon_vertices[0]);
}
// In our calculations we need the normal be be of unit length so that the d-coeff
// represents the distance of the plane from the origin
// normal = normalize(normal);
d_coeff = dot_product(polygon_vertices[0], normal);
double largest_component(0.0);
double tmp(0.0);
int largest_component_idx = 0;
for (int i = 0; i < 3; ++i) {
tmp = absolute_value(normal[i]);
if (tmp > largest_component) {
largest_component = tmp;
largest_component_idx = i;
}
}
return largest_component_idx;
}
// Intersect a line segment with a plane
//
// Return values:
// 'p': The segment lies wholly within the plane.
// 'q': The(first) q endpoint is on the plane (but not 'p').
// 'r' : The(second) r endpoint is on the plane (but not 'p').
// '0' : The segment lies strictly to one side or the other of the plane.
// '1': The segment intersects the plane, and none of {p, q, r} hold.
char compute_segment_plane_intersection(vec3& p, const vec3& normal, const double& d_coeff,
const vec3& q, const vec3& r)
{
// vec3 planeNormal;
// double planeDCoeff;
// planeNormalLargestComponent = compute_polygon_plane_coefficients(planeNormal, planeDCoeff, polygonVertices,
// polygonVertexCount);
double num = d_coeff - dot_product(q, normal);
const vec3 rq = (r - q);
double denom = dot_product(rq, normal);
if (denom == double(0.0) /* Segment is parallel to plane.*/) {
if (num == double(0.0)) { // 'q' is on plane.
return 'p'; // The segment lies wholly within the plane
} else {
return '0';
}
}
double t = num / denom;
for (int i = 0; i < 3; ++i) {
p[i] = q[i] + t * (r[i] - q[i]);
}
if ((double(0.0) < t) && (t < double(1.0))) {
return '1'; // The segment intersects the plane, and none of {p, q, r} hold
} else if (num == double(0.0)) // t==0
{
return 'q'; // The (first) q endpoint is on the plane (but not 'p').
} else if (num == denom) // t==1
{
return 'r'; // The (second) r endpoint is on the plane (but not 'p').
} else {
return '0'; // The segment lies strictly to one side or the other of the plane
}
}
bool determine_three_noncollinear_vertices(int& i, int& j, int& k, const std::vector& polygon_vertices,
const vec3& polygon_normal, const int polygon_normal_largest_component)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
MCUT_ASSERT(polygon_vertex_count >= 3);
std::vector x;
project_to_2d(x, polygon_vertices, polygon_normal, polygon_normal_largest_component);
MCUT_ASSERT(x.size() == (size_t)polygon_vertex_count);
/*
NOTE: We cannot just use _any_/the first result of "colinear(x[i], x[j], x[k])" which returns true since
any three points that are _nearly_ colinear (in the limit of floating point precision)
will be found to be not colinear when using the exact predicate "orient2d".
This would have implications "further down the line", where e.g. the three nearly colinear points
are determined to be non-colinear (in the exact sense) but using them to evaluate
operations like segment-plane intersection would then give a false positive.
To overcome this, must find the three vertices of the polygon, which maximise non-colinearity.
