#include "libslic3r.h" #include "Exception.hpp" #include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "clipper.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) && defined(__clang__) #define BOOST_NO_CXX17_HDR_STRING_VIEW #endif namespace Slic3r { namespace Geometry { bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } bool directions_perpendicular(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return fabs(diff - 0.5 * PI) < max_diff || fabs(diff - 1.5 * PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } *retval = Slic3r::simplify_polygons(pp); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } #if 0 // Point with a weight, by which the points are sorted. // If the points have the same weight, sort them lexicographically by their positions. struct ArrangeItem { ArrangeItem() {} Vec2d pos; coordf_t weight; bool operator<(const ArrangeItem &other) const { return weight < other.weight || ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0)))); } }; Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box) { // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm. const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap); const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? *bed_bounding_box : // Bogus bed size, large enough not to trigger the unsufficient bed size error. BoundingBoxf( Vec2d(0, 0), Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts)); // This is how many cells we have available into which to put parts. size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0))); size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1))); if (num_parts > cellw * cellh) throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts); // Get a bounding box of cellw x cellh cells, centered at the center of the bed. Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap); Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size); BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset); // List of cells, sorted by distance from center. std::vector cellsorder(cellw * cellh, ArrangeItem()); for (size_t j = 0; j < cellh; ++ j) { // Center of the jth row on the bed. coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1)); // Offset from the bed center. coordf_t yd = cells_bb.center()(1) - cy; for (size_t i = 0; i < cellw; ++ i) { // Center of the ith column on the bed. coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0)); // Offset from the bed center. coordf_t xd = cells_bb.center()(0) - cx; // Cell with a distance from the bed center. ArrangeItem &ci = cellsorder[j * cellw + i]; // Cell center ci.pos(0) = cx; ci.pos(1) = cy; // Square distance of the cell center to the bed center. ci.weight = xd * xd + yd * yd; } } // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top. std::sort(cellsorder.begin(), cellsorder.end()); cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end()); // Return the (left,top) corners of the cells. Pointfs positions; positions.reserve(num_parts); for (std::vector::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it) positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1))); return positions; } #else class ArrangeItem { public: Vec2d pos = Vec2d::Zero(); size_t index_x, index_y; coordf_t dist; }; class ArrangeItemIndex { public: coordf_t index; ArrangeItem item; ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {}; }; bool arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions) { positions.clear(); Vec2d part = part_size; // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part(0) += dist; part(1) += dist; Vec2d area(Vec2d::Zero()); if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area(0) = part(0) * total_parts; area(1) = part(1) * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area(0) + dist) / part(0)); size_t cellh = floor((area(1) + dist) / part(1)); if (total_parts > (cellw * cellh)) return false; // total space used by cells Vec2d cells(cellw * part(0), cellh * part(1)); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Vec2d(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area(0) - cells(0)) / 2, (area(1) - cells(1)) / 2 ); // list of cells, sorted by distance from center std::vector cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0)); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1)); coordf_t xd = fabs((area(0) / 2) - cx); coordf_t yd = fabs((area(1) / 2) - cy); ArrangeItem c; c.pos(0) = cx; c.pos(1) = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: ; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Vec2d(cx * part(0), cy * part(1))); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x() += bb->min(0); p->y() += bb->min(1); } } return true; } #endif // Euclidian distance of two boost::polygon points. template T dist(const boost::polygon::point_data &p1,const