#include "Model.hpp" #include "libslic3r.h" #include "BuildVolume.hpp" #include "ClipperUtils.hpp" #include "Exception.hpp" #include "Model.hpp" #include "ModelArrange.hpp" #include "Arrange.hpp" #include "Geometry.hpp" #include "MTUtils.hpp" #include "TriangleMeshSlicer.hpp" #include "TriangleSelector.hpp" #include "Format/AMF.hpp" #include "Format/svg.hpp" // BBS #include "FaceDetector.hpp" #include "libslic3r/Geometry/ConvexHull.hpp" #include #include #include #include #include #include #include #include #include "SVG.hpp" #include #include "GCodeWriter.hpp" // BBS: for segment #include "MeshBoolean.hpp" #include "Format/3mf.hpp" // Transtltion #include "I18N.hpp" // ModelIO support #ifdef __APPLE__ #include "Format/ModelIO.hpp" #endif #define _L(s) Slic3r::I18N::translate(s) namespace Slic3r { const std::vector CONST_FILAMENTS = { "", "4", "8", "0C", "1C", "2C", "3C", "4C", "5C", "6C", "7C", "8C", "9C", "AC", "BC", "CC", "DC", }; // 5 10 15 16 // BBS initialization of static variables std::map Model::extruderParamsMap = { {0,{"",0,0}}}; GlobalSpeedMap Model::printSpeedMap{}; Model& Model::assign_copy(const Model &rhs) { this->copy_id(rhs); // copy materials this->clear_materials(); this->materials = rhs.materials; for (std::pair &m : this->materials) { // Copy including the ID and m_model. m.second = new ModelMaterial(*m.second); m.second->set_model(this); } // copy objects this->clear_objects(); this->objects.reserve(rhs.objects.size()); for (const ModelObject *model_object : rhs.objects) { // Copy including the ID, leave ID set to invalid (zero). auto mo = ModelObject::new_copy(*model_object); mo->set_model(this); this->objects.emplace_back(mo); } // copy custom code per height // BBS this->plates_custom_gcodes = rhs.plates_custom_gcodes; this->curr_plate_index = rhs.curr_plate_index; if (rhs.calib_pa_pattern) { this->calib_pa_pattern = std::make_unique(CalibPressureAdvancePattern(*rhs.calib_pa_pattern)); } // BBS: for design info this->design_info = rhs.design_info; this->model_info = rhs.model_info; this->design_id = rhs.design_id; this->stl_design_id = rhs.stl_design_id; this->stl_design_country = rhs.stl_design_country; this->profile_info = rhs.profile_info; this->mk_name = rhs.mk_name; this->mk_version = rhs.mk_version; this->md_name = rhs.md_name; this->md_value = rhs.md_value; return *this; } Model& Model::assign_copy(Model &&rhs) { this->copy_id(rhs); // Move materials, adjust the parent pointer. this->clear_materials(); this->materials = std::move(rhs.materials); for (std::pair &m : this->materials) m.second->set_model(this); rhs.materials.clear(); // Move objects, adjust the parent pointer. this->clear_objects(); this->objects = std::move(rhs.objects); for (ModelObject *model_object : this->objects) model_object->set_model(this); rhs.objects.clear(); // copy custom code per height // BBS this->plates_custom_gcodes = std::move(rhs.plates_custom_gcodes); this->curr_plate_index = rhs.curr_plate_index; this->calib_pa_pattern = std::move(rhs.calib_pa_pattern); //BBS: add auxiliary path logic // BBS: backup, all in one temp dir this->design_id = rhs.design_id; this->stl_design_id = rhs.stl_design_id; this->stl_design_country = rhs.stl_design_country; this->mk_name = rhs.mk_name; this->mk_version = rhs.mk_version; this->md_name = rhs.md_name; this->md_value = rhs.md_value; this->backup_path = std::move(rhs.backup_path); this->object_backup_id_map = std::move(rhs.object_backup_id_map); this->next_object_backup_id = rhs.next_object_backup_id; this->design_info = rhs.design_info; rhs.design_info.reset(); this->model_info = rhs.model_info; rhs.model_info.reset(); this->profile_info = rhs.profile_info; rhs.profile_info.reset(); return *this; } void Model::assign_new_unique_ids_recursive() { this->set_new_unique_id(); for (std::pair &m : this->materials) m.second->assign_new_unique_ids_recursive(); for (ModelObject *model_object : this->objects) model_object->assign_new_unique_ids_recursive(); } void Model::update_links_bottom_up_recursive() { for (std::pair &kvp : this->materials) kvp.second->set_model(this); for (ModelObject *model_object : this->objects) { model_object->set_model(this); for (ModelInstance *model_instance : model_object->instances) model_instance->set_model_object(model_object); for (ModelVolume *model_volume : model_object->volumes) model_volume->set_model_object(model_object); } } Model::~Model() { this->clear_objects(); this->clear_materials(); // BBS: clear backup dir of temparary model if (!backup_path.empty()) Slic3r::remove_backup(*this, true); } // BBS: add part plate related logic // BBS: backup & restore // Loading model from a file, it may be a simple geometry file as STL or OBJ, however it may be a project file as well. Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, LoadStrategy options, PlateDataPtrs* plate_data, std::vector* project_presets, bool *is_xxx, Semver* file_version, Import3mfProgressFn proFn, ImportstlProgressFn stlFn, ImportStepProgressFn stepFn, StepIsUtf8Fn stepIsUtf8Fn, BBLProject * project, int plate_id, ObjImportColorFn objFn) { Model model; DynamicPrintConfig temp_config; ConfigSubstitutionContext temp_config_substitutions_context(ForwardCompatibilitySubstitutionRule::EnableSilent); if (config == nullptr) config = &temp_config; if (config_substitutions == nullptr) config_substitutions = &temp_config_substitutions_context; //BBS: plate_data PlateDataPtrs temp_plate_data; bool temp_is_xxx; Semver temp_version; if (plate_data == nullptr) plate_data = &temp_plate_data; if (is_xxx == nullptr) is_xxx = &temp_is_xxx; if (file_version == nullptr) file_version = &temp_version; bool result = false; bool is_cb_cancel = false; std::string message; if (boost::algorithm::iends_with(input_file, ".stp") || boost::algorithm::iends_with(input_file, ".step")) result = load_step(input_file.c_str(), &model, is_cb_cancel, stepFn, stepIsUtf8Fn); else if (boost::algorithm::iends_with(input_file, ".stl")) result = load_stl(input_file.c_str(), &model, nullptr, stlFn); else if (boost::algorithm::iends_with(input_file, ".oltp")) result = load_stl(input_file.c_str(), &model, nullptr, stlFn,256); else if (boost::algorithm::iends_with(input_file, ".obj")) { ObjInfo obj_info; result = load_obj(input_file.c_str(), &model, obj_info, message); if (result){ unsigned char first_extruder_id; if (obj_info.vertex_colors.size() > 0) { std::vector vertex_filament_ids; if (objFn) { // 1.result is ok and pop up a dialog objFn(obj_info.vertex_colors, false, vertex_filament_ids, first_extruder_id); if (vertex_filament_ids.size() > 0) { result = obj_import_vertex_color_deal(vertex_filament_ids, first_extruder_id, & model); } } } else if (obj_info.face_colors.size() > 0 && obj_info.has_uv_png == false) { // mtl file std::vector face_filament_ids; if (objFn) { // 1.result is ok and pop up a dialog objFn(obj_info.face_colors, obj_info.is_single_mtl, face_filament_ids, first_extruder_id); if (face_filament_ids.size() > 0) { result = obj_import_face_color_deal(face_filament_ids, first_extruder_id, &model); } } } /*else if (obj_info.has_uv_png && obj_info.uvs.size() > 0) { boost::filesystem::path full_path(input_file); std::string obj_directory = full_path.parent_path().string(); obj_info.obj_dircetory = obj_directory; result = false; message = _L("Importing obj with png function is developing."); }*/ } } else if (boost::algorithm::iends_with(input_file, ".svg")) result = load_svg(input_file.c_str(), &model, message); //BBS: remove the old .amf.xml files //else if (boost::algorithm::iends_with(input_file, ".amf") || boost::algorithm::iends_with(input_file, ".amf.xml")) else if (boost::algorithm::iends_with(input_file, ".amf")) //BBS: is_xxx is used for is_inches when load amf result = load_amf(input_file.c_str(), config, config_substitutions, &model, is_xxx); else if (boost::algorithm::iends_with(input_file, ".3mf")) //BBS: add part plate related logic // BBS: backup & restore //FIXME options & LoadStrategy::CheckVersion ? //BBS: is_xxx is used for is_bbs_3mf when load 3mf result = load_bbs_3mf(input_file.c_str(), config, config_substitutions, &model, plate_data, project_presets, is_xxx, file_version, proFn, options, project, plate_id); #ifdef __APPLE__ else if (boost::algorithm::iends_with(input_file, ".usd") || boost::algorithm::iends_with(input_file, ".usda") || boost::algorithm::iends_with(input_file, ".usdc") || boost::algorithm::iends_with(input_file, ".usdz") || boost::algorithm::iends_with(input_file, ".abc") || boost::algorithm::iends_with(input_file, ".ply")) { std::string temp_stl = make_temp_stl_with_modelio(input_file); if (temp_stl.empty()) { throw Slic3r::RuntimeError("Failed to convert asset to STL via ModelIO."); } result = load_stl(temp_stl.c_str(), &model); delete_temp_file(temp_stl); } #endif else throw Slic3r::RuntimeError(_L("Unknown file format. Input file must have .stl, .obj, .amf(.xml) extension.")); if (is_cb_cancel) { Model empty_model; return empty_model; } if (!result) { if (message.empty()) throw Slic3r::RuntimeError(_L("Loading of a model file failed.")); else throw Slic3r::RuntimeError(message); } if (model.objects.empty()) throw Slic3r::RuntimeError(_L("The supplied file couldn't be read because it's empty")); for (ModelObject *o : model.objects) o->input_file = input_file; if (options & LoadStrategy::AddDefaultInstances) model.add_default_instances(); //BBS //CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config); //BBS for (auto& plate_gcodes : model.plates_custom_gcodes) CustomGCode::check_mode_for_custom_gcode_per_print_z(plate_gcodes.second); sort_remove_duplicates(config_substitutions->substitutions); return model; } //BBS: add part plate related logic // BBS: backup & restore // Loading model from a file (3MF or AMF), not from a simple geometry file (STL or OBJ). Model Model::read_from_archive(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, En3mfType& out_file_type, LoadStrategy options, PlateDataPtrs* plate_data, std::vector* project_presets, Semver* file_version, Import3mfProgressFn proFn, BBLProject *project) { assert(config != nullptr); assert(config_substitutions != nullptr); Model model; bool result = false; bool is_bbl_3mf; if (boost::algorithm::iends_with(input_file, ".3mf")) { PrusaFileParser prusa_file_parser; if (prusa_file_parser.check_3mf_from_prusa(input_file)) { // for Prusa 3mf result = load_3mf(input_file.c_str(), *config, *config_substitutions, &model, true); out_file_type = En3mfType::From_Prusa; } else { // BBS: add part plate related logic // BBS: backup & restore result = load_bbs_3mf(input_file.c_str(), config, config_substitutions, &model, plate_data, project_presets, &is_bbl_3mf, file_version, proFn, options, project); } } else if (boost::algorithm::iends_with(input_file, ".zip.amf")) result = load_amf(input_file.c_str(), config, config_substitutions, &model, &is_bbl_3mf); else throw Slic3r::RuntimeError(_L("Unknown file format. Input file must have .3mf or .zip.amf extension.")); if (out_file_type != En3mfType::From_Prusa) { out_file_type = is_bbl_3mf ? En3mfType::From_BBS : En3mfType::From_Other; } if (!result) throw Slic3r::RuntimeError(_L("Loading of a model file failed.")); for (ModelObject *o : model.objects) { // if (boost::algorithm::iends_with(input_file, ".zip.amf")) // { // // we remove the .zip part of the extension to avoid it be added to filenames when exporting // o->input_file = boost::ireplace_last_copy(input_file, ".zip.", "."); // } // else o->input_file = input_file; } bool cb_cancel; if (options & LoadStrategy::AddDefaultInstances) { model.add_default_instances(); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" <<__LINE__ << boost::format("import 3mf IMPORT_STAGE_ADD_INSTANCE\n"); if (proFn) { proFn(IMPORT_STAGE_ADD_INSTANCE, 0, 1, cb_cancel); if (cb_cancel) throw Slic3r::RuntimeError(_L("Canceled")); } } //BBS //CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" << __LINE__ << boost::format("import 3mf IMPORT_STAGE_UPDATE_GCODE\n"); if (proFn) { proFn(IMPORT_STAGE_UPDATE_GCODE, 0, 1, cb_cancel); if (cb_cancel) throw Slic3r::RuntimeError(_L("Canceled")); } //BBS for (auto& plate_gcodes : model.plates_custom_gcodes) CustomGCode::check_mode_for_custom_gcode_per_print_z(plate_gcodes.second); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ":" << __LINE__ << boost::format("import 3mf IMPORT_STAGE_CHECK_MODE_GCODE\n"); if (proFn) { proFn(IMPORT_STAGE_CHECK_MODE_GCODE, 0, 1, cb_cancel); if (cb_cancel) throw Slic3r::RuntimeError(_L("Canceled")); } handle_legacy_sla(*config); return model; } ModelObject* Model::add_object() { this->objects.emplace_back(new ModelObject(this)); return this->objects.back(); } ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh) { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); new_object->name = name; new_object->input_file = path; ModelVolume *new_volume = new_object->add_volume(mesh); new_volume->name = name; new_volume->source.input_file = path; new_volume->source.object_idx = (int)this->objects.size() - 1; new_volume->source.volume_idx = (int)new_object->volumes.size() - 1; // BBS: set extruder id to 1 if (!new_object->config.has("extruder") || new_object->config.extruder() == 0) new_object->config.set_key_value("extruder", new ConfigOptionInt(1)); new_object->invalidate_bounding_box(); return new_object; } ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh) { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); new_object->name = name; new_object->input_file = path; ModelVolume *new_volume = new_object->add_volume(std::move(mesh)); new_volume->name = name; new_volume->source.input_file = path; new_volume->source.object_idx = (int)this->objects.size() - 1; new_volume->source.volume_idx = (int)new_object->volumes.size() - 1; // BBS: set default extruder id to 1 if (!new_object->config.has("extruder") || new_object->config.extruder() == 0) new_object->config.set_key_value("extruder", new ConfigOptionInt(1)); new_object->invalidate_bounding_box(); return new_object; } ModelObject* Model::add_object(const ModelObject &other) { ModelObject* new_object = ModelObject::new_clone(other); new_object->set_model(this); // BBS: set default extruder id to 1 if (!new_object->config.has("extruder") || new_object->config.extruder() == 0) new_object->config.set_key_value("extruder", new ConfigOptionInt(1)); this->objects.push_back(new_object); // BBS: backup if (need_backup) { if (auto model = other.get_model()) { auto iter = object_backup_id_map.find(other.id().id); if (iter != object_backup_id_map.end()) { object_backup_id_map.emplace(new_object->id().id, iter->second); object_backup_id_map.erase(iter); return new_object; } } Slic3r::save_object_mesh(*new_object); } return new_object; } void Model::delete_object(size_t idx) { ModelObjectPtrs::iterator i = this->objects.begin() + idx; // BBS: backup Slic3r::delete_object_mesh(**i); delete *i; this->objects.erase(i); } bool Model::delete_object(ModelObject* object) { if (object != nullptr) { size_t idx = 0; for (ModelObject *model_object : objects) { if (model_object == object) { // BBS: backup Slic3r::delete_object_mesh(*model_object); delete model_object; objects.erase(objects.begin() + idx); return true; } ++ idx; } } return false; } bool Model::delete_object(ObjectID id) { if (id.id != 0) { size_t idx = 0; for (ModelObject *model_object : objects) { if (model_object->id() == id) { // BBS: backup Slic3r::delete_object_mesh(*model_object); delete model_object; objects.erase(objects.begin() + idx); return true; } ++ idx; } } return false; } void Model::clear_objects() { for (ModelObject* o : this->objects) { // BBS: backup Slic3r::delete_object_mesh(*o); delete o; } this->objects.clear(); object_backup_id_map.clear(); next_object_backup_id = 1; } // BBS: backup, reuse objects void Model::collect_reusable_objects(std::vector& objects) { for (ModelObject* model_object : this->objects) { objects.push_back(model_object); for (ModelVolume* model_volume : model_object->volumes) objects.push_back(model_volume); std::transform(model_object->volumes.begin(), model_object->volumes.end(), std::back_inserter(model_object->volume_ids), std::mem_fn(&ObjectBase::id)); model_object->volumes.clear(); } // we never own these objects this->objects.clear(); } void Model::set_object_backup_id(ModelObject const& object, int uuid) { object_backup_id_map[object.id().id] = uuid; if (uuid >= next_object_backup_id) next_object_backup_id = uuid + 1; } int Model::get_object_backup_id(ModelObject const& object) { auto i = object_backup_id_map.find(object.id().id); if (i == object_backup_id_map.end()) { i = object_backup_id_map.insert(std::make_pair(object.id().id, next_object_backup_id++)).first; } return i->second; } int Model::get_object_backup_id(ModelObject const& object) const { return object_backup_id_map.find(object.id().id)->second; } void Model::delete_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i != this->materials.end()) { delete i->second; this->materials.erase(i); } } void Model::clear_materials() { for (auto &m : this->materials) delete m.second; this->materials.clear(); } ModelMaterial* Model::add_material(t_model_material_id material_id) { assert(! material_id.empty()); ModelMaterial* material = this->get_material(material_id); if (material == nullptr) material = this->materials[material_id] = new ModelMaterial(this); return material; } ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other) { assert(! material_id.empty()); // delete existing material if any ModelMaterial* material = this->get_material(material_id); delete material; // set new material material = new ModelMaterial(other); material->set_model(this); this->materials[material_id] = material; return material; } // makes sure all objects have at least one instance bool