NOTE: if the polygon has 3 vertices and they are indeed nearly colinear then answer is determined by the
exact predicate (i.e. i j k = 0 1 2)
*/
// get any three vertices that are not collinear
i = 0;
j = i + 1;
k = j + 1;
std::vector> non_colinear_triplets;
for (; i < polygon_vertex_count; ++i) {
for (; j < polygon_vertex_count; ++j) {
for (; k < polygon_vertex_count; ++k) {
double predRes;
if (!collinear(x[i], x[j], x[k], predRes)) {
non_colinear_triplets.emplace_back(std::make_tuple(i, j, k, predRes));
}
}
}
}
std::sort(non_colinear_triplets.begin(), non_colinear_triplets.end(),
[](const std::tuple& a, const std::tuple& b) {
return std::fabs(std::get<3>(a)) > std::fabs(std::get<3>(b));
});
std::tuple best_triplet = non_colinear_triplets.front(); // maximising non-colinearity
i = std::get<0>(best_triplet);
j = std::get<1>(best_triplet);
k = std::get<2>(best_triplet);
return !non_colinear_triplets.empty(); // need at least one non-colinear triplet
}
char compute_segment_plane_intersection_type(const vec3& q, const vec3& r,
const std::vector& polygon_vertices,
const vec3& polygon_normal,
const int polygon_normal_largest_component)
{
// TODO: we could also return i,j and k so that "determine_three_noncollinear_vertices" is not called multiple times,
// which we do to determine the type of intersection and the actual intersection point
const int polygon_vertex_count = (int)polygon_vertices.size();
// ... any three vertices that are not collinear
int i = 0;
int j = 1;
int k = 2;
if (polygon_vertex_count > 3) { // case where we'd have the possibility of noncollinearity
bool b = determine_three_noncollinear_vertices(i, j, k, polygon_vertices, polygon_normal,
polygon_normal_largest_component);
if (!b) {
return '0'; // all polygon points are collinear
}
}
double qRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], q);
double rRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], r);
if (qRes == double(0.0) && rRes == double(0.0)) {
return 'p';
} else if (qRes == double(0.0)) {
return 'q';
} else if (rRes == double(0.0)) {
return 'r';
} else if ((rRes < double(0.0) && qRes < double(0.0)) || (rRes > double(0.0) && qRes > double(0.0))) {
return '0';
} else {
return '1';
}
}
char compute_segment_line_plane_intersection_type(const vec3& q, const vec3& r,
const std::vector& polygon_vertices,
const int polygon_normal_max_comp,
const vec3& polygon_plane_normal)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
// ... any three vertices that are not collinear
int i = 0;
int j = 1;
int k = 2;
if (polygon_vertex_count > 3) { // case where we'd have the possibility of noncollinearity
bool b = determine_three_noncollinear_vertices(i, j, k, polygon_vertices, polygon_plane_normal,
polygon_normal_max_comp);
if (!b) {
return '0'; // all polygon points are collinear
}
}
double qRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], q);
double rRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], r);
if (qRes == double(0.0) && rRes == double(0.0)) {
// both points used to define line lie on plane therefore we have an in-plane intersection
// or the polygon is a degenerate triangle
return 'p';
} else {
if ((rRes < double(0.0) && qRes < double(0.0)) || (rRes > double(0.0) && qRes > double(0.0))) { // both points used to define line lie on same side of plane
// check if line is parallel to plane
// const double num = polygon_plane_d_coeff - dot_product(q, polygon_plane_normal);
const vec3 rq = (r - q);
const double denom = dot_product(rq, polygon_plane_normal);
if (denom == double(0.0) /* Segment is parallel to plane.*/) {
// MCUT_ASSERT(num != 0.0); // implies 'q' is on plane (see: "compute_segment_plane_intersection(...)")
// but we have already established that q and r are on same side.
return '0';
}
}
}
// q and r are on difference sides of the plane, therefore we have an intersection
return '1';
}
// Compute the intersection point between a line (not a segment) and a plane defined by a polygon.
//
// Parameters:
// 'p' : output intersection point (computed if line does indeed intersect the plane)
// 'q' : first point defining your line
// 'r' : second point defining your line
// 'polygon_vertices' : the vertices of the polygon defineing the plane (assumed to not be degenerate)
// 'polygon_vertex_count' : number of olygon vertices
// 'polygon_normal_max_comp' : largest component of polygon normal.
// 'polygon_plane_normal' : normal of the given polygon
// 'polygon_plane_d_coeff' : the distance coefficient of the plane equation corresponding to the polygon's plane
//
// Return values:
// '0': line is parallel to plane (or polygon is degenerate ... within available precision)
// '1': an intersection exists.
