///|/ Copyright (c) Prusa Research 2022 - 2023 Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak ///|/ ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher ///|/ #include "libslic3r/libslic3r.h" #include "Measure.hpp" #include "MeasureUtils.hpp" #include "libslic3r/Geometry/Circle.hpp" #include "libslic3r/SurfaceMesh.hpp" #include #include #define DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE 0 namespace Slic3r { namespace Measure { bool get_point_projection_to_plane(const Vec3d &pt, const Vec3d &plane_origin, const Vec3d &plane_normal, Vec3d &intersection_pt) { auto normal = plane_normal.normalized(); auto BA = plane_origin - pt; auto length = BA.dot(normal); intersection_pt = pt + length * normal; return true; } Vec3d get_one_point_in_plane(const Vec3d &plane_origin, const Vec3d &plane_normal) { Vec3d dir(1, 0, 0); float eps = 1e-3; if (abs(plane_normal.dot(dir)) > 1 - eps) { dir = Vec3d(0, 1, 0); } auto new_pt = plane_origin + dir; Vec3d retult; get_point_projection_to_plane(new_pt, plane_origin, plane_normal, retult); return retult; } constexpr double feature_hover_limit = 0.5; // how close to a feature the mouse must be to highlight it static std::tuple get_center_and_radius(const std::vector& points, const Transform3d& trafo, const Transform3d& trafo_inv) { Vec2ds out; double z = 0.; for (const Vec3d& pt : points) { Vec3d pt_transformed = trafo * pt; z = pt_transformed.z(); out.emplace_back(pt_transformed.x(), pt_transformed.y()); } const int iter = points.size() < 10 ? 2 : points.size() < 100 ? 4 : 6; double error = std::numeric_limits::max(); auto circle = Geometry::circle_ransac(out, iter, &error); return std::make_tuple(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius, error); } static std::array orthonormal_basis(const Vec3d& v) { std::array ret; ret[2] = v.normalized(); int index; ret[2].cwiseAbs().maxCoeff(&index); switch (index) { case 0: { ret[0] = Vec3d(ret[2].y(), -ret[2].x(), 0.0).normalized(); break; } case 1: { ret[0] = Vec3d(0.0, ret[2].z(), -ret[2].y()).normalized(); break; } case 2: { ret[0] = Vec3d(-ret[2].z(), 0.0, ret[2].x()).normalized(); break; } } ret[1] = ret[2].cross(ret[0]).normalized(); return ret; } class MeasuringImpl { public: explicit MeasuringImpl(const indexed_triangle_set& its); struct PlaneData { std::vector facets; std::vector> borders; // FIXME: should be in fact local in update_planes() std::vector surface_features; Vec3d normal; float area; bool features_extracted = false; }; std::optional get_feature(size_t face_idx, const Vec3d& point, const Transform3d &world_tran); int get_num_of_planes() const; const std::vector& get_plane_triangle_indices(int idx) const; std::vector* get_plane_tri_indices(int idx); const std::vector& get_plane_features(unsigned int plane_id); std::vector* get_plane_features_pointer(unsigned int plane_id); const indexed_triangle_set& get_its() const; private: void update_planes(); void extract_features(int plane_idx); std::vector m_planes; std::vector m_face_to_plane; indexed_triangle_set m_its; }; MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its) : m_its(its) { update_planes(); // Extracting features will be done as needed. // To extract all planes at once, run the following: #if DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE for (int i=0; i face_normals = its_face_normals(m_its); const std::vector face_neighbors = its_face_neighbors(m_its); std::vector facet_queue(num_of_facets, 0); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; size_t seed_facet_idx = 0; auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool { return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001); }; m_planes.clear(); m_planes.reserve(num_of_facets / 5); // empty plane data object is quite lightweight, let's save the initial reallocations // First go through all the triangles and fill in m_planes vector. For each "plane" // detected on the model, it will contain list of facets that are part of it. // We will also fill in m_face_to_plane, which contains index into m_planes // for each of the source facets. while (1) { // Find next unvisited triangle: for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx) if (m_face_to_plane[seed_facet_idx] == size_t(-1)) { facet_queue[facet_queue_cnt ++] = seed_facet_idx; normal_ptr = &face_normals[seed_facet_idx]; m_face_to_plane[seed_facet_idx] = m_planes.size(); m_planes.emplace_back(); break; } if (seed_facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = face_normals[facet_idx]; if (is_same_normal(this_normal, *normal_ptr)) { // const Vec3i& face = m_its.indices[facet_idx]; m_face_to_plane[facet_idx] = m_planes.size() - 1; m_planes.back().facets.emplace_back(facet_idx); for (int j = 0; j < 3; ++ j) if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && m_face_to_plane[neighbor_idx] == size_t(-1)) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } m_planes.back().normal = normal_ptr->cast(); std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end()); } // Check that each facet is part of one of the planes. assert(std::none_of(m_face_to_plane.begin(), m_face_to_plane.end(), [](size_t val) { return val == size_t(-1); })); // Now we will walk around each of the planes and save vertices which form the border. const SurfaceMesh sm(m_its); const auto& face_to_plane = m_face_to_plane; auto& planes = m_planes; tbb::parallel_for(tbb::blocked_range(0, m_planes.size()), [&planes, &face_to_plane, &face_neighbors, &sm](const tbb::blocked_range& range) { for (size_t plane_id = range.begin(); plane_id != range.end(); ++plane_id) { const auto& facets = planes[plane_id].facets; planes[plane_id].borders.clear(); std::vector> visited(facets.size(), {false, false, false}); for (int face_id=0; face_id& last_border = planes[plane_id].borders.back(); last_border.reserve(4); last_border.emplace_back(sm.point(sm.source(he)).cast()); //Vertex_index target = sm.target(he); const Halfedge_index he_start = he; Face_index fi = he.face(); auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); assert(face_it != facets.end()); assert(*face_it == int(fi)); visited[face_it - facets.begin()][he.side()] = true; do { const Halfedge_index he_orig = he; he = sm.next_around_target(he); if (he.is_invalid()) goto PLANE_FAILURE; // For broken meshes, the iteration might never get back to he_orig. // Remember all halfedges we saw to break out of such infinite loops. boost::container::small_vector he_seen; while ( face_to_plane[sm.face(he)] == plane_id && he != he_orig) { he_seen.emplace_back(he); he = sm.next_around_target(he); if (he.is_invalid() || std::find(he_seen.begin(), he_seen.end(), he) != he_seen.end()) goto PLANE_FAILURE; } he = sm.opposite(he); if (he.is_invalid()) goto PLANE_FAILURE; Face_index fi = he.face(); auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi)); if (face_it == facets.end() || *face_it != int(fi)) // This indicates a broken mesh. goto PLANE_FAILURE; if (visited[face_it - facets.begin()][he.side()] && he != he_start) { last_border.resize(1); break; } visited[face_it - facets.begin()][he.side()] = true; last_border.emplace_back(sm.point(sm.source(he)).cast()); // In case of broken meshes, this loop might be infinite. Break // out in case it is clearly going bad. if (last_border.size() > 3*facets.size()+1) goto PLANE_FAILURE; } while (he != he_start); if (last_border.size() == 1) planes[plane_id].borders.pop_back(); else { assert(last_border.front() == last_border.back()); last_border.pop_back(); } } } continue; // There was no failure. PLANE_FAILURE: planes[plane_id].borders.clear(); }}); m_planes.shrink_to_fit(); } void MeasuringImpl::extract_features(int plane_idx) { assert(! m_planes[plane_idx].features_extracted); PlaneData& plane = m_planes[plane_idx]; plane.surface_features.clear(); const Vec3d& normal = plane.normal; Eigen::Quaterniond q; q.setFromTwoVectors(plane.normal, Vec3d::UnitZ()); Transform3d trafo = Transform3d::Identity(); trafo.rotate(q); const Transform3d trafo_inv = trafo.inverse(); std::vector angles; // placed in outer scope to prevent reallocations std::vector lengths; for (const std::vector& border : plane.borders) { if (border.size() <= 1) continue; bool done = false; if (border.size() > 4) { const auto& [center, radius, err] = get_center_and_radius(border, trafo, trafo_inv); if (err < 0.05) { // The whole border is one circle. Just add it into the list of features // and we are done. bool is_polygon = border.size()>4 && border.size()<=8; bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) { return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01); }); if (lengths_match && (is_polygon || border.size() > 8)) { if (is_polygon) { // This is a polygon, add the separate edges with the center. for (int j=0; j int { assert(std::abs(offset) < border_size); int out = idx+offset; if (out >= border_size) out = out - border_size; else if (out < 0) out = border_size + out; return out; }; // First calculate angles at all the vertices. angles.clear(); lengths.clear(); int first_different_angle_idx = 0; for (int i=0; i M_PI) angle = 2*M_PI - angle; angles.push_back(angle); lengths.push_back(v2.norm()); if (first_different_angle_idx == 0 && angles.size() > 1) { if (! are_angles_same(angles.back(), angles[angles.size()-2])) first_different_angle_idx = angles.size()-1; } } assert(border.size() == angles.size()); assert(border.size() == lengths.size()); // First go around the border and pick what might be circular segments. // Save pair of indices to where such potential segments start and end. // Also remember the length of these segments. int start_idx = -1; bool circle = false; bool first_iter = true; std::vector circles; std::vector edges; std::vector> circles_idxs; //std::vector circles_lengths; std::vector single_circle; // could be in loop-scope, but reallocations double single_circle_length = 0.; int first_pt_idx = offset_to_index(first_different_angle_idx, 1); int i = first_pt_idx; while (i != first_pt_idx || first_iter) { if (are_angles_same(angles[i], angles[offset_to_index(i,-1)]) && i != offset_to_index(first_pt_idx, -1) // not the last point && i != start_idx ) { // circle if (! circle) { circle = true; single_circle.clear(); single_circle_length = 0.; start_idx = offset_to_index(i, -2); single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] }; single_circle_length += lengths[offset_to_index(i, -1)]; } single_circle.emplace_back(border[i]); single_circle_length += lengths[i]; } else { if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle. single_circle.emplace_back(border[i]); single_circle_length += lengths[i]; bool accept_circle = true; { // Check that lengths of internal (!!!) edges match. int j = offset_to_index(start_idx, 3); while (j != i) { if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) { accept_circle = false; break; } j = offset_to_index(j, 1); } } if (accept_circle) { const auto& [center, radius, err] = get_center_and_radius(single_circle, trafo, trafo_inv); // Check that the fit went well. The tolerance is high, only to // reject complete failures. accept_circle &= err < 0.05; // If the segment subtends less than 90 degrees, throw it away. accept_circle &= single_circle_length / radius > 0.9*M_PI/2.; if (accept_circle) { // Add the circle and remember indices into borders. circles_idxs.emplace_back(start_idx, i); circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius)); } } } circle = false; } // Take care of the wrap around. first_iter = false; i = offset_to_index(i, 1); } // We have the circles. Now go around again and pick edges, while jumping over circles. if (circles_idxs.empty()) { // Just add all edges. for (int i=1; i 1 || circles_idxs.front().first != circles_idxs.front().second) { // There is at least one circular segment. Start at its end and add edges until the start of the next one. int i = circles_idxs.front().second; int circle_idx = 1; while (true) { i = offset_to_index(i, 1); edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i])); if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) { i = circles_idxs[circle_idx].second; ++circle_idx; } if (i == circles_idxs.front().first) break; } } // Merge adjacent edges where needed. assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; })); for (int i=edges.size()-1; i>=0; --i) { const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge(); const auto& [second_start, second_end] = edges[i].get_edge(); if (Slic3r::is_approx(first_end, second_start) && Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) { // The edges have the same direction and share a point. Merge them. edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end); edges.erase(edges.begin() + i); } } // Now move the circles and edges into the feature list for the plane. assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Circle; })); assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; })); plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()), std::make_move_iterator(circles.end())); plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()), std::make_move_iterator(edges.end())); } } // The last surface feature is the plane itself. Vec3d cog = Vec3d::Zero(); size_t counter = 0; for (const std::vector& b : plane.borders) { for (size_t i = 0; i < b.size(); ++i) { cog += b[i]; ++counter; } } cog /= double(counter); plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane, plane.normal, cog, std::optional(), plane_idx + 0.0001)); plane.borders.clear(); plane.borders.shrink_to_fit(); plane.features_extracted = true; } std::optional MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point, const Transform3d &world_tran) { if (face_idx >= m_face_to_plane.size()) return std::optional(); const PlaneData& plane = m_planes[m_face_to_plane[face_idx]]; if (! plane.features_extracted) extract_features(m_face_to_plane[face_idx]); size_t closest_feature_idx = size_t(-1); double min_dist = std::numeric_limits::max(); MeasurementResult res; SurfaceFeature point_sf(point); assert(plane.surface_features.empty() || plane.surface_features.back().get_type() == SurfaceFeatureType::Plane); for (size_t i=0; idist; if (dist < feature_hover_limit && dist < min_dist) { min_dist = std::min(dist, min_dist); closest_feature_idx = i; } } } if (closest_feature_idx != size_t(-1)) { const SurfaceFeature& f = plane.surface_features[closest_feature_idx]; if (f.get_type() == SurfaceFeatureType::Edge) { // If this is an edge, check if we are not close to the endpoint. If so, // we will include the endpoint as well. Close = 10% of the lenghth of // the edge, clamped between 0.025 and 0.5 mm. const auto& [sp, ep] = f.get_edge(); double len_sq = (ep-sp).squaredNorm(); double limit_sq = std::max(0.025*0.025, std::min(0.5*0.5, 0.1 * 0.1 * len_sq)); if ((point - sp).squaredNorm() < limit_sq) { SurfaceFeature local_f(sp); local_f.origin_surface_feature = std::make_shared(local_f); local_f.translate(world_tran); return std::make_optional(local_f); } if ((point - ep).squaredNorm() < limit_sq) { SurfaceFeature local_f(ep); local_f.origin_surface_feature = std::make_shared(local_f); local_f.translate(world_tran); return std::make_optional(local_f); } } SurfaceFeature f_tran(f); f_tran.origin_surface_feature = std::make_shared(f); f_tran.translate(world_tran); return std::make_optional(f_tran); } // Nothing detected, return the plane as a whole. assert(plane.surface_features.back().get_type() == SurfaceFeatureType::Plane); auto cur_plane = const_cast(&plane); SurfaceFeature f_tran(cur_plane->surface_features.back()); f_tran.origin_surface_feature = std::make_shared(cur_plane->surface_features.back()); f_tran.translate(world_tran); return std::make_optional(f_tran); } int MeasuringImpl::get_num_of_planes() const { return (m_planes.size()); } const std::vector& MeasuringImpl::get_plane_triangle_indices(int idx) const { assert(idx >= 0 && idx < int(m_planes.size())); return m_planes[idx].facets; } std::vector* MeasuringImpl::get_plane_tri_indices(int idx) { assert(idx >= 0 && idx < int(m_planes.size())); return &m_planes[idx].facets; } const std::vector& MeasuringImpl::get_plane_features(unsigned int plane_id) { assert(plane_id < m_planes.size()); if (! m_planes[plane_id].features_extracted) extract_features(plane_id); return m_planes[plane_id].surface_features; } std::vector* MeasuringImpl::get_plane_features_pointer(unsigned int plane_id) { assert(plane_id < m_planes.size()); if (!m_planes[plane_id].features_extracted) extract_features(plane_id); return &m_planes[plane_id].surface_features; } const indexed_triangle_set& MeasuringImpl::get_its() const { return this->m_its; } Measuring::Measuring(const indexed_triangle_set& its) : priv{std::make_unique(its)} {} Measuring::~Measuring() {} std::optional Measuring::get_feature(size_t face_idx, const Vec3d &point, const Transform3d &world_tran) const { return priv->get_feature(face_idx, point,world_tran); } int Measuring::get_num_of_planes() const { return priv->get_num_of_planes(); } const std::vector& Measuring::get_plane_triangle_indices(int idx) const { return priv->get_plane_triangle_indices(idx); } const std::vector& Measuring::get_plane_features(unsigned int plane_id) const { return priv->get_plane_features(plane_id); } const indexed_triangle_set& Measuring::get_its() const { return priv->get_its(); } const AngleAndEdges AngleAndEdges::Dummy = { 0.0, Vec3d::Zero(), { Vec3d::Zero(), Vec3d::Zero() }, { Vec3d::Zero(), Vec3d::Zero() }, 0.0, true }; static AngleAndEdges angle_edge_edge(const std::pair& e1, const std::pair& e2) { if (are_parallel(e1, e2)) return AngleAndEdges::Dummy; Vec3d e1_unit = edge_direction(e1.first, e1.second); Vec3d e2_unit = edge_direction(e2.first, e2.second); // project edges on the plane defined by them Vec3d normal = e1_unit.cross(e2_unit).normalized(); const Eigen::Hyperplane plane(normal, e1.first); Vec3d e11_proj = plane.projection(e1.first); Vec3d e12_proj = plane.projection(e1.second); Vec3d e21_proj = plane.projection(e2.first); Vec3d e22_proj = plane.projection(e2.second); const bool coplanar = (e2.first - e21_proj).norm() < EPSILON && (e2.second - e22_proj).norm() < EPSILON; // rotate the plane to become the XY plane auto qp = Eigen::Quaternion::FromTwoVectors(normal, Vec3d::UnitZ()); auto qp_inverse = qp.inverse(); const Vec3d e11_rot = qp * e11_proj; const Vec3d e12_rot = qp * e12_proj; const Vec3d e21_rot = qp * e21_proj; const Vec3d e22_rot = qp * e22_proj; // discard Z const Vec2d e11_rot_2d = Vec2d(e11_rot.x(), e11_rot.y()); const Vec2d e12_rot_2d = Vec2d(e12_rot.x(), e12_rot.y()); const Vec2d e21_rot_2d = Vec2d(e21_rot.x(), e21_rot.y()); const Vec2d e22_rot_2d = Vec2d(e22_rot.x(), e22_rot.y()); // find intersection (arc center) of edges in XY plane const Eigen::Hyperplane e1_rot_2d_line = Eigen::Hyperplane::Through(e11_rot_2d, e12_rot_2d); const Eigen::Hyperplane e2_rot_2d_line = Eigen::Hyperplane::Through(e21_rot_2d, e22_rot_2d); const Vec2d center_rot_2d = e1_rot_2d_line.intersection(e2_rot_2d_line); // arc center in original coordinate const Vec3d center = qp_inverse * Vec3d(center_rot_2d.x(), center_rot_2d.y(), e11_rot.z()); // ensure the edges are pointing away from the center std::pair out_e1 = e1; std::pair out_e2 = e2; if ((center_rot_2d - e11_rot_2d).squaredNorm() > (center_rot_2d - e12_rot_2d).squaredNorm()) { std::swap(e11_proj, e12_proj); std::swap(out_e1.first, out_e1.second); e1_unit = -e1_unit; } if ((center_rot_2d - e21_rot_2d).squaredNorm() > (center_rot_2d - e22_rot_2d).squaredNorm()) { std::swap(e21_proj, e22_proj); std::swap(out_e2.first, out_e2.second); e2_unit = -e2_unit; } // arc angle const double angle = std::acos(std::clamp(e1_unit.dot(e2_unit), -1.0, 1.0)); // arc radius const Vec3d e1_proj_mid = 0.5 * (e11_proj + e12_proj); const Vec3d e2_proj_mid = 0.5 * (e21_proj + e22_proj); const double radius = std::min((center - e1_proj_mid).norm(), (center - e2_proj_mid).norm()); return { angle, center, out_e1, out_e2, radius, coplanar }; } static AngleAndEdges angle_edge_plane(const std::pair& e, const std::tuple& p) { const auto& [idx, normal, origin] = p; Vec3d e1e2_unit = edge_direction(e); if (are_perpendicular(e1e2_unit, normal)) return AngleAndEdges::Dummy; // ensure the edge is pointing away from the intersection // 1st calculate instersection between edge and plane const Eigen::Hyperplane plane(normal, origin); const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); const Vec3d inters = line.intersectionPoint(plane); // then verify edge direction and revert it, if needed Vec3d e1 = e.first; Vec3d e2 = e.second; if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm()) { std::swap(e1, e2); e1e2_unit = -e1e2_unit; } if (are_parallel(e1e2_unit, normal)) { const std::array basis = orthonormal_basis(e1e2_unit); const double radius = (0.5 * (e1 + e2) - inters).norm(); const Vec3d edge_on_plane_dir = (basis[1].dot(origin - inters) >= 0.0) ? basis[1] : -basis[1]; std::pair edge_on_plane = std::make_pair(inters, inters + radius * edge_on_plane_dir); if (!inters.isApprox(e1)) { edge_on_plane.first += radius * edge_on_plane_dir; edge_on_plane.second += radius * edge_on_plane_dir; } return AngleAndEdges(0.5 * double(PI), inters, std::make_pair(e1, e2), edge_on_plane, radius, inters.isApprox(e1)); } const Vec3d e1e2 = e2 - e1; const double e1e2_len = e1e2.norm(); // calculate 2nd edge (on the plane) const Vec3d temp = normal.cross(e1e2); const Vec3d edge_on_plane_unit = normal.cross(temp).normalized(); std::pair edge_on_plane = { origin, origin + e1e2_len * edge_on_plane_unit }; // ensure the 2nd edge is pointing in the correct direction const Vec3d test_edge = (edge_on_plane.second - edge_on_plane.first).cross(e1e2); if (test_edge.dot(temp) < 0.0) edge_on_plane = { origin, origin - e1e2_len * edge_on_plane_unit }; AngleAndEdges ret = angle_edge_edge({ e1, e2 }, edge_on_plane); ret.radius = (inters - 0.5 * (e1 + e2)).norm(); return ret; } static AngleAndEdges angle_plane_plane(const std::tuple& p1, const std::tuple& p2) { const auto& [idx1, normal1, origin1] = p1; const auto& [idx2, normal2, origin2] = p2; // are planes parallel ? if (are_parallel(normal1, normal2)) return AngleAndEdges::Dummy; auto intersection_plane_plane = [](const Vec3d& n1, const Vec3d& o1, const Vec3d& n2, const Vec3d& o2) { Eigen::MatrixXd m(2, 3); m << n1.x(), n1.y(), n1.z(), n2.x(), n2.y(), n2.z(); Eigen::VectorXd b(2); b << o1.dot(n1), o2.dot(n2); Eigen::VectorXd x = m.colPivHouseholderQr().solve(b); return std::make_pair(n1.cross(n2).normalized(), Vec3d(x(0), x(1), x(2))); }; // Calculate intersection line between planes const auto [intersection_line_direction, intersection_line_origin] = intersection_plane_plane(normal1, origin1, normal2, origin2); // Project planes' origin on intersection line const Eigen::ParametrizedLine intersection_line = Eigen::ParametrizedLine(intersection_line_origin, intersection_line_direction); const Vec3d origin1_proj = intersection_line.projection(origin1); const Vec3d origin2_proj = intersection_line.projection(origin2); // Calculate edges on planes const Vec3d edge_on_plane1_unit = (origin1 - origin1_proj).normalized(); const Vec3d edge_on_plane2_unit = (origin2 - origin2_proj).normalized(); const double radius = std::max(10.0, std::max((origin1 - origin1_proj).norm(), (origin2 - origin2_proj).norm())); const std::pair edge_on_plane1 = { origin1_proj + radius * edge_on_plane1_unit, origin1_proj + 2.0 * radius * edge_on_plane1_unit }; const std::pair edge_on_plane2 = { origin2_proj + radius * edge_on_plane2_unit, origin2_proj + 2.0 * radius * edge_on_plane2_unit }; AngleAndEdges ret = angle_edge_edge(edge_on_plane1, edge_on_plane2); ret.radius = radius; return ret; } MeasurementResult get_measurement(const SurfaceFeature &a, const SurfaceFeature &b, bool deal_circle_result) { assert(a.get_type() != SurfaceFeatureType::Undef && b.get_type() != SurfaceFeatureType::Undef); const bool swap = int(a.get_type()) > int(b.get_type()); const SurfaceFeature& f1 = swap ? b : a; const SurfaceFeature& f2 = swap ? a : b; MeasurementResult result; /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// if (f1.get_type() == SurfaceFeatureType::Point) { if (f2.get_type() == SurfaceFeatureType::Point) { Vec3d diff = (f2.get_point() - f1.get_point()); result.distance_strict = std::make_optional(DistAndPoints{diff.norm(), f1.get_point(), f2.get_point()}); result.distance_xyz = diff; /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Edge) { const auto [s,e] = f2.get_edge(); const Eigen::ParametrizedLine line(s, (e-s).normalized()); const double dist_inf = line.distance(f1.get_point()); const Vec3d proj = line.projection(f1.get_point()); const double len_sq = (e-s).squaredNorm(); const double dist_start_sq = (proj-s).squaredNorm(); const double dist_end_sq = (proj-e).squaredNorm(); if (dist_start_sq < len_sq && dist_end_sq < len_sq) { // projection falls on the line - the strict distance is the same as infinite result.distance_strict = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); } else { // the result is the closer of the endpoints const bool s_is_closer = dist_start_sq < dist_end_sq; result.distance_strict = std::make_optional(DistAndPoints{std::sqrt(std::min(dist_start_sq, dist_end_sq) + sqr(dist_inf)), f1.get_point(), s_is_closer ? s : e}); } result.distance_infinite = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj}); /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Circle) { // Find a plane containing normal, center and the point. const auto [c, radius, n] = f2.get_circle(); const Eigen::Hyperplane circle_plane(n, c); const Vec3d proj = circle_plane.projection(f1.get_point()); if (proj.isApprox(c)) { const Vec3d p_on_circle = c + radius * get_orthogonal(n, true); result.distance_strict = std::make_optional(DistAndPoints{ radius, c, p_on_circle }); } else { if (deal_circle_result == false) { const Eigen::Hyperplane circle_plane(n, c); const Vec3d proj = circle_plane.projection(f1.get_point()); const double dist = std::sqrt(std::pow((proj - c).norm() - radius, 2.) + (f1.get_point() - proj).squaredNorm()); const Vec3d p_on_circle = c + radius * (proj - c).normalized(); result.distance_strict = std::make_optional(DistAndPoints{dist, f1.get_point(), p_on_circle}); } else { const double dist = (f1.get_point() - c).norm(); result.distance_strict = std::make_optional(DistAndPoints{dist, f1.get_point(), c}); } } /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { const auto [idx, normal, pt] = f2.get_plane(); Eigen::Hyperplane plane(normal, pt); result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(f1.get_point()), f1.get_point(), plane.projection(f1.get_point())}); // TODO // TODO: result.distance_strict = } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Edge) { if (f2.get_type() == SurfaceFeatureType::Edge) { std::vector distances; auto add_point_edge_distance = [&distances](const Vec3d& v, const std::pair& e) { const MeasurementResult res = get_measurement(SurfaceFeature(v), SurfaceFeature(SurfaceFeatureType::Edge, e.first, e.second)); double distance = res.distance_strict->dist; Vec3d v2 = res.distance_strict->to; const Vec3d e1e2 = e.second - e.first; const Vec3d e1v2 = v2 - e.first; if (e1v2.dot(e1e2) >= 0.0 && e1v2.norm() < e1e2.norm()) distances.emplace_back(distance, v, v2); }; std::pair e1 = f1.get_edge(); std::pair e2 = f2.get_edge(); distances.emplace_back((e2.first - e1.first).norm(), e1.first, e2.first); distances.emplace_back((e2.second - e1.first).norm(), e1.first, e2.second); distances.emplace_back((e2.first - e1.second).norm(), e1.second, e2.first); distances.emplace_back((e2.second - e1.second).norm(), e1.second, e2.second); add_point_edge_distance(e1.first, e2); add_point_edge_distance(e1.second, e2); add_point_edge_distance(e2.first, e1); add_point_edge_distance(e2.second, e1); auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(*it); result.angle = angle_edge_edge(f1.get_edge(), f2.get_edge()); /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Circle) { const std::pair e = f1.get_edge(); const auto &[center, radius, normal] = f2.get_circle(); const Vec3d e1e2 = (e.second - e.first); const Vec3d e1e2_unit = e1e2.normalized(); std::vector distances; distances.emplace_back(*get_measurement(SurfaceFeature(e.first), f2).distance_strict); distances.emplace_back(*get_measurement(SurfaceFeature(e.second), f2).distance_strict); const Eigen::Hyperplane plane(e1e2_unit, center); const Eigen::ParametrizedLine line = Eigen::ParametrizedLine::Through(e.first, e.second); const Vec3d inter = line.intersectionPoint(plane); const Vec3d e1inter = inter - e.first; if (e1inter.dot(e1e2) >= 0.0 && e1inter.norm() < e1e2.norm()) distances.emplace_back(*get_measurement(SurfaceFeature(inter), f2).distance_strict); auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints &item1, const DistAndPoints &item2) { return item1.dist < item2.dist; }); if (deal_circle_result == false) { result.distance_infinite = std::make_optional(DistAndPoints{it->dist, it->from, it->to}); } else{ const double dist = (it->from - center).norm(); result.distance_infinite = std::make_optional(DistAndPoints{dist, it->from, center}); } /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { const auto [from, to] = f1.get_edge(); const auto [idx, normal, origin] = f2.get_plane(); const Vec3d edge_unit = (to - from).normalized(); if (are_perpendicular(edge_unit, normal)) { std::vector distances; const Eigen::Hyperplane plane(normal, origin); distances.push_back(DistAndPoints{ plane.absDistance(from), from, plane.projection(from) }); distances.push_back(DistAndPoints{ plane.absDistance(to), to, plane.projection(to) }); auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); } else { auto plane_features = f2.world_plane_features; std::vector distances; for (const SurfaceFeature& sf : *plane_features) { if (sf.get_type() == SurfaceFeatureType::Edge) { const auto m = get_measurement(sf, f1); if (!m.distance_infinite.has_value()) { distances.clear(); break; } else distances.push_back(*m.distance_infinite); } } if (!distances.empty()) { auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); } } result.angle = angle_edge_plane(f1.get_edge(), f2.get_plane()); } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Circle) { if (f2.get_type() == SurfaceFeatureType::Circle) { const auto [c0, r0, n0] = f1.get_circle(); const auto [c1, r1, n1] = f2.get_circle(); // The following code is an adaptation of the algorithm found in: // https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/DistCircle3Circle3.h // and described in: // https://www.geometrictools.com/Documentation/DistanceToCircle3.pdf struct ClosestInfo { double sqrDistance{ 0.0 }; Vec3d circle0Closest{ Vec3d::Zero() }; Vec3d circle1Closest{ Vec3d::Zero() }; inline bool operator < (const ClosestInfo& other) const { return sqrDistance < other.sqrDistance; } }; std::array candidates{}; const double zero = 0.0; const Vec3d D = c1 - c0; if (!are_parallel(n0, n1)) { // Get parameters for constructing the degree-8 polynomial phi. const double one = 1.0; const double two = 2.0; const double r0sqr = sqr(r0); const double r1sqr = sqr(r1); // Compute U1 and V1 for the plane of circle1. const std::array basis = orthonormal_basis(n1); const Vec3d U1 = basis[0]; const Vec3d V1 = basis[1]; // Construct the polynomial phi(cos(theta)). const Vec3d N0xD = n0.cross(D); const Vec3d N0xU1 = n0.cross(U1); const Vec3d N0xV1 = n0.cross(V1); const double a0 = r1 * D.dot(U1); const double a1 = r1 * D.dot(V1); const double a2 = N0xD.dot(N0xD); const double a3 = r1 * N0xD.dot(N0xU1); const double a4 = r1 * N0xD.dot(N0xV1); const double a5 = r1sqr * N0xU1.dot(N0xU1); const double a6 = r1sqr * N0xU1.dot(N0xV1); const double a7 = r1sqr * N0xV1.dot(N0xV1); Polynomial1 p0{ a2 + a7, two * a3, a5 - a7 }; Polynomial1 p1{ two * a4, two * a6 }; Polynomial1 p2{ zero, a1 }; Polynomial1 p3{ -a0 }; Polynomial1 p4{ -a6, a4, two * a6 }; Polynomial1 p5{ -a3, a7 - a5 }; Polynomial1 tmp0{ one, zero, -one }; Polynomial1 tmp1 = p2 * p2 + tmp0 * p3 * p3; Polynomial1 tmp2 = two * p2 * p3; Polynomial1 tmp3 = p4 * p4 + tmp0 * p5 * p5; Polynomial1 tmp4 = two * p4 * p5; Polynomial1 p6 = p0 * tmp1 + tmp0 * p1 * tmp2 - r0sqr * tmp3; Polynomial1 p7 = p0 * tmp2 + p1 * tmp1 - r0sqr * tmp4; // Parameters for polynomial root finding. The roots[] array // stores the roots. We need only the unique ones, which is // the responsibility of the set uniqueRoots. The pairs[] // array stores the (cosine,sine) information mentioned in the // PDF. TODO: Choose the maximum number of iterations for root // finding based on specific polynomial data? const uint32_t maxIterations = 128; int32_t degree = 0; size_t numRoots = 0; std::array roots{}; std::set uniqueRoots{}; size_t numPairs = 0; std::array, 16> pairs{}; double temp = zero; double sn = zero; if (p7.GetDegree() > 0 || p7[0] != zero) { // H(cs,sn) = p6(cs) + sn * p7(cs) Polynomial1 phi = p6 * p6 - tmp0 * p7 * p7; degree = static_cast(phi.GetDegree()); assert(degree > 0); numRoots = RootsPolynomial::Find(degree, &phi[0], maxIterations, roots.data()); for (size_t i = 0; i < numRoots; ++i) { uniqueRoots.insert(roots[i]); } for (auto const& cs : uniqueRoots) { if (std::fabs(cs) <= one) { temp = p7(cs); if (temp != zero) { sn = -p6(cs) / temp; pairs[numPairs++] = std::make_pair(cs, sn); } else { temp = std::max(one - sqr(cs), zero); sn = std::sqrt(temp); pairs[numPairs++] = std::make_pair(cs, sn); if (sn != zero) pairs[numPairs++] = std::make_pair(cs, -sn); } } } } else { // H(cs,sn) = p6(cs) degree = static_cast(p6.GetDegree()); assert(degree > 0); numRoots = RootsPolynomial::Find(degree, &p6[0], maxIterations, roots.data()); for (size_t i = 0; i < numRoots; ++i) { uniqueRoots.insert(roots[i]); } for (auto const& cs : uniqueRoots) { if (std::fabs(cs) <= one) { temp = std::max(one - sqr(cs), zero); sn = std::sqrt(temp); pairs[numPairs++] = std::make_pair(cs, sn); if (sn != zero) pairs[numPairs++] = std::make_pair(cs, -sn); } } } for (size_t i = 0; i < numPairs; ++i) { ClosestInfo& info = candidates[i]; Vec3d delta = D + r1 * (pairs[i].first * U1 + pairs[i].second * V1); info.circle1Closest = c0 + delta; const double N0dDelta = n0.dot(delta); const double lenN0xDelta = n0.cross(delta).norm(); if (lenN0xDelta > 0.0) { const double diff = lenN0xDelta - r0; info.sqrDistance = sqr(N0dDelta) + sqr(diff); delta -= N0dDelta * n0; delta.normalize(); info.circle0Closest = c0 + r0 * delta; } else { const Vec3d r0U0 = r0 * get_orthogonal(n0, true); const Vec3d diff = delta - r0U0; info.sqrDistance = diff.dot(diff); info.circle0Closest = c0 + r0U0; } } std::sort(candidates.begin(), candidates.begin() + numPairs); } else { ClosestInfo& info = candidates[0]; const double N0dD = n0.dot(D); const Vec3d normProj = N0dD * n0; const Vec3d compProj = D - normProj; Vec3d U = compProj; const double d = U.norm(); U.normalize(); // The configuration is determined by the relative location of the // intervals of projection of the circles on to the D-line. // Circle0 projects to [-r0,r0] and circle1 projects to // [d-r1,d+r1]. const double dmr1 = d - r1; double distance; if (dmr1 >= r0) { // d >= r0 + r1 // The circles are separated (d > r0 + r1) or tangent with one // outside the other (d = r0 + r1). distance = dmr1 - r0; info.circle0Closest = c0 + r0 * U; info.circle1Closest = c1 - r1 * U; } else { // d < r0 + r1 // The cases implicitly use the knowledge that d >= 0. const double dpr1 = d + r1; if (dpr1 <= r0) { // Circle1 is inside circle0. distance = r0 - dpr1; if (d > 0.0) { info.circle0Closest = c0 + r0 * U; info.circle1Closest = c1 + r1 * U; } else { // The circles are concentric, so U = (0,0,0). // Construct a vector perpendicular to N0 to use for // closest points. U = get_orthogonal(n0, true); info.circle0Closest = c0 + r0 * U; info.circle1Closest = c1 + r1 * U; } } else if (dmr1 <= -r0) { // Circle0 is inside circle1. distance = -r0 - dmr1; if (d > 0.0) { info.circle0Closest = c0 - r0 * U; info.circle1Closest = c1 - r1 * U; } else { // The circles are concentric, so U = (0,0,0). // Construct a vector perpendicular to N0 to use for // closest points. U = get_orthogonal(n0, true); info.circle0Closest = c0 + r0 * U; info.circle1Closest = c1 + r1 * U; } } else { distance = (c1 - c0).norm(); info.circle0Closest = c0; info.circle1Closest = c1; } } info.sqrDistance = distance * distance; } if (deal_circle_result == false) { result.distance_infinite = std::make_optional( DistAndPoints{std::sqrt(candidates[0].sqrDistance), candidates[0].circle0Closest, candidates[0].circle1Closest}); // TODO } else { const double dist = (c0 - c1).norm(); result.distance_strict = std::make_optional(DistAndPoints{dist, c0, c1}); } /////////////////////////////////////////////////////////////////////////// } else if (f2.get_type() == SurfaceFeatureType::Plane) { const auto [center, radius, normal1] = f1.get_circle(); const auto [idx2, normal2, origin2] = f2.get_plane(); const bool coplanar = are_parallel(normal1, normal2) && Eigen::Hyperplane(normal1, center).absDistance(origin2) < EPSILON; if (!coplanar) { auto plane_features = f2.world_plane_features; std::vector distances; for (const SurfaceFeature& sf : *plane_features) { if (sf.get_type() == SurfaceFeatureType::Edge) { const auto m = get_measurement(sf, f1); if (!m.distance_infinite.has_value()) { distances.clear(); break; } else distances.push_back(*m.distance_infinite); } } if (!distances.empty()) { auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints& item1, const DistAndPoints& item2) { return item1.dist < item2.dist; }); result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to }); } else { const Eigen::Hyperplane plane(normal2, origin2); result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(center), center, plane.projection(center)}); } } else { result.distance_strict = std::make_optional(DistAndPoints{0, center, origin2}); } } /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////// } else if (f1.get_type() == SurfaceFeatureType::Plane) { const auto [idx1, normal1, pt1] = f1.get_plane(); const auto [idx2, normal2, pt2] = f2.get_plane(); if (are_parallel(normal1, normal2)) { // The planes are parallel, calculate distance. const Eigen::Hyperplane plane(normal2, pt2); result.distance_infinite = std::make_optional(DistAndPoints{ plane.absDistance(pt1), pt1, plane.projection(pt1) }); } else result.angle = angle_plane_plane(f1.get_plane(), f2.get_plane()); } if (swap) { auto swap_dist_and_points = [](DistAndPoints& dp) { auto back = dp.to; dp.to = dp.from; dp.from = back; }; if (result.distance_infinite.has_value()) { swap_dist_and_points(*result.distance_infinite); } if (result.distance_strict.has_value()) { swap_dist_and_points(*result.distance_strict); } } return result; } bool can_set_xyz_distance(const SurfaceFeature &a, const SurfaceFeature &b) { const bool swap = int(a.get_type()) > int(b.get_type()); const SurfaceFeature &f1 = swap ? b : a; const SurfaceFeature &f2 = swap ? a : b; if (f1.get_type() == SurfaceFeatureType::Point){ if (f2.get_type() == SurfaceFeatureType::Point) { return true; } } else if (f1.get_type() == SurfaceFeatureType::Circle) { if (f2.get_type() == SurfaceFeatureType::Circle) { return true; } } return false; } AssemblyAction get_assembly_action(const SurfaceFeature& a, const SurfaceFeature& b) { AssemblyAction action; const SurfaceFeature &f1 = a; const SurfaceFeature &f2 = b; if (f1.get_type() == SurfaceFeatureType::Plane) { action.can_set_feature_1_reverse_rotation = true; if (f2.get_type() == SurfaceFeatureType::Plane) { const auto [idx1, normal1, pt1] = f1.get_plane(); const auto [idx2, normal2, pt2] = f2.get_plane(); action.can_set_to_center_coincidence = true; action.can_set_feature_2_reverse_rotation = true; if (are_parallel(normal1, normal2)) { action.can_set_to_parallel = false; action.has_parallel_distance = true; action.can_around_center_of_faces = true; Vec3d proj_pt2; Measure::get_point_projection_to_plane(pt2, pt1, normal1, proj_pt2); action.parallel_distance = (pt2 - proj_pt2).norm(); if ((pt2 - proj_pt2).dot(normal1) < 0) { action.parallel_distance = -action.parallel_distance; } action.angle_radian = 0; } else { action.can_set_to_parallel = true; action.has_parallel_distance = false; action.can_around_center_of_faces = false; action.parallel_distance = 0; action.angle_radian = std::acos(std::clamp(normal2.dot(-normal1), -1.0, 1.0)); } } } return action; } void SurfaceFeature::translate(const Vec3d& displacement) { switch (get_type()) { case Measure::SurfaceFeatureType::Point: { m_pt1 = m_pt1 + displacement; break; } case Measure::SurfaceFeatureType::Edge: { m_pt1 = m_pt1 + displacement; m_pt2 = m_pt2 + displacement; if (m_pt3.has_value()) { //extra_point() m_pt3 = *m_pt3 + displacement; } break; } case Measure::SurfaceFeatureType::Plane: { //m_pt1 is normal; m_pt2 = m_pt2 + displacement; break; } case Measure::SurfaceFeatureType::Circle: { m_pt1 = m_pt1 + displacement; // m_pt2 is normal; break; } default: break; } } void SurfaceFeature::translate(const Transform3d &tran) { switch (get_type()) { case Measure::SurfaceFeatureType::Point: { m_pt1 = tran * m_pt1; break; } case Measure::SurfaceFeatureType::Edge: { m_pt1 = tran * m_pt1; m_pt2 = tran * m_pt2; if (m_pt3.has_value()) { // extra_point() m_pt3 = tran * *m_pt3; } break; } case Measure::SurfaceFeatureType::Plane: { // m_pt1 is normal; Vec3d temp_pt1 = m_pt2 + m_pt1; temp_pt1 = tran * temp_pt1; m_pt2 = tran * m_pt2; m_pt1 = (temp_pt1 - m_pt2).normalized(); break; } case Measure::SurfaceFeatureType::Circle: { // m_pt1 is center; // m_pt2 is normal; auto local_normal = m_pt2; auto local_center = m_pt1; Vec3d temp_pt2 = local_normal + local_center; temp_pt2 = tran * temp_pt2; m_pt1 = tran * m_pt1; auto world_center = m_pt1; m_pt2 = (temp_pt2 - m_pt1).normalized(); auto calc_world_radius = [&local_center, &local_normal, &tran, &world_center](const Vec3d &pt, double &value) { Vec3d intersection_pt; get_point_projection_to_plane(pt, local_center, local_normal, intersection_pt); auto local_radius_pt = (intersection_pt - local_center).normalized() * value + local_center; auto radius_pt = tran * local_radius_pt; value = (radius_pt - world_center).norm(); }; //m_value is radius auto new_pt = get_one_point_in_plane(local_center, local_normal); calc_world_radius(new_pt, m_value); break; } default: break; } } }//namespace Measure } // namespace Slic3r