Model::add_default_instances() { // apply a default position to all objects not having one for (ModelObject *o : this->objects) if (o->instances.empty()) o->add_instance(); return true; } // this returns the bounding box of the *transformed* instances BoundingBoxf3 Model::bounding_box() const { BoundingBoxf3 bb; for (ModelObject *o : this->objects) bb.merge(o->bounding_box()); return bb; } unsigned int Model::update_print_volume_state(const BuildVolume &build_volume) { unsigned int num_printable = 0; for (ModelObject* model_object : this->objects) num_printable += model_object->update_instances_print_volume_state(build_volume); //BBS: add logs for build_volume const BoundingBoxf3& print_volume = build_volume.bounding_volume(); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", print_volume {%1%, %2%, %3%} to {%4%, %5%, %6%}, got %7% printable istances")\ %print_volume.min.x() %print_volume.min.y() %print_volume.min.z()%print_volume.max.x() %print_volume.max.y() %print_volume.max.z() %num_printable; return num_printable; } bool Model::center_instances_around_point(const Vec2d &point) { BoundingBoxf3 bb; for (ModelObject *o : this->objects) for (size_t i = 0; i < o->instances.size(); ++ i) bb.merge(o->instance_bounding_box(i, false)); Vec2d shift2 = point - to_2d(bb.center()); if (std::abs(shift2(0)) < EPSILON && std::abs(shift2(1)) < EPSILON) // No significant shift, don't do anything. return false; Vec3d shift3 = Vec3d(shift2(0), shift2(1), 0.0); for (ModelObject *o : this->objects) { for (ModelInstance *i : o->instances) i->set_offset(i->get_offset() + shift3); o->invalidate_bounding_box(); } return true; } // flattens everything to a single mesh TriangleMesh Model::mesh() const { TriangleMesh mesh; for (const ModelObject *o : this->objects) mesh.merge(o->mesh()); return mesh; } void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist) { if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects"; if (this->objects.empty()) throw "No objects!"; ModelObject* object = this->objects.front(); object->clear_instances(); Vec3d ext_size = object->bounding_box().size() + dist * Vec3d::Ones(); for (size_t x_copy = 1; x_copy <= x; ++x_copy) { for (size_t y_copy = 1; y_copy <= y; ++y_copy) { ModelInstance* instance = object->add_instance(); instance->set_offset(Vec3d(ext_size(0) * (double)(x_copy - 1), ext_size(1) * (double)(y_copy - 1), 0.0)); } } } bool Model::looks_like_multipart_object() const { if (this->objects.size() <= 1) return false; double zmin = std::numeric_limits::max(); for (const ModelObject *obj : this->objects) { if (obj->volumes.size() > 1 || obj->config.keys().size() > 1) return false; double zmin_this = obj->get_min_z(); if (zmin == std::numeric_limits::max()) zmin = zmin_this; else if (std::abs(zmin - zmin_this) > EPSILON) // The Object don't share zmin. return true; } return false; } // Generate next extruder ID string, in the range of (1, max_extruders). static inline int auto_extruder_id(unsigned int max_extruders, unsigned int &cntr) { int out = ++ cntr; if (cntr == max_extruders) cntr = 0; return out; } void Model::convert_multipart_object(unsigned int max_extruders) { assert(this->objects.size() >= 2); if (this->objects.size() < 2) return; ModelObject* object = new ModelObject(this); object->input_file = this->objects.front()->input_file; object->name = boost::filesystem::path(this->objects.front()->input_file).stem().string(); //FIXME copy the config etc? unsigned int extruder_counter = 0; for (const ModelObject* o : this->objects) for (const ModelVolume* v : o->volumes) { // If there are more than one object, put all volumes together // Each object may contain any number of volumes and instances // The volumes transformations are relative to the object containing them... Geometry::Transformation trafo_volume = v->get_transformation(); // Revert the centering operation. trafo_volume.set_offset(trafo_volume.get_offset() - o->origin_translation); int counter = 1; auto copy_volume = [o, v, max_extruders, &counter, &extruder_counter](ModelVolume *new_v) { assert(new_v != nullptr); new_v->name = (counter > 1) ? o->name + "_" + std::to_string(counter++) : o->name; //BBS: Use extruder priority: volumn > object > default if (v->config.option("extruder")) new_v->config.set("extruder", v->config.extruder()); else if (o->config.option("extruder")) new_v->config.set("extruder", o->config.extruder()); return new_v; }; if (o->instances.empty()) { copy_volume(object->add_volume(*v))->set_transformation(trafo_volume); } else { for (const ModelInstance* i : o->instances) // ...so, transform everything to a common reference system (world) copy_volume(object->add_volume(*v))->set_transformation(i->get_transformation() * trafo_volume); } } // commented-out to fix #2868 // object->add_instance(); // object->instances[0]->set_offset(object->raw_mesh_bounding_box().center()); this->clear_objects(); this->objects.push_back(object); } static constexpr const double volume_threshold_inches = 8.0; // 9 = 2*2*2; bool Model::looks_like_imperial_units() const { if (this->objects.size() == 0) return false; for (ModelObject* obj : this->objects) if (obj->get_object_stl_stats().volume < volume_threshold_inches) { if (!obj->is_cut()) return true; bool all_cut_parts_look_like_imperial_units = true; for (ModelObject* obj_other : this->objects) { if (obj_other == obj) continue; if (obj_other->cut_id.is_equal(obj->cut_id) && obj_other->get_object_stl_stats().volume >= volume_threshold_inches) { all_cut_parts_look_like_imperial_units = false; break; } } if (all_cut_parts_look_like_imperial_units) return true; } return false; } void Model::convert_from_imperial_units(bool only_small_volumes) { static constexpr const float in_to_mm = 25.4f; for (ModelObject* obj : this->objects) if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_inches) { obj->scale_mesh_after_creation(in_to_mm); for (ModelVolume* v : obj->volumes) { assert(! v->source.is_converted_from_meters); v->source.is_converted_from_inches = true; } } } static constexpr const double volume_threshold_meters = 0.008; // 0.008 = 0.2*0.2*0.2 bool Model::looks_like_saved_in_meters() const { if (this->objects.size() == 0) return false; for (ModelObject* obj : this->objects) if (obj->get_object_stl_stats().volume < volume_threshold_meters) return true; return false; } void Model::convert_from_meters(bool only_small_volumes) { static constexpr const double m_to_mm = 1000; for (ModelObject* obj : this->objects) if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_meters) { obj->scale_mesh_after_creation(m_to_mm); for (ModelVolume* v : obj->volumes) { assert(! v->source.is_converted_from_inches); v->source.is_converted_from_meters = true; } } } static constexpr const double zero_volume = 0.0000000001; int Model::removed_objects_with_zero_volume() { if (objects.size() == 0) return 0; int removed = 0; for (int i = int(objects.size()) - 1; i >= 0; i--) if (objects[i]->get_object_stl_stats().volume < zero_volume) { delete_object(size_t(i)); removed++; } return removed; } void Model::adjust_min_z() { if (objects.empty()) return; if (bounding_box().min(2) < 0.0) { for (ModelObject* obj : objects) { if (obj != nullptr) { coordf_t obj_min_z = obj->bounding_box().min(2); if (obj_min_z < 0.0) obj->translate_instances(Vec3d(0.0, 0.0, -obj_min_z)); } } } } // Propose a filename including path derived from the ModelObject's input path. // If object's name is filled in, use the object name, otherwise use the input name. std::string Model::propose_export_file_name_and_path() const { std::string input_file; for (const ModelObject *model_object : this->objects) for (ModelInstance *model_instance : model_object->instances) if (model_instance->is_printable()) { input_file = model_object->get_export_filename(); if (!input_file.empty()) goto end; // Other instances will produce the same name, skip them. break; } end: return input_file; } //BBS: add auxiliary files temp path // BBS: backup all in one dir std::string Model::get_auxiliary_file_temp_path() { return get_backup_path("/Auxiliaries"); } // BBS: backup dir std::string Model::get_backup_path() { if (backup_path.empty()) { auto pid = get_current_pid(); boost::filesystem::path parent_path(temporary_dir()); std::time_t t = std::time(0); std::tm* now_time = std::localtime(&t); std::stringstream buf; buf << "/bamboo_model/"; buf << std::put_time(now_time, "%a_%b_%d/%H_%M_%S#"); buf << pid << "#"; buf << this->id().id; backup_path = parent_path.string() + buf.str(); BOOST_LOG_TRIVIAL(info) << boost::format("model %1%, id %2%, backup_path empty, set to %3%")%this%this->id().id%backup_path; boost::filesystem::path temp_path(backup_path); if (boost::filesystem::exists(temp_path)) { BOOST_LOG_TRIVIAL(info) << boost::format("model %1%, id %2%, remove previous %3%")%this%this->id().id%backup_path; boost::filesystem::remove_all(temp_path); } } boost::filesystem::path