boost::polygon::point_data &p2) { T dx = p2(0) - p1(0); T dy = p2(1) - p1(1); return sqrt(dx*dx+dy*dy); } // Find a foot point of "px" on a segment "seg". template inline point_type project_point_to_segment(segment_type &seg, point_type &px) { typedef typename point_type::coordinate_type T; const point_type &p0 = low(seg); const point_type &p1 = high(seg); const point_type dir(p1(0)-p0(0), p1(1)-p0(1)); const point_type dproj(px(0)-p0(0), px(1)-p0(1)); const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1)); assert(t >= T(-1e-6) && t <= T(1. + 1e-6)); return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1)); } void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { transform = Transform3d::Identity(); transform.translate(translation); transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX())); transform.scale(scale.cwiseProduct(mirror)); } Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { Transform3d transform; assemble_transform(transform, translation, rotation, scale, mirror); return transform; } Vec3d extract_euler_angles(const Eigen::Matrix& rotation_matrix) { // The extracted "rotation" is a triplet of numbers such that Geometry::rotation_transform // returns the original transform. Because of the chosen order of rotations, the triplet // is not equivalent to Euler angles in the usual sense. Vec3d angles = rotation_matrix.eulerAngles(2, 1, 0); std::swap(angles(0), angles(2)); return angles; } Vec3d extract_euler_angles(const Transform3d& transform) { // use only the non-translational part of the transform Eigen::Matrix m = transform.matrix().block(0, 0, 3, 3); // remove scale m.col(0).normalize(); m.col(1).normalize(); m.col(2).normalize(); return extract_euler_angles(m); } void rotation_from_two_vectors(Vec3d from, Vec3d to, Vec3d& rotation_axis, double& phi, Matrix3d* rotation_matrix) { const Matrix3d m = Eigen::Quaterniond().setFromTwoVectors(from, to).toRotationMatrix(); const Eigen::AngleAxisd aa(m); rotation_axis = aa.axis(); phi = aa.angle(); if (rotation_matrix) *rotation_matrix = m; } Transform3d translation_transform(const Vec3d &translation) { Transform3d transform = Transform3d::Identity(); transform.translate(translation); return transform; } Transform3d rotation_transform(const Vec3d& rotation) { Transform3d transform = Transform3d::Identity(); transform.rotate(Eigen::AngleAxisd(rotation.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation.x(), Vec3d::UnitX())); return transform; } void scale_transform(Transform3d &transform, double scale) { return scale_transform(transform, scale * Vec3d::Ones()); } void scale_transform(Transform3d &transform, const Vec3d &scale) { transform = Transform3d::Identity(); transform.scale(scale); } Transform3d scale_transform(double scale) { return scale_transform(scale * Vec3d::Ones()); } Transform3d scale_transform(const Vec3d &scale) { Transform3d transform; scale_transform(transform, scale); return transform; } Transformation::Flags::Flags() : dont_translate(true) , dont_rotate(true) , dont_scale(true) , dont_mirror(true) { } bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror); } void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) { this->dont_translate = dont_translate; this->dont_rotate = dont_rotate; this->dont_scale = dont_scale; this->dont_mirror = dont_mirror; } Transformation::Transformation() { reset(); } Transformation::Transformation(const Transform3d& transform) { set_from_transform(transform); } Transform3d Transformation::get_offset_matrix() const { return translation_transform(get_offset()); } void Transformation::set_offset(const Vec3d &offset) { set_offset(X, offset(0)); set_offset(Y, offset(1)); set_offset(Z, offset(2)); } void Transformation::set_offset(Axis axis, double offset) { if (m_offset(axis) != offset) { m_offset(axis) = offset; m_dirty = true; } } static Transform3d extract_rotation_matrix(const Transform3d &trafo) { Matrix3d rotation; Matrix3d scale; trafo.computeRotationScaling(&rotation, &scale); return Transform3d(rotation); } static Transform3d extract_scale(const Transform3d &trafo) { Matrix3d rotation; Matrix3d scale; trafo.computeRotationScaling(&rotation, &scale); return Transform3d(scale); } Transform3d Transformation::get_rotation_matrix() const { return extract_rotation_matrix(m_matrix); } void Transformation::set_rotation(const Vec3d &rotation) { set_rotation(X, rotation(0)); set_rotation(Y, rotation(1)); set_rotation(Z, rotation(2)); } void Transformation::set_rotation(Axis axis, double rotation) { rotation = angle_to_0_2PI(rotation); if (is_approx(std::abs(rotation), 2.0 * (double)PI)) rotation = 0.0; if (m_rotation(axis) != rotation) { m_rotation(axis) = rotation; m_dirty = true; } } Transform3d Transformation::get_scaling_factor_matrix() const { Transform3d scale = extract_scale(m_matrix); scale(0, 