// 'p': q and r lie in the plane (technically they are parallel to the plane too but we need to report this because it
// violates GP).
char compute_line_plane_intersection(vec3& p, // intersection point
const vec3& q, const vec3& r,
const std::vector& polygon_vertices, const int polygon_normal_max_comp,
const vec3& polygon_plane_normal,
const double& polygon_plane_d_coeff)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
// ... any three vertices that are not collinear
int i = 0;
int j = 1;
int k = 2;
if (polygon_vertex_count > 3) { // case where we'd have the possibility of noncollinearity
bool b = determine_three_noncollinear_vertices(i, j, k, polygon_vertices, polygon_plane_normal,
polygon_normal_max_comp);
if (!b) {
return '0'; // all polygon points are collinear
}
}
double qRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], q);
double rRes = orient3d(polygon_vertices[i], polygon_vertices[j], polygon_vertices[k], r);
if (qRes == double(0.) && rRes == double(0.)) {
return 'p'; // both points used to define line lie on plane therefore we have an in-plane intersection
} else {
const double num = polygon_plane_d_coeff - dot_product(q, polygon_plane_normal);
const vec3 rq = (r - q);
const double denom = dot_product(rq, polygon_plane_normal);
if ((rRes < double(0.) && qRes < double(0.)) || (rRes > double(0.) && qRes > double(0.))) { // both q an r are on same side of plane
if (denom == double(0.) /* line is parallel to plane.*/) {
return '0';
}
}
// q and r are on difference sides of the plane, therefore we have an intersection
// compute the intersection point
const double t = num / denom;
for (int it = 0; it < 3; ++it) {
p[it] = q[it] + t * (r[it] - q[it]);
}
return '1';
}
}
// Count the number ray crossings to determine if a point 'q' lies inside or outside a given polygon.
//
// Return values:
// 'i': q is strictly interior
// 'o': q is strictly exterior (outside).
// 'e': q is on an edge, but not an endpoint.
// 'v': q is a vertex.
char compute_point_in_polygon_test(const vec2& q, const std::vector& polygon_vertices)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
#if 0 // Algorithm 1 in :
// https://pdf.sciencedirectassets.com/271512/1-s2.0-S0925772100X00545/1-s2.0-S0925772101000128/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAEaCXVzLWVhc3QtMSJHMEUCIBr6Fu%2F%2FtscErn%2Fl4pn2UGNA45sAw9vggQscK7Tnl0ssAiEAzfnyy4B4%2BXkZp8xcEk7utDBrxgmGyH7pyqk0efKOUEoq%2BgMIKhAEGgwwNTkwMDM1NDY4NjUiDHQT4kOfk4%2B6kBB0xCrXAzd8SWlnELJbM5l93HSvv4nUgtO85%2FGyx5%2BOoHmYoUuVwJjCXChmLJmlz%2BxYUQE%2Fr8vQa2hPlUEPfiTVGgoHaK8NkSMP6LRs%2F3WjyZ9OxzHbqSwZixNceW34OAkq0E1QgYLdGVjpPKxNK1haXDfBTMN6bF2IOU9dKi9wTv3uTlep0kHDa1BNNl6M6yZk5QlF2bPF9XmNjjZCpFQLhr%2BPoHo%2Bx4xy39aH8hCkkTqGdy2KrKGN6lv0%2FduIaItyZfqalYS%2BwW6cll2F5G11g0tSu7yKu6mug94LUTzsRmzD0UhzeGl2WV6Ev2qhw26mwFEKgnTMqGst8XAHjFjjAQyMzXNHCQqNBRIevHIzVWuUY4QZMylSRsodo0dfwwCFhzl0%2BJA1ZXb0%2BoyB8c11meQBO8FpMSshngNcbiAYUtIOFcHNCTCUMk0JPOZ%2FxvANsopnivbrPARL71zU4PaTujg5jfC2zoO6ZDUL8E6Vn%2BNtfb%2BuQV7DwtIH51Bv%2F%2F1m6h5mjbpRiGYcH%2F5SDD%2Fk%2BpHfKRQzKu7jJc%2B0XO0bQvoLSrAte0Qk10PwOvDl5jMIMdmxTBDDiDGErRykYxMQhq5EwjyiWPXzM3ll9uK59Vy0bAEj5Qemj5by1jCDht6IBjqlAV4okAPQO5wWdWojCYeKvluKfXCvudrUxrLhsxb7%2BTZNMODTG%2Fn%2Fbw875Yr6fOQ42u40pOsnPB%2FTP3cWwjiB%2BEHzDqN8AhCVQyoedw7QrU3OBWlSl6lB%2BGLAVqrhcizgFUiM2nj3HaVP2m7S%2FXqpv%2FoWlEXt4gR8iI9XsIlh6L6SBE22FqbsU5ewCxXaqip19VXhAGnlvjTihXUg6yZGWhExHj%2BKcA%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210814T103958Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY3PPQSW2L%2F20210814%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=94403dce5c12ede9507e9612c000db5772607e59a2134d30d4e5b44212056dc7&hash=cada083b165f9786e6042e21d3d22147ec08b1e2c8fa2572ceeb2445cb5e730a&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0925772101000128&tid=spdf-f9e7c4b7-808d-4a8e-a474-6430ff687798&sid=8dddff5b32fff2499908bf6501965aec3d0fgxrqb&type=client
const double zero(0.0);
int i = 0;
int k = 0;
double f = zero;
double u1 = 0.0;
double v1 = 0.0;
double u2 = 0.0;
double v2 = 0.0;
const int n = polygon_vertex_count;
for (i = 0; i < n; ++i)
{
v1 = polygon_vertices[i].y() - q.y();
v2 = polygon_vertices[(i + 1) % n].y() - q.y();
if ((v1 < zero && v2 < zero) || (v1 > zero && v2 > zero))
{
continue;
}
u1 = polygon_vertices[i].x() - q.x();
u2 = polygon_vertices[(i + 1) % n].x() - q.x();
if (v2 > zero && v1 <= zero)
{
f = u1 * v2 - u2 * v1;
if (f > zero)
{
k = k + 1;
}
else if (f == zero)
{
return 'e'; //-1; // boundary
}
}
else if (v1 > zero && v2 <= zero)
{
f = u1 * v2 - u2 * v1;
if (f < zero)
{
k = k + 1;
}
else if (f == zero)
{
return 'e'; //-1; // boundary
}
}
else if (v2 == zero && v1 < zero)
{
f = u1 * v2 - u2 * v1;
if (f == zero)
{
return 'e'; //-1; // // boundary
}
}
else if (v1 == zero && v2 < zero)
{
f = u1 * v2 - u2 * v1;
if (f == zero)
{
return 'e'; //-1; // boundary
}
}
else if (v1 == zero && v2 == zero)
{
if (u2 <= zero && u1 >= zero)
{
return 'e'; //-1; // boundary
}
else if (u1 <= zero && u2 >= zero)
{
return 'e'; //-1; // boundary
}
}
}
if (k % 2 == 0)
{
return 'o'; //0; // outside
}
else
{
return 'i'; //1; // inside
}
#else // http://www.science.smith.edu/~jorourke/books/compgeom.html
std::vector vertices(polygon_vertex_count, vec2());
// Shift so that q is the origin. Note this destroys the polygon.
// This is done for pedagogical clarity.
for (int i = 0; i < polygon_vertex_count; i++) {
for (int d = 0; d < 2; d++) {
const double& a = polygon_vertices[i][d];
const double& b = q[d];
double& c = vertices[i][d];
c = a - b;
}
}
int Rcross = 0; /* number of right edge/ray crossings */
int Lcross = 0; /* number ofleft edge/ray crossings */
/* For each edge e = (i�lj), see if crosses ray. */
for (int i = 0; i < polygon_vertex_count; i++) {
/* First check if q = (0, 0) is a vertex. */
if (vertices[i].x() == double(0.) && vertices[i].y() == double(0.)) {
return 'v';
}
int il = (i + polygon_vertex_count - 1) % polygon_vertex_count;
// Check if e straddles x axis, with bias above/below.
// Rstrad is TRUE iff one endpoint of e is strictly above the x axis and the other is not (i.e., the other is on
// or below)
bool Rstrad = (vertices[i].y() > double(0.)) != (vertices[il].y() > double(0.));
bool Lstrad = (vertices[i].y() < double(0.)) != (vertices[il].y() < double(0.));
if (Rstrad || Lstrad) {
/* Compute intersection of e with x axis. */
// The computation of x is needed whenever either of these straddle variables is TRUE, which
// only excludes edges passing through q = (0, 0) (and incidentally protects against division by 0).
double x = (vertices[i].x() * vertices[il].y() - vertices[il].x() * vertices[i].y()) / (vertices[il].y() - vertices[i].y());
if (Rstrad && x > double(0.)) {
Rcross++;
}
if (Lstrad && x < double(0.)) {
Lcross++;
}
} /* end straddle computation*/
} // end for
/* q on an edge if L/Rcross counts are not the same parity.*/
if ((Rcross % 2) != (Lcross % 2)) {
return 'e';
}
/* q inside iff an odd number of crossings. */
if ((Rcross % 2) == 1) {
return 'i';
} else {
return 'o';
}
#endif
}
// given a normal vector (not necessarily normalized) and its largest component, calculate
// a matrix P that will project any 3D vertex to 2D by removing the 3D component that
// corresponds to the largest component of the normal..
// https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d/2672702#2672702
matrix_t calculate_projection_matrix(const vec3& polygon_normal,
const int polygon_normal_largest_component)
{
MCUT_ASSERT(squared_length(polygon_normal) > double(0.0));
MCUT_ASSERT(polygon_normal_largest_component >= 0);
MCUT_ASSERT(polygon_normal_largest_component <= 2);
// unit length normal vector of polygon
const vec3 a = normalize(polygon_normal);
// unit length basis vector corresponding to the largest component of the normal vector
const vec3 b = [&]() {
vec3 x(double(0.0));
const sign_t s = sign(polygon_normal[polygon_normal_largest_component]);
MCUT_ASSERT(s != sign_t::ZERO); // implies that the normal vector has a magnitude of zero
// The largest component of the normal is the one we will "remove"
// NOTE: we multiple by the sign here to ensure that "a_plus_b" below is not zero when a == b
x[polygon_normal_largest_component] = double((1.0) * static_cast(s));
return x;
}();
matrix_t I(3, 3); // 3x3 identity with reflection
I(0, 0) = 1.0;
I(1, 1) = -1.0;
I(2, 2) = 1.0;
matrix_t R = I;
// NOTE: While this will map vectors a to b, it can add a lot of unnecessary "twist".
// For example, if a=b=e_{z} this formula will produce a 180-degree rotation about the z-axis rather
// than the identity one might expect.
if ((a[0] != b[0]) || (a[1] != b[1]) || (a[2] != b[2])) // a != b
{
const vec3 a_plus_b = a + b;
const double a_dot_b = dot_product(a, b);
// this will never be zero because we set 'b' as the canonical basis vector
// that has the largest projection onto the normal
MCUT_ASSERT(a_dot_b != double(0.0));
const matrix_t outer = outer_product(a_plus_b, a_plus_b);
// compute the 3x3 rotation matrix R to orient the polygon into the canonical axes "i" and "j",
// where "i" and "j" != "polygon_normal_largest_component"
R = ((outer / a_dot_b) * 2.0) - I; // rotation
}
// compute the 2x3 selector matrix K to select the polygon-vertex components that correspond
// to canonical axes "i" and "j".