temp_path(backup_path); try { if (!boost::filesystem::exists(temp_path)) { BOOST_LOG_TRIVIAL(info) << "create /3D/Objects in " << temp_path; boost::filesystem::create_directories(backup_path + "/3D/Objects"); BOOST_LOG_TRIVIAL(info) << "create /Metadata in " << temp_path; boost::filesystem::create_directories(backup_path + "/Metadata"); BOOST_LOG_TRIVIAL(info) << "create /lock.txt in " << temp_path; boost::filesystem::save_string_file(backup_path + "/lock.txt", boost::lexical_cast(get_current_pid())); } } catch (std::exception &ex) { BOOST_LOG_TRIVIAL(error) << "Failed to create backup path" << temp_path << ": " << ex.what(); } return backup_path; } void Model::remove_backup_path_if_exist() { if (!backup_path.empty()) { boost::filesystem::path temp_path(backup_path); if (boost::filesystem::exists(temp_path)) { BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format("model %1%, id %2% remove backup_path %3%")%this%this->id().id%backup_path; boost::filesystem::remove_all(temp_path); } backup_path.clear(); } } std::string Model::get_backup_path(const std::string &sub_path) { auto path = get_backup_path() + "/" + sub_path; try { if (!boost::filesystem::exists(path)) { BOOST_LOG_TRIVIAL(info) << "create missing sub_path" << path; boost::filesystem::create_directories(path); } } catch (std::exception &ex) { BOOST_LOG_TRIVIAL(error) << "Failed to create missing sub_path" << path << ": " << ex.what(); } return path; } void Model::set_backup_path(std::string const& path) { if (backup_path == path) return; if ("detach" == path) { backup_path.clear(); return; } if (!backup_path.empty()) { BOOST_LOG_TRIVIAL(info) << __FUNCTION__<id().id%backup_path; Slic3r::remove_backup(*this, true); } backup_path = path; BOOST_LOG_TRIVIAL(info) << __FUNCTION__<id().id%backup_path; } void Model::load_from(Model& model) { set_backup_path(model.get_backup_path()); model.backup_path.clear(); object_backup_id_map = model.object_backup_id_map; next_object_backup_id = model.next_object_backup_id; design_info = model.design_info; design_id = model.design_id; stl_design_id = model.stl_design_id; stl_design_country = model.stl_design_country; model_info = model.model_info; profile_info = model.profile_info; mk_name = model.mk_name; mk_version = model.mk_version; md_name = model.md_name; md_value = model.md_value; model.design_info.reset(); model.model_info.reset(); model.profile_info.reset(); model.calib_pa_pattern.reset(); } // BBS: backup void Model::set_need_backup() { need_backup = true; } std::string Model::propose_export_file_name_and_path(const std::string &new_extension) const { return boost::filesystem::path(this->propose_export_file_name_and_path()).replace_extension(new_extension).string(); } bool Model::is_fdm_support_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_fdm_support_painted(); }); } bool Model::is_seam_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_seam_painted(); }); } bool Model::is_mm_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_mm_painted(); }); } static void add_cut_volume(TriangleMesh& mesh, ModelObject* object, const ModelVolume* src_volume, const Transform3d& cut_matrix, const std::string& suffix = {}, ModelVolumeType type = ModelVolumeType::MODEL_PART) { if (mesh.empty()) return; mesh.transform(cut_matrix); ModelVolume* vol = object->add_volume(mesh); vol->set_type(type); vol->name = src_volume->name + suffix; // Don't copy the config's ID. vol->config.assign_config(src_volume->config); assert(vol->config.id().valid()); assert(vol->config.id() != src_volume->config.id()); vol->set_material(src_volume->material_id(), *src_volume->material()); vol->cut_info = src_volume->cut_info; } ModelObject::~ModelObject() { this->clear_volumes(); this->clear_instances(); } // maintains the m_model pointer ModelObject& ModelObject::assign_copy(const ModelObject &rhs) { assert(this->id().invalid() || this->id() == rhs.id()); assert(this->config.id().invalid() || this->config.id() == rhs.config.id()); this->copy_id(rhs); this->name = rhs.name; //BBS: add module name this->module_name = rhs.module_name; this->input_file = rhs.input_file; // Copies the config's ID this->config = rhs.config; assert(this->config.id() == rhs.config.id()); this->sla_support_points = rhs.sla_support_points; this->sla_points_status = rhs.sla_points_status; this->sla_drain_holes = rhs.sla_drain_holes; this->layer_config_ranges = rhs.layer_config_ranges; this->layer_height_profile = rhs.layer_height_profile; this->printable = rhs.printable; this->origin_translation = rhs.origin_translation; this->cut_id.copy(rhs.cut_id); m_bounding_box = rhs.m_bounding_box; m_bounding_box_valid = rhs.m_bounding_box_valid; m_raw_bounding_box = rhs.m_raw_bounding_box; m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid; m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box; m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid; this->clear_volumes(); this->volumes.reserve(rhs.volumes.size()); for (ModelVolume *model_volume : rhs.volumes) { this->volumes.emplace_back(new ModelVolume(*model_volume)); this->volumes.back()->set_model_object(this); } this->clear_instances(); this->instances.reserve(rhs.instances.size()); for (const ModelInstance *model_instance : rhs.instances) { this->instances.emplace_back(new ModelInstance(*model_instance)); this->instances.back()->set_model_object(this); } return *this; } // maintains the m_model pointer ModelObject& ModelObject::assign_copy(ModelObject &&rhs) { assert(this->id().invalid()); this->copy_id(rhs); this->name = std::move(rhs.name); //BBS: add module name this->module_name = std::move(rhs.module_name); this->input_file = std::move(rhs.input_file); // Moves the config's ID this->config = std::move(rhs.config); assert(this->config.id() == rhs.config.id()); this->sla_support_points = std::move(rhs.sla_support_points); this->sla_points_status = std::move(rhs.sla_points_status); this->sla_drain_holes = std::move(rhs.sla_drain_holes); this->layer_config_ranges = std::move(rhs.layer_config_ranges); this->layer_height_profile = std::move(rhs.layer_height_profile); this->printable = std::move(rhs.printable); this->origin_translation = std::move(rhs.origin_translation); m_bounding_box = std::move(rhs.m_bounding_box); m_bounding_box_valid = std::move(rhs.m_bounding_box_valid); m_raw_bounding_box = rhs.m_raw_bounding_box; m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid; m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box; m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid; this->clear_volumes(); this->volumes = std::move(rhs.volumes); rhs.volumes.clear(); for (ModelVolume *model_volume : this->volumes) model_volume->set_model_object(this); this->clear_instances(); this->instances = std::move(rhs.instances); rhs.instances.clear(); for (ModelInstance *model_instance : this->instances) model_instance->set_model_object(this); return *this; } void ModelObject::assign_new_unique_ids_recursive() { this->set_new_unique_id(); for (ModelVolume *model_volume : this->volumes) model_volume->assign_new_unique_ids_recursive(); for (ModelInstance *model_instance : this->instances) model_instance->assign_new_unique_ids_recursive(); this->layer_height_profile.set_new_unique_id(); } // Clone this ModelObject including its volumes and instances, keep the IDs of the copies equal to the original. // Called by Print::apply() to clone the Model / ModelObject hierarchy to the back end for background processing. //ModelObject* ModelObject::clone(Model *parent) //{ // return new ModelObject(parent, *this, true); //} // BBS: production extension int ModelObject::get_backup_id() const { return m_model ? get_model()->get_object_backup_id(*this) : -1; } // BBS: Boolean Operations impl. - MusangKing bool ModelObject::make_boolean(ModelObject *cut_object, const std::string &boolean_opts) { // merge meshes into single volume instead of multi-parts object if (this->volumes.size() != 1) { // we can't merge meshes if there's not just one volume return false; } std::vector new_meshes; const TriangleMesh &cut_mesh = cut_object->mesh(); MeshBoolean::mcut::make_boolean(this->mesh(), cut_mesh, new_meshes, boolean_opts); this->clear_volumes(); int i = 1; for (TriangleMesh &mesh : new_meshes) { ModelVolume *vol = this->add_volume(mesh); vol->name = this->name + "_" + std::to_string(i++); } return true; } ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh) { ModelVolume* v = new ModelVolume(this, mesh); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); return v; } ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh, ModelVolumeType type /*= ModelVolumeType::MODEL_PART*/) { ModelVolume* v = new ModelVolume(this, std::move(mesh), type); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other, ModelVolumeType type /*= ModelVolumeType::INVALID*/) { ModelVolume* v = new ModelVolume(this, other); if (type != ModelVolumeType::INVALID && v->type() != type) v->set_type(type); v->cut_info = other.cut_info; this->volumes.push_back(v); // The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull. // v->center_geometry_after_creation(); // this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&mesh) { ModelVolume* v = new ModelVolume(this, other, std::move(mesh)); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); return v; } ModelVolume* ModelObject::add_volume_with_shared_mesh(const ModelVolume &other, ModelVolumeType type /*= ModelVolumeType::INVALID*/) { ModelVolume* v = new ModelVolume(this, other.m_mesh); if (type != ModelVolumeType::INVALID && v->type() != type) v->set_type(type); this->volumes.push_back(v); // The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull. // v->center_geometry_after_creation(); // this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); return v; } void ModelObject::delete_volume(size_t idx) { ModelVolumePtrs::iterator i = this->volumes.begin() + idx; delete *i; this->volumes.erase(i); if (this->volumes.size() == 1) { // only one volume left // we need to collapse the volume transform into the instances transforms because now when selecting this volume // it will be seen as a single full instance ans so its volume transform may be ignored ModelVolume* v = this->volumes.front(); Transform3d v_t = v->get_transformation().get_matrix(); for (ModelInstance* inst : this->instances) { inst->set_transformation(Geometry::Transformation(inst->get_transformation().get_matrix() * v_t)); } Geometry::Transformation t; v->set_transformation(t); v->set_new_unique_id(); } this->invalidate_bounding_box(); // BBS: backup Slic3r::save_object_mesh(*this); } void ModelObject::clear_volumes() { for (ModelVolume *v : this->volumes) delete v; this->volumes.clear(); this->invalidate_bounding_box(); // BBS: backup: do not save // Slic3r::save_object_mesh(*this); } bool ModelObject::is_fdm_support_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_fdm_support_painted(); }); } bool ModelObject::is_seam_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_seam_painted(); }); } bool ModelObject::is_mm_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); }); } void ModelObject::sort_volumes(bool full_sort) { // sort volumes inside the object to order "Model Part, Negative Volume, Modifier, Support Blocker and Support Enforcer. " if (full_sort) std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) { return vl->type() < vr->type(); }); // sort have to controll "place" of the support blockers/enforcers. But one of the model parts have to be on the first place. else std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) { ModelVolumeType vl_type = vl->type() > ModelVolumeType::PARAMETER_MODIFIER ? vl->type() : ModelVolumeType::PARAMETER_MODIFIER; ModelVolumeType vr_type = vr->type() > ModelVolumeType::PARAMETER_MODIFIER ? vr->type() : ModelVolumeType::PARAMETER_MODIFIER; return vl_type < vr_type; }); } ModelInstance* ModelObject::add_instance() { ModelInstance* i = new ModelInstance(this); this->instances.push_back(i); this->invalidate_bounding_box(); // BBS: backup: do not save if (this->instances.size() == 1) Slic3r::save_object_mesh(*this); return i; } ModelInstance* ModelObject::add_instance(const ModelInstance &other) { ModelInstance* i = new ModelInstance(this, other); this->instances.push_back(i); this->invalidate_bounding_box(); return i; } ModelInstance* ModelObject::add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror) { auto *instance = add_instance(); instance->set_offset(offset); instance->set_scaling_factor(scaling_factor); instance->set_rotation(rotation); instance->set_mirror(mirror); return instance; } void ModelObject::delete_instance(size_t idx) { ModelInstancePtrs::iterator i = this->instances.begin() + idx; delete *i; this->instances.erase(i); this->invalidate_bounding_box(); } void ModelObject::delete_last_instance() { this->delete_instance(this->instances.size() - 1); } void ModelObject::clear_instances() { for (ModelInstance *i : this->instances) delete i; this->instances.clear(); this->invalidate_bounding_box(); } // Returns the bounding box of the transformed instances. // This bounding box is approximate and not snug. const BoundingBoxf3& ModelObject::bounding_box() const { if (! m_bounding_box_valid) { m_bounding_box_valid = true; BoundingBoxf3 raw_bbox = this->raw_mesh_bounding_box(); m_bounding_box.reset(); for (const ModelInstance *i : this->instances) m_bounding_box.merge(i->transform_bounding_box(raw_bbox)); } return m_bounding_box; } // A mesh containing all transformed instances of this object. TriangleMesh ModelObject::mesh() const { TriangleMesh mesh; TriangleMesh raw_mesh = this->raw_mesh(); for (const ModelInstance *i : this->instances) { TriangleMesh m = raw_mesh; i->transform_mesh(&m); mesh.merge(m); } return mesh; } // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes. // Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater // and to display the object statistics at ModelObject::print_info(). TriangleMesh ModelObject::raw_mesh() const { TriangleMesh mesh; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { TriangleMesh vol_mesh(v->mesh()); vol_mesh.transform(v->get_matrix()); mesh.merge(vol_mesh); } return mesh; } // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes. // Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater // and to display the object statistics at ModelObject::print_info(). indexed_triangle_set ModelObject::raw_indexed_triangle_set() const { size_t num_vertices = 0; size_t num_faces = 0; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { num_vertices += v->mesh().its.vertices.size(); num_faces += v->mesh().its.indices.size(); } indexed_triangle_set out; out.vertices.reserve(num_vertices); out.indices.reserve(num_faces); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { size_t i = out.vertices.size(); size_t j = out.indices.size(); append(out.vertices, v->mesh().its.vertices); append(out.indices, v->mesh().its.indices); auto m = v->get_matrix(); for (; i < out.vertices.size(); ++ i) out.vertices[i] = (m * out.vertices[i].cast()).cast().eval(); if (v->is_left_handed()) { for (; j < out.indices.size(); ++ j) std::swap(out.indices[j][0], out.indices[j][1]); } } return out; } const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const { if (! m_raw_mesh_bounding_box_valid) { m_raw_mesh_bounding_box_valid = true; m_raw_mesh_bounding_box.reset(); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix())); } return m_raw_mesh_bounding_box; } BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const { BoundingBoxf3 bb; for (const ModelVolume *v : this->volumes) bb.merge(v->mesh().transformed_bounding_box(v->get_matrix())); return bb; } // A transformed snug bounding box around the non-modifier object volumes, without the translation applied. // This bounding box is only used for the actual slicing and for layer editing UI to calculate the layers. const BoundingBoxf3& ModelObject::raw_bounding_box() const { if (! m_raw_bounding_box_valid) { m_raw_bounding_box_valid = true; m_raw_bounding_box.reset(); if (this->instances.empty()) throw Slic3r::InvalidArgument("Can't call raw_bounding_box() with no instances"); const Transform3d& inst_matrix = this->instances.front()->get_transformation().get_matrix(true); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } return m_raw_bounding_box; } // This returns an accurate snug bounding box of the transformed object instance, without the translation applied. BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const { BoundingBoxf3 bb; const Transform3d& inst_matrix = this->instances[instance_idx]->get_transformation().get_matrix(dont_translate); for (ModelVolume *v : this->volumes) { if (v->is_model_part()) bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } return bb; } BoundingBoxf3 ModelObject::instance_bounding_box(const ModelInstance& instance, bool dont_translate) const { BoundingBoxf3 bbox; const auto& inst_mat = instance.get_transformation().get_matrix(dont_translate); for (auto vol : this->volumes) { if (vol->is_model_part()) bbox.merge(vol->mesh().transformed_bounding_box(inst_mat * vol->get_matrix())); } return bbox; } //BBS: add convex bounding box BoundingBoxf3 ModelObject::instance_convex_hull_bounding_box(size_t instance_idx, bool dont_translate) const { return instance_convex_hull_bounding_box(this->instances[instance_idx], dont_translate); } BoundingBoxf3 ModelObject::instance_convex_hull_bounding_box(const ModelInstance* instance, bool dont_translate) const { BoundingBoxf3 bb; const Transform3d& inst_matrix = instance->get_transformation().get_matrix(dont_translate); for (ModelVolume* v : this->volumes) { if (v->is_model_part()) bb.merge(v->get_convex_hull().transformed_bounding_box(inst_matrix * v->get_matrix())); } return bb; } // Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane. // This