0) = std::abs(scale(0, 0)); scale(1, 1) = std::abs(scale(1, 1)); scale(2, 2) = std::abs(scale(2, 2)); return scale; } void Transformation::set_scaling_factor(const Vec3d& scaling_factor) { set_scaling_factor(X, scaling_factor(0)); set_scaling_factor(Y, scaling_factor(1)); set_scaling_factor(Z, scaling_factor(2)); } void Transformation::set_scaling_factor(Axis axis, double scaling_factor) { if (m_scaling_factor(axis) != std::abs(scaling_factor)) { m_scaling_factor(axis) = std::abs(scaling_factor); m_dirty = true; } } void Transformation::set_mirror(const Vec3d& mirror) { set_mirror(X, mirror(0)); set_mirror(Y, mirror(1)); set_mirror(Z, mirror(2)); } void Transformation::set_mirror(Axis axis, double mirror) { double abs_mirror = std::abs(mirror); if (abs_mirror == 0.0) mirror = 1.0; else if (abs_mirror != 1.0) mirror /= abs_mirror; if (m_mirror(axis) != mirror) { m_mirror(axis) = mirror; m_dirty = true; } } void Transformation::set_from_transform(const Transform3d& transform) { // offset set_offset(transform.matrix().block(0, 3, 3, 1)); Eigen::Matrix m3x3 = transform.matrix().block(0, 0, 3, 3); // mirror // it is impossible to reconstruct the original mirroring factors from a matrix, // we can only detect if the matrix contains a left handed reference system // in which case we reorient it back to right handed by mirroring the x axis Vec3d mirror = Vec3d::Ones(); if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0) { mirror(0) = -1.0; // remove mirror m3x3.col(0) *= -1.0; } set_mirror(mirror); // scale set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm())); // remove scale m3x3.col(0).normalize(); m3x3.col(1).normalize(); m3x3.col(2).normalize(); // rotation set_rotation(Geometry::extract_euler_angles(m3x3)); // forces matrix recalculation matrix m_matrix = get_matrix(); // // debug check // if (!m_matrix.isApprox(transform)) // std::cout << "something went wrong in extracting data from matrix" << std::endl; } void Transformation::reset() { m_offset = Vec3d::Zero(); m_rotation = Vec3d::Zero(); m_scaling_factor = Vec3d::Ones(); m_mirror = Vec3d::Ones(); m_matrix = Transform3d::Identity(); m_dirty = false; } void Transformation::reset_rotation() { const Geometry::TransformationSVD svd(*this); m_matrix = get_offset_matrix() * Transform3d(svd.v * svd.s * svd.v.transpose()) * svd.mirror_matrix(); } void Transformation::reset_scaling_factor() { const Geometry::TransformationSVD svd(*this); m_matrix = get_offset_matrix() * Transform3d(svd.u) * Transform3d(svd.v.transpose()) * svd.mirror_matrix(); } void Transformation::reset_skew() { auto new_scale_factor = [](const Matrix3d &s) { return pow(s(0, 0) * s(1, 1) * s(2, 2), 1. / 3.); // scale average }; const Geometry::TransformationSVD svd(*this); m_matrix = get_offset_matrix() * Transform3d(svd.u) * scale_transform(new_scale_factor(svd.s)) * Transform3d(svd.v.transpose()) * svd.mirror_matrix(); } const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror)) { m_matrix = Geometry::assemble_transform( dont_translate ? Vec3d::Zero() : m_offset, dont_rotate ? Vec3d::Zero() : m_rotation, dont_scale ? Vec3d::Ones() : m_scaling_factor, dont_mirror ? Vec3d::Ones() : m_mirror ); m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror); m_dirty = false; } return m_matrix; } Transform3d Transformation::get_matrix_no_offset() const { Transformation copy(*this); copy.reset_offset(); return copy.get_matrix(); } Transform3d Transformation::get_matrix_no_scaling_factor() const { Transformation copy(*this); copy.reset_scaling_factor(); return copy.get_matrix(); } Transformation Transformation::operator * (const Transformation& other) const { return Transformation(get_matrix() * other.get_matrix()); } Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox) { Transformation out; if (instance_transformation.is_scaling_uniform()) { // No need to run the non-linear least squares fitting for uniform scaling. // Just set the inverse. out.set_from_transform(instance_transformation.get_matrix(true).inverse()); } else if (is_rotation_ninety_degrees(instance_transformation.get_rotation())) { // Anisotropic scaling, rotation by multiples of ninety degrees. Eigen::Matrix3d instance_rotation_trafo = (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix(); Eigen::Matrix3d volume_rotation_trafo = (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix(); // 8 corners of the bounding box. auto pts = Eigen::MatrixXd(8, 3); pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z(); pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z(); pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z(); pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z(); pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z(); pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z(); pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z(); pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z(); // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier. auto