matrix_t K = matrix_t(2, 3);
if (polygon_normal_largest_component == 0) // project by removing x-component
{
// 1st row
K(0, 0) = 0.0; // col 0
K(0, 1) = 1.0; // col 1
K(0, 2) = 0.0; // col 2
// 2nd row
K(1, 0) = 0.0; // col 0
K(1, 1) = 0.0; // col 1
K(1, 2) = 1.0; // col 2
} else if (polygon_normal_largest_component == 1) // project by removing y-component
{
// 1st row
K(0, 0) = 1.0; // col 0
K(0, 1) = 0.0; // col 1
K(0, 2) = 0.0; // col 2
// 2nd row
K(1, 0) = 0.0; // col 0
K(1, 1) = 0.0; // col 1
K(1, 2) = 1.0; // col 2
} else if (polygon_normal_largest_component == 2) // project by removing z-component
{
// 1st row
K(0, 0) = 1.0; // col 0
K(0, 1) = 0.0; // col 1
K(0, 2) = 0.0; // col 2
// 2nd row
K(1, 0) = 0.0; // col 0
K(1, 1) = 1.0; // col 1
K(1, 2) = 0.0; // col 2
}
return K * R;
}
// https://answers.unity.com/questions/1522620/converting-a-3d-polygon-into-a-2d-polygon.html
void project_to_2d(std::vector& out, const std::vector& polygon_vertices, const vec3& polygon_normal)
{
const uint32_t N = polygon_vertices.size();
out.resize(N);
const vec3 normal = normalize(polygon_normal);
// first unit vector on plane (rotation by 90 degrees)
vec3 u(-normal.y(), normal.x(), normal.z());
vec3 v = normalize(cross_product(u, normal));
for(uint32_t i =0; i < N; ++i)
{
const vec3 point = polygon_vertices[i];
const vec2 projected(
dot_product(point, u),
dot_product(point, v)
);
out[i] = projected;
}
}
void project_to_2d(std::vector& out, const std::vector& polygon_vertices,
const vec3& polygon_normal, const int polygon_normal_largest_component)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
out.clear();
out.resize(polygon_vertex_count);
#if 1
// 3x3 matrix for projecting a point to 2D
matrix_t P = calculate_projection_matrix(polygon_normal, polygon_normal_largest_component);
for (int i = 0; i < polygon_vertex_count; ++i) { // for each vertex
const vec3& x = polygon_vertices[i];
out[i] = P * x; // vertex in xz plane
}
#else // This code is not reliable because it shadow-projects a polygons which can skew computations
for (int i = 0; i < polygon_vertex_count; ++i) { // for each vertex
vec2& Tp = out[i];
int k = 0;
for (int j = 0; j < 3; j++) { // for each component
if (j != polygon_plane_normal_largest_component) { /* skip largest coordinate */
Tp[k] = polygon_vertices[i][j];
k++;
}
}
}
#endif
}
// TODO: update this function to use "project_to_2d" for projection step
char compute_point_in_polygon_test(const vec3& p, const std::vector& polygon_vertices,
const vec3& polygon_normal, const int polygon_normal_largest_component)
{
const int polygon_vertex_count = (int)polygon_vertices.size();
/* Project out coordinate m in both p and the triangular face */
vec2 pp; /*projected p */
#if 0
int k = 0;
for (int j = 0; j < 3; j++)
{ // for each component
if (j != polygon_plane_normal_largest_component)
{ /* skip largest coordinate */
pp[k] = p[j];
k++;
}
}
#endif
const matrix_t P = calculate_projection_matrix(polygon_normal, polygon_normal_largest_component);
pp = P * p;
std::vector polygon_vertices2d(polygon_vertex_count, vec2());
for (int i = 0; i < polygon_vertex_count; ++i) { // for each vertex
const vec3& x = polygon_vertices[i];
polygon_vertices2d[i] = P * x; // vertex in xz plane
}
#if 0
for (int i = 0; i < polygon_vertex_count; ++i)
{ // for each vertex
vec2 &Tp = polygon_vertices2d[i];
k = 0;
for (int j = 0; j < 3; j++)
{ // for each component
if (j != polygon_plane_normal_largest_component)
{ /* skip largest coordinate */
Tp[k] = polygon_vertices[i][j];
k++;
}
}
}
#endif
return compute_point_in_polygon_test(pp, polygon_vertices2d);
}
inline bool Between(const vec2& a, const vec2& b, const vec2& c)
{
vec2 ba, ca;
/* If ab not vertical check betweenness on x; else on y. */
if (a[0] != b[0])
return ((a[0] <= c[0]) && (c[0] <= b[0])) || //
((a[0] >= c[0]) && (c[0] >= b[0]));
else
return ((a[1] <= c[1]) && (c[1] <= b[1])) || //
((a[1] >= c[1]) && (c[1] >= b[1]));
}
bool coplaner(const vec3& pa, const vec3& pb, const vec3& pc,
const vec3& pd)
{
const double val = orient3d(pa, pb, pc, pd);
// typedef std::numeric_limits dbl;
// double d = 3.14159265358979;
// std::cout.precision(dbl::max_digits10);
// std::cout << "value=" << (double)val << std::endl;
// NOTE: thresholds are chosen based on benchmark meshes that are used for testing.