method is cheap in that it does not make any unnecessary copy of the volume meshes. // This method is used by the auto arrange function. Polygon ModelObject::convex_hull_2d(const Transform3d& trafo_instance) const { #if 0 Points pts; for (const ModelVolume* v : volumes) { if (v->is_model_part()) //BBS: use convex hull vertex instead of all append(pts, its_convex_hull_2d_above(v->get_convex_hull().its, (trafo_instance * v->get_matrix()).cast(), 0.0f).points); //append(pts, its_convex_hull_2d_above(v->mesh().its, (trafo_instance * v->get_matrix()).cast(), 0.0f).points); } return Geometry::convex_hull(std::move(pts)); #else Points pts; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { const Polygon& volume_hull = v->get_convex_hull_2d(trafo_instance); pts.insert(pts.end(), volume_hull.points.begin(), volume_hull.points.end()); } //std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); }); //pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end()); /*std::vector points; //points.push_back(pts); Polygon hull = Geometry::convex_hull(std::move(pts)); static int irun = 0; BoundingBox bbox_svg; bbox_svg.merge(get_extents(pts)); bbox_svg.merge(get_extents(hull)); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": bbox_svg.min{%1%,%2%} max{%3%,%4%}, points count %5%")% bbox_svg.min.x()% bbox_svg.min.y()% bbox_svg.max.x()% bbox_svg.max.y()%points[0].size(); { std::stringstream stri; stri << "convex_2d_hull_" << irun << ".svg"; SVG svg(stri.str(), bbox_svg); std::vector hulls; hulls.push_back(hull); svg.draw(to_polylines(points), "blue"); svg.draw(to_polylines(hulls), "red"); svg.Close(); BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": stri %1%, Polygon.size %2%, point[0] {%3%, %4%}, point[1] {%5%, %6%}")% stri.str()% hull.size()% hull[0].x()% hull[0].y()% hull[1].x()% hull[1].y(); } ++ irun; return hull;*/ return Geometry::convex_hull(std::move(pts)); #endif } void ModelObject::center_around_origin(bool include_modifiers) { // calculate the displacements needed to // center this object around the origin const BoundingBoxf3 bb = include_modifiers ? full_raw_mesh_bounding_box() : raw_mesh_bounding_box(); // Shift is the vector from the center of the bounding box to the origin const Vec3d shift = -bb.center(); this->translate(shift); this->origin_translation += shift; } void ModelObject::ensure_on_bed(bool allow_negative_z) { double z_offset = 0.0; if (allow_negative_z) { if (parts_count() == 1) { const double min_z = get_min_z(); const double max_z = get_max_z(); if (min_z >= SINKING_Z_THRESHOLD || max_z < 0.0) z_offset = -min_z; } else { const double max_z = get_max_z(); if (max_z < SINKING_MIN_Z_THRESHOLD) z_offset = SINKING_MIN_Z_THRESHOLD - max_z; } } else z_offset = -get_min_z(); if (z_offset != 0.0) translate_instances(z_offset * Vec3d::UnitZ()); } void ModelObject::translate_instances(const Vec3d& vector) { for (size_t i = 0; i < instances.size(); ++i) { translate_instance(i, vector); } } void ModelObject::translate_instance(size_t instance_idx, const Vec3d& vector) { assert(instance_idx < instances.size()); ModelInstance* i = instances[instance_idx]; i->set_offset(i->get_offset() + vector); invalidate_bounding_box(); } void ModelObject::translate(double x, double y, double z) { for (ModelVolume *v : this->volumes) { v->translate(x, y, z); } if (m_bounding_box_valid) m_bounding_box.translate(x, y, z); } void ModelObject::scale(const Vec3d &versor) { for (ModelVolume *v : this->volumes) { v->scale(versor); } this->invalidate_bounding_box(); } void ModelObject::rotate(double angle, Axis axis) { for (ModelVolume *v : this->volumes) { v->rotate(angle, axis); } center_around_origin(); this->invalidate_bounding_box(); } void ModelObject::rotate(double angle, const Vec3d& axis) { for (ModelVolume *v : this->volumes) { v->rotate(angle, axis); } //BBS update assemble transformation when modify volume rotation for (int i = 0; i < instances.size(); i++) { instances[i]->rotate_assemble(-angle, axis); } center_around_origin(); this->invalidate_bounding_box(); } void ModelObject::mirror(Axis axis) { for (ModelVolume *v : this->volumes) { v->mirror(axis); } this->invalidate_bounding_box(); } // This method could only be called before the meshes of this ModelVolumes are not shared! void ModelObject::scale_mesh_after_creation(const float scale) { for (ModelVolume *v : this->volumes) { v->scale_geometry_after_creation(scale); v->set_offset(Vec3d(scale, scale, scale).cwiseProduct(v->get_offset())); } this->invalidate_bounding_box(); } void ModelObject::convert_units(ModelObjectPtrs& new_objects, ConversionType conv_type, std::vector volume_idxs) { BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - start"; ModelObject* new_object = new_clone(*this); float koef = conv_type == ConversionType::CONV_FROM_INCH ? 25.4f : conv_type == ConversionType::CONV_TO_INCH ? 0.0393700787f : conv_type == ConversionType::CONV_FROM_METER ? 1000.f : conv_type == ConversionType::CONV_TO_METER ? 0.001f : 1.f; new_object->set_model(nullptr); new_object->sla_support_points.clear(); new_object->sla_drain_holes.clear(); new_object->sla_points_status = sla::PointsStatus::NoPoints; new_object->clear_volumes(); new_object->input_file.clear(); int vol_idx = 0; for (ModelVolume* volume : volumes) { if (!volume->mesh().empty()) { TriangleMesh mesh(volume->mesh()); ModelVolume* vol = new_object->add_volume(mesh); vol->name = volume->name; vol->set_type(volume->type()); // Don't copy the config's ID. vol->config.assign_config(volume->config); assert(vol->config.id().valid()); assert(vol->config.id() != volume->config.id()); vol->set_material(volume->material_id(), *volume->material()); vol->source.input_file = volume->source.input_file; vol->source.object_idx = (int)new_objects.size(); vol->source.volume_idx = vol_idx; vol->source.is_converted_from_inches = volume->source.is_converted_from_inches; vol->source.is_converted_from_meters = volume->source.is_converted_from_meters; vol->source.is_from_builtin_objects = volume->source.is_from_builtin_objects; vol->supported_facets.assign(volume->supported_facets); vol->seam_facets.assign(volume->seam_facets); vol->mmu_segmentation_facets.assign(volume->mmu_segmentation_facets); // Perform conversion only if the target "imperial" state is different from the current one. // This check supports conversion of "mixed" set of volumes, each with different "imperial" state. if (//vol->source.is_converted_from_inches != from_imperial && (volume_idxs.empty() || std::find(volume_idxs.begin(), volume_idxs.end(), vol_idx) != volume_idxs.end())) { vol->scale_geometry_after_creation(koef); vol->set_offset(Vec3d(koef, koef, koef).cwiseProduct(volume->get_offset())); if (conv_type == ConversionType::CONV_FROM_INCH || conv_type == ConversionType::CONV_TO_INCH) vol->source.is_converted_from_inches = conv_type == ConversionType::CONV_FROM_INCH; if (conv_type == ConversionType::CONV_FROM_METER || conv_type == ConversionType::CONV_TO_METER) vol->source.is_converted_from_meters = conv_type == ConversionType::CONV_FROM_METER; assert(! vol->source.is_converted_from_inches || ! vol->source.is_converted_from_meters); } else vol->set_offset(volume->get_offset()); } vol_idx ++; } new_object->invalidate_bounding_box(); new_objects.push_back(new_object); BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - end"; } size_t ModelObject::materials_count() const { std::set material_ids; for (const ModelVolume *v : this->volumes) material_ids.insert(v->material_id()); return material_ids.size(); } size_t ModelObject::facets_count() const { size_t num = 0; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) num += v->mesh().facets_count(); return num; } size_t ModelObject::parts_count() const { size_t num = 0; for (const ModelVolume* v : this->volumes) if (v->is_model_part()) ++num; return num; } bool ModelObject::has_connectors() const { assert(is_cut()); for (const ModelVolume *v : this->volumes) if (v->cut_info.is_connector) return true; return false; } indexed_triangle_set ModelObject::get_connector_mesh(CutConnectorAttributes connector_attributes, CutConnectorParas para) { indexed_triangle_set connector_mesh; int sectorCount {1}; switch (CutConnectorShape(connector_attributes.shape)) { case CutConnectorShape::Triangle: sectorCount = 3; break; case CutConnectorShape::Square: sectorCount = 4; break; case CutConnectorShape::Circle: sectorCount = 360; break; case CutConnectorShape::Hexagon: sectorCount = 6; break; default: break; } if (connector_attributes.type == CutConnectorType::Snap) connector_mesh = its_make_snap(1.0, 1.0, para.snap_space_proportion, para.snap_bulge_proportion); else if(connector_attributes.style == CutConnectorStyle::Prizm) connector_mesh = its_make_cylinder(1.0, 1.0, (2 * PI / sectorCount)); else if (connector_attributes.type == CutConnectorType::Plug) connector_mesh = its_make_cone(1.0, 