qs = pts * (instance_rotation_trafo * Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) * volume_rotation_trafo).inverse().transpose(); // Fill in scaling based on least squares fitting of the bounding box corners. Vec3d scale; for (int i = 0; i < 3; ++i) scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i)); out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo)); out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2)))); out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1)); } else { // General anisotropic scaling, general rotation. // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world. // Scale it to get the required size. out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse()); } return out; } // For parsing a transformation matrix from 3MF / AMF. Transform3d transform3d_from_string(const std::string& transform_str) { assert(is_decimal_separator_point()); // for atof Transform3d transform = Transform3d::Identity(); if (!transform_str.empty()) { std::vector mat_elements_str; boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on); unsigned int size = (unsigned int)mat_elements_str.size(); if (size == 16) { unsigned int i = 0; for (unsigned int r = 0; r < 4; ++r) { for (unsigned int c = 0; c < 4; ++c) { transform(r, c) = ::atof(mat_elements_str[i++].c_str()); } } } } return transform; } Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { return // From the current coordinate system to world. Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) * // From world to the initial coordinate system. Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ()); } // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to)); Vec3d axis = angle_axis.axis(); double angle = angle_axis.angle(); #ifndef NDEBUG if (std::abs(angle) > 1e-8) { assert(std::abs(axis.x()) < 1e-8); assert(std::abs(axis.y()) < 1e-8); } #endif /* NDEBUG */ return (axis.z() < 0) ? -angle : angle; } Geometry::TransformationSVD::TransformationSVD(const Transform3d &trafo) { const auto &m0 = trafo.matrix().block<3, 3>(0, 0); mirror = m0.determinant() < 0.0; Matrix3d m; if (mirror) m = m0 * Eigen::DiagonalMatrix(-1.0, 1.0, 1.0); else m = m0; const Eigen::JacobiSVD svd(m, Eigen::ComputeFullU | Eigen::ComputeFullV); u = svd.matrixU(); v = svd.matrixV(); s = svd.singularValues().asDiagonal(); scale = !s.isApprox(Matrix3d::Identity()); anisotropic_scale = !is_approx(s(0, 0), s(1, 1)) || !is_approx(s(1, 1), s(2, 2)); rotation = !v.isApprox(u); if (anisotropic_scale) { rotation_90_degrees = true; for (int i = 0; i < 3; ++i) { const Vec3d row = v.row(i).cwiseAbs(); const size_t num_zeros = is_approx(row[0], 0.) + is_approx(row[1], 0.) + is_approx(row[2], 0.); const size_t num_ones = is_approx(row[0], 1.) + is_approx(row[1], 1.) + is_approx(row[2], 1.); if (num_zeros != 2 || num_ones != 1) { rotation_90_degrees = false; break; } } // Detect skew by brute force: check if the axes are still orthogonal after transformation const Matrix3d trafo_linear = trafo.linear(); const std::array axes = {Vec3d::UnitX(), Vec3d::UnitY(), Vec3d::UnitZ()}; std::array transformed_axes; for (int i = 0; i < 3; ++i) { transformed_axes[i] = trafo_linear * axes[i]; } skew = std::abs(transformed_axes[0].dot(transformed_axes[1])) > EPSILON || std::abs(transformed_axes[1].dot(transformed_axes[2])) > EPSILON || std::abs(transformed_axes[2].dot(transformed_axes[0])) > EPSILON; // This following old code does not work under all conditions. The v matrix can become non diagonal (see SPE-1492) // skew = ! rotation_90_degrees; } else skew = false; } Transformation mat_around_a_point_rotate(const Transformation &InMat, const Vec3d &pt, const Vec3d &axis, float rotate_theta_radian) { auto xyz = InMat.get_offset(); Transformation left; left.set_offset(-xyz); // at world origin auto curMat = left * InMat; auto qua = Eigen::Quaterniond(Eigen::AngleAxisd(rotate_theta_radian, axis)); qua.normalize(); Transform3d cur_matrix; Transformation rotateMat4; rotateMat4.set_from_transform(cur_matrix.fromPositionOrientationScale(Vec3d(0., 0., 0.), qua, Vec3d(1., 1., 1.))); curMat = rotateMat4 * curMat; // along_fix_axis // rotate mat4 along fix pt Transformation temp_world; auto qua_world = Eigen::Quaterniond(Eigen::AngleAxisd(0, axis)); qua_world.normalize(); Transform3d cur_matrix_world; temp_world.set_from_transform(cur_matrix_world.fromPositionOrientationScale(pt, qua_world, Vec3d(1., 1., 1.))); auto temp_xyz = temp_world.get_matrix().inverse() * xyz; auto new_pos = temp_world.get_matrix() * (rotateMat4.get_matrix() * temp_xyz); curMat.set_offset(new_pos); return curMat; } } // namespace Geometry } // namespace Slic3r