// It is extremely difficult to get this right because of intermediate conversions
// between exact and fixed precision representations during cutting.
// Thus, general advise is for user to ensure that the input polygons are really
// co-planer. It might be possible for MCUT to help here (see eps used during poly
// partitioning).
return absolute_value(val) <= double(4e-7);
}
bool collinear(const vec2& a, const vec2& b, const vec2& c, double& predResult)
{
predResult = orient2d(a, b, c);
return predResult == double(0.);
}
bool collinear(const vec2& a, const vec2& b, const vec2& c)
{
return orient2d(a, b, c) == double(0.);
}
char Parallellnt(const vec2& a, const vec2& b, const vec2& c, const vec2& d, vec2& p)
{
if (!collinear(a, b, c)) {
return '0';
}
if (Between(a, b, c)) {
p = c;
return 'e';
}
if (Between(a, b, d)) {
p = d;
return 'e';
}
if (Between(c, d, a)) {
p = a;
return 'e';
}
if (Between(c, d, b)) {
p = b;
return 'e';
}
return '0';
}
char compute_segment_intersection(
const vec2& a, const vec2& b, const vec2& c,
const vec2& d, vec2& p, double& s, double& t)
{
// double s, t; /* The two parameters of the parametric eqns. */
double num, denom; /* Numerator and denominator of equations. */
char code = '?'; /* Return char characterizing intersection.*/
denom = a[0] * (d[1] - c[1]) + //
b[0] * (c[1] - d[1]) + //
d[0] * (b[1] - a[1]) + //
c[0] * (a[1] - b[1]);
/* If denom is zero, then segments are parallel: handle separately. */
if (denom == double(0.0)) {
return Parallellnt(a, b, c, d, p);
}
num = a[0] * (d[1] - c[1]) + //
c[0] * (a[1] - d[1]) + //
d[0] * (c[1] - a[1]);
if ((num == double(0.0)) || (num == denom)) {
code = 'v';
}
s = num / denom;
num = -(a[0] * (c[1] - b[1]) + //
b[0] * (a[1] - c[1]) + //
c[0] * (b[1] - a[1]));
if ((num == double(0.0)) || (num == denom)) {
code = 'v';
}
t = num / denom;
if ((double(0.0) < s) && (s < double(1.0)) && (double(0.0) < t) && (t < double(1.0))) {
code = '1';
} else if ((double(0.0) > s) || (s > double(1.0)) || (double(0.0) > t) || (t > double(1.0))) {
code = '0';
}
p[0] = a[0] + s * (b[0] - a[0]);
p[1] = a[1] + s * (b[1] - a[1]);
return code;
}
inline bool point_in_bounding_box(const vec2& point, const bounding_box_t& bbox)
{
if ((point.x() < bbox.m_minimum.x() || point.x() > bbox.m_maximum.x()) || //
(point.y() < bbox.m_minimum.y() || point.y() > bbox.m_maximum.y())) {
return false;
} else {
return true;
}
}
inline bool point_in_bounding_box(const vec3& point, const bounding_box_t& bbox)
{
if ((point.x() < bbox.m_minimum.x() || point.x() > bbox.m_maximum.x()) || //
(point.y() < bbox.m_minimum.y() || point.y() > bbox.m_maximum.y()) || //
(point.z() < bbox.m_minimum.z() || point.z() > bbox.m_maximum.z())) { //
return false;
} else {
return true;
}
}