1.0, (2 * PI / sectorCount)); else connector_mesh = its_make_frustum_dowel(1.0, 1.0, sectorCount); return connector_mesh; } void ModelObject::apply_cut_connectors(const std::string &name) { if (cut_connectors.empty()) return; using namespace Geometry; size_t connector_id = cut_id.connectors_cnt(); for (const CutConnector &connector : cut_connectors) { TriangleMesh mesh = TriangleMesh(get_connector_mesh(connector.attribs, connector.paras)); // Mesh will be centered when loading. ModelVolume *new_volume = add_volume(std::move(mesh), ModelVolumeType::NEGATIVE_VOLUME); Transform3d translate_transform = Transform3d::Identity(); translate_transform.translate(connector.pos); Transform3d scale_transform = Transform3d::Identity(); scale_transform.scale(Vec3f(connector.radius, connector.radius, connector.height).cast()); // Transform the new modifier to be aligned inside the instance new_volume->set_transformation(translate_transform * connector.rotation_m * scale_transform); new_volume->cut_info = {connector.attribs.type, connector.radius, connector.height, connector.radius_tolerance, connector.height_tolerance}; new_volume->name = name + "-" + std::to_string(++connector_id); } cut_id.increase_connectors_cnt(cut_connectors.size()); // delete all connectors cut_connectors.clear(); } void ModelObject::invalidate_cut() { this->cut_id.invalidate(); for (ModelVolume *volume : this->volumes) volume->invalidate_cut_info(); } void ModelObject::delete_connectors() { for (int id = int(this->volumes.size()) - 1; id >= 0; id--) { if (volumes[id]->is_cut_connector()) this->delete_volume(size_t(id)); } } void ModelObject::synchronize_model_after_cut() { for (ModelObject *obj : m_model->objects) { if (obj == this || obj->cut_id.is_equal(this->cut_id)) continue; if (obj->is_cut() && obj->cut_id.has_same_id(this->cut_id)) obj->cut_id.copy(this->cut_id); } } void ModelObject::apply_cut_attributes(ModelObjectCutAttributes attributes) { // we don't save cut information, if result will not contains all parts of initial object if (!attributes.has(ModelObjectCutAttribute::KeepUpper) || !attributes.has(ModelObjectCutAttribute::KeepLower) || attributes.has(ModelObjectCutAttribute::InvalidateCutInfo)) return; if (cut_id.id().invalid()) cut_id.init(); { int cut_obj_cnt = -1; if (attributes.has(ModelObjectCutAttribute::KeepUpper)) cut_obj_cnt++; if (attributes.has(ModelObjectCutAttribute::KeepLower)) cut_obj_cnt++; if (attributes.has(ModelObjectCutAttribute::CreateDowels)) cut_obj_cnt++; if (cut_obj_cnt > 0) cut_id.increase_check_sum(size_t(cut_obj_cnt)); } } void ModelObject::clone_for_cut(ModelObject **obj) { (*obj) = ModelObject::new_clone(*this); (*obj)->set_model(this->get_model()); (*obj)->sla_support_points.clear(); (*obj)->sla_drain_holes.clear(); (*obj)->sla_points_status = sla::PointsStatus::NoPoints; (*obj)->clear_volumes(); (*obj)->input_file.clear(); } Transform3d ModelObject::calculate_cut_plane_inverse_matrix(const std::array& plane_points) { Vec3d mid_point = {0.0, 0.0, 0.0}; for (auto pt : plane_points) mid_point += pt; mid_point /= (double) plane_points.size(); Vec3d movement = -mid_point; Vec3d v01 = plane_points[1] - plane_points[0]; Vec3d v12 = plane_points[2] - plane_points[1]; Vec3d plane_normal = v01.cross(v12); plane_normal.normalize(); Vec3d axis = {0.0, 0.0, 0.0}; double phi = 0.0; Matrix3d matrix; matrix.setIdentity(); Geometry::rotation_from_two_vectors(plane_normal, {0.0, 0.0, 1.0}, axis, phi, &matrix); Vec3d angles = Geometry::extract_euler_angles(matrix); movement = matrix * movement; Transform3d transfo; transfo.setIdentity(); transfo.translate(movement); transfo.rotate(Eigen::AngleAxisd(angles(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(angles(1), Vec3d::UnitY()) * Eigen::AngleAxisd(angles(0), Vec3d::UnitX())); return transfo; } void ModelObject::process_connector_cut( ModelVolume *volume, const Transform3d & instance_matrix, const Transform3d& cut_matrix, ModelObjectCutAttributes attributes, ModelObject *upper, ModelObject *lower, std::vector &dowels, Vec3d &local_dowels_displace) { assert(volume->cut_info.is_connector); volume->cut_info.set_processed(); const auto volume_matrix = volume->get_matrix(); // ! Don't apply instance transformation for the conntectors. // This transformation is already there if (volume->cut_info.connector_type != CutConnectorType::Dowel) { if (attributes.has(ModelObjectCutAttribute::KeepUpper)) { ModelVolume *vol = nullptr; if (volume->cut_info.connector_type == CutConnectorType::Snap) { TriangleMesh mesh = TriangleMesh(its_make_cylinder(1.0, 1.0, PI / 180.)); vol = upper->add_volume(std::move(mesh)); vol->set_transformation(volume->get_transformation()); vol->set_type(ModelVolumeType::NEGATIVE_VOLUME); vol->cut_info = volume->cut_info; vol->name = volume->name; } else vol = upper->add_volume(*volume); vol->set_transformation(volume_matrix); vol->apply_tolerance(); } if (attributes.has(ModelObjectCutAttribute::KeepLower)) { ModelVolume *vol = lower->add_volume(*volume); vol->set_transformation(volume_matrix); // for lower part change type of connector from NEGATIVE_VOLUME to MODEL_PART if this connector is a plug vol->set_type(ModelVolumeType::MODEL_PART); } } else { if (attributes.has(ModelObjectCutAttribute::CreateDowels)) { ModelObject *dowel{nullptr}; // Clone the object to duplicate instances, materials etc. clone_for_cut(&dowel); // add one more solid part same as connector if this connector is a dowel ModelVolume *vol = dowel->add_volume(*volume); vol->set_type(ModelVolumeType::MODEL_PART); // But discard rotation and Z-offset for this volume vol->set_rotation(Vec3d::Zero()); vol->set_offset(Z, 0.0); // Compute the displacement (in instance coordinates) to be applied to place the dowels local_dowels_displace = lower->full_raw_mesh_bounding_box().size().cwiseProduct(Vec3d(1.0, 1.0, 0.0)); dowels.push_back(dowel); } // Cut the dowel volume->apply_tolerance(); // Perform cut TriangleMesh upper_mesh, lower_mesh; process_volume_cut(volume, Transform3d::Identity(), cut_matrix, attributes, upper_mesh, lower_mesh); // add small Z offset to better preview upper_mesh.translate((-0.05 * Vec3d::UnitZ()).cast()); lower_mesh.translate((0.05 * Vec3d::UnitZ()).cast()); // Add cut parts to the related objects add_cut_volume(upper_mesh, upper, volume, cut_matrix, "_A", volume->type()); add_cut_volume(lower_mesh, lower, volume, cut_matrix, "_B", volume->type()); } } void ModelObject::process_modifier_cut( ModelVolume *volume, const Transform3d &instance_matrix, const Transform3d &inverse_cut_matrix, ModelObjectCutAttributes attributes, ModelObject *upper, ModelObject *lower) { const auto volume_matrix = instance_matrix * volume->get_matrix(); // Modifiers are not cut, but we still need to add the instance transformation // to the modifier volume transformation to preserve their shape properly. volume->set_transformation(Geometry::Transformation(volume_matrix)); if (attributes.has(ModelObjectCutAttribute::CutToParts)) { upper->add_volume(*volume); return; } // Some logic for the negative volumes/connectors. Add only needed modifiers auto bb = volume->mesh().transformed_bounding_box(inverse_cut_matrix * volume_matrix); bool is_crossed_by_cut = bb.min[Z] <= 0 && bb.max[Z] >= 0; if (attributes.has(ModelObjectCutAttribute::KeepUpper) && (bb.min[Z] >= 0 || is_crossed_by_cut)) upper->add_volume(*volume); if (attributes.has(ModelObjectCutAttribute::KeepLower) && (bb.max[Z] <= 0 || is_crossed_by_cut)) lower->add_volume(*volume); } void ModelObject::process_volume_cut(ModelVolume * volume, const Transform3d & instance_matrix, const Transform3d & cut_matrix, ModelObjectCutAttributes attributes, TriangleMesh & upper_mesh, TriangleMesh & lower_mesh) { const auto volume_matrix = volume->get_matrix(); using namespace Geometry; const Geometry::Transformation cut_transformation = Geometry::Transformation(cut_matrix); const Transform3d invert_cut_matrix = cut_transformation.get_matrix(true, false, true, true).inverse() * translation_transform(-1 * cut_transformation.get_offset()); // Transform the mesh by the combined transformation matrix. // Flip the triangles in case the composite transformation is left handed. TriangleMesh mesh(volume->mesh()); mesh.transform(invert_cut_matrix * instance_matrix * volume_matrix, true); indexed_triangle_set upper_its, lower_its; cut_mesh(mesh.its, 0.0f, &upper_its, &lower_its); if (attributes.has(ModelObjectCutAttribute::KeepUpper)) upper_mesh = TriangleMesh(upper_its); if (attributes.has(ModelObjectCutAttribute::KeepLower)) lower_mesh = TriangleMesh(lower_its); } void ModelObject::process_solid_part_cut(ModelVolume * volume, const Transform3d & instance_matrix, const Transform3d & cut_matrix, const std::array &plane_points, ModelObjectCutAttributes attributes, ModelObject * upper, ModelObject * lower, Vec3d & local_displace) { // Perform cut TriangleMesh upper_mesh, lower_mesh; process_volume_cut(volume, instance_matrix, cut_matrix, attributes, upper_mesh, lower_mesh); // Add required cut parts to the objects if (attributes.has(ModelObjectCutAttribute::CutToParts)) { add_cut_volume(upper_mesh, upper, volume, cut_matrix, "_A"); add_cut_volume(lower_mesh, upper, volume, cut_matrix, "_B"); return; } if (attributes.has(ModelObjectCutAttribute::KeepUpper)) add_cut_volume(upper_mesh, upper, volume, cut_matrix); if (attributes.has(ModelObjectCutAttribute::KeepLower) && !lower_mesh.empty()) { add_cut_volume(lower_mesh, lower, volume, cut_matrix); // Compute the displacement (in instance coordinates) to be applied to place the upper parts // The upper part displacement is set to half of the lower part bounding box // this is done in hope at least a part of the upper part will always be visible and draggable local_displace = lower->full_raw_mesh_bounding_box().size().cwiseProduct(Vec3d(-0.5, -0.5, 0.0)); } } static void invalidate_translations(ModelObject* object, const ModelInstance* src_instance) { if (!object->origin_translation.isApprox(Vec3d::Zero()) && src_instance->get_offset().isApprox(Vec3d::Zero())) { object->center_around_origin(); object->translate_instances(-object->origin_translation); object->origin_translation = Vec3d::Zero(); } else { object->invalidate_bounding_box(); object->center_around_origin(); } } static void reset_instance_transformation(ModelObject* object, size_t src_instance_idx, const Transform3d& cut_matrix, bool place_on_cut = false, bool flip = false, Vec3d local_displace = Vec3d::Zero()) { using namespace Geometry; // Reset instance transformation except offset and Z-rotation for (size_t i = 0; i < object->instances.size(); ++i) { auto& obj_instance = object->instances[i]; Geometry::Transformation instance_transformation_copy = obj_instance->get_transformation(); instance_transformation_copy.set_offset(Vec3d(0, 0, 0)); if (object->volumes.size() == 1) { instance_transformation_copy.set_offset(-object->volumes[0]->get_offset()); } if (i == src_instance_idx && object->volumes.size() == 1) invalidate_translations(object, obj_instance); const Vec3d offset = obj_instance->get_offset(); const double rot_z = obj_instance->get_rotation().z(); obj_instance->set_transformation(Transformation()); const Vec3d displace = local_displace.isApprox(Vec3d::Zero()) ? Vec3d::Zero() : rotation_transform(obj_instance->get_rotation()) * local_displace; obj_instance->set_offset(offset + displace); Vec3d rotation = Vec3d::Zero(); if (!flip && !place_on_cut) { if ( i != src_instance_idx) rotation[Z] = rot_z; } else { Transform3d rotation_matrix = Transform3d::Identity(); if (flip) rotation_matrix = rotation_transform(PI * Vec3d::UnitX()); if (place_on_cut) rotation_matrix = rotation_matrix * Transformation(cut_matrix).get_matrix(true, false, true, true).inverse(); if (i != src_instance_idx) rotation_matrix = rotation_transform(rot_z * Vec3d::UnitZ()) * rotation_matrix; rotation = Transformation(rotation_matrix).get_rotation(); } obj_instance->set_rotation(rotation); // update the assemble matrix const Transform3d &assemble_matrix = obj_instance->get_assemble_transformation().get_matrix(); const Transform3d &instance_inverse_matrix = instance_transformation_copy.get_matrix().inverse(); Transform3d new_instance_inverse_matrix = instance_inverse_matrix * obj_instance->get_transformation().get_matrix(true).inverse(); if (place_on_cut) { // reset the rotation of cut plane new_instance_inverse_matrix = new_instance_inverse_matrix * Transformation(cut_matrix).get_matrix(true, false, true, true).inverse(); } Transform3d new_assemble_transform = assemble_matrix * new_instance_inverse_matrix; obj_instance->set_assemble_from_transform(new_assemble_transform); } } // BBS: replace z with plane_points ModelObjectPtrs ModelObject::cut(size_t instance, std::array plane_points, ModelObjectCutAttributes attributes) { if (! attributes.has(ModelObjectCutAttribute::KeepUpper) && ! attributes.has(ModelObjectCutAttribute::KeepLower)) return {}; BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - start"; // apply cut attributes for object apply_cut_attributes(attributes); ModelObject* upper{ nullptr }; if (attributes.has(ModelObjectCutAttribute::KeepUpper)) clone_for_cut(&upper); ModelObject* lower{ nullptr }; if (attributes.has(ModelObjectCutAttribute::KeepLower) && !attributes.has(ModelObjectCutAttribute::CutToParts)) clone_for_cut(&lower); // Because transformations are going to be applied to meshes directly, // we reset transformation of all instances and volumes, // except for translation and Z-rotation on instances, which are preserved // in the transformation matrix and not applied to the mesh transform. // const auto instance_matrix = instances[instance]->get_matrix(true); const auto instance_matrix = Geometry::assemble_transform( Vec3d::Zero(), // don't apply offset instances[instance]->get_rotation().cwiseProduct(Vec3d(1.0, 1.0, 1.0)), // BBS: do apply Z-rotation instances[instance]->get_scaling_factor(), instances[instance]->get_mirror() ); // BBS //z -= instances[instance]->get_offset().z(); for (Vec3d& point : plane_points) { point -= instances[instance]->get_offset(); } Transform3d inverse_cut_matrix = calculate_cut_plane_inverse_matrix(plane_points); Transform3d cut_matrix = inverse_cut_matrix.inverse(); std::vector dowels; // Displacement (in instance coordinates) to be applied to place the upper parts Vec3d local_displace = Vec3d::Zero(); Vec3d local_dowels_displace = Vec3d::Zero(); for (ModelVolume *volume : volumes) { const auto volume_matrix = volume->get_matrix(); volume->supported_facets.reset(); volume->seam_facets.reset(); volume->mmu_segmentation_facets.reset(); if (! volume->is_model_part()) { if (volume->cut_info.is_processed) { // Modifiers are not cut, but we still need to add the instance transformation // to the modifier volume transformation to preserve their shape properly. //Transform3d inverse_cut_matrix = calculate_cut_plane_inverse_matrix(plane_points); process_modifier_cut(volume, instance_matrix, inverse_cut_matrix, attributes, upper, lower); } else { process_connector_cut(volume, instance_matrix, cut_matrix, attributes, upper, lower, dowels, local_dowels_displace); } } else if (! volume->mesh().empty()) { process_solid_part_cut(volume, instance_matrix, cut_matrix, plane_points, attributes, upper, lower, local_displace); } } ModelObjectPtrs res; if (attributes.has(ModelObjectCutAttribute::CutToParts) && !upper->volumes.empty()) { reset_instance_transformation(upper, instance, cut_matrix); res.push_back(upper); } else { if (attributes.has(ModelObjectCutAttribute::KeepUpper) && upper->volumes.size() > 0) { reset_instance_transformation(upper, instance, cut_matrix, attributes.has(ModelObjectCutAttribute::PlaceOnCutUpper), attributes.has(ModelObjectCutAttribute::FlipUpper), local_displace); res.push_back(upper); } if (attributes.has(ModelObjectCutAttribute::KeepLower) && lower->volumes.size() > 0) { reset_instance_transformation(lower, instance, cut_matrix, attributes.has(ModelObjectCutAttribute::PlaceOnCutLower), attributes.has(ModelObjectCutAttribute::PlaceOnCutLower) ? true : attributes.has(ModelObjectCutAttribute::FlipLower)); res.push_back(lower); } if (attributes.has(ModelObjectCutAttribute::CreateDowels) && !dowels.empty()) { for (auto dowel : dowels) { reset_instance_transformation(dowel, instance, Transform3d::Identity(), false, false, local_dowels_displace); local_dowels_displace += dowel->full_raw_mesh_bounding_box().size().cwiseProduct(Vec3d(-1.5, -1.5, 0.0)); dowel->name += "-Dowel-" + dowel->volumes[0]->name; res.push_back(dowel); } } } BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - end"; synchronize_model_after_cut(); return res; } // BBS ModelObjectPtrs ModelObject::segment(size_t instance, unsigned int max_extruders, double smoothing_alpha, int segment_number) { BOOST_LOG_TRIVIAL(trace) << "ModelObject::segment - start"; // Clone the object to duplicate instances, materials etc. ModelObject* upper = ModelObject::new_clone(*this); upper->set_model(nullptr); upper->sla_support_points.clear(); upper->sla_drain_holes.clear(); upper->sla_points_status = sla::PointsStatus::NoPoints; upper->clear_volumes(); upper->input_file.clear(); // Because transformations are going to be applied to meshes directly, // we reset transformation of all instances and volumes, // except for translation and Z-rotation on instances, which are preserved // in the transformation matrix and not applied to the mesh transform. // const auto instance_matrix = instances[instance]->get_matrix(true); const auto instance_matrix = Geometry::assemble_transform( Vec3d::Zero(), // don't apply offset instances[instance]->get_rotation(), // BBS: keep Z-rotation instances[instance]->get_scaling_factor(), instances[instance]->get_mirror() ); for (ModelVolume* volume : volumes) { const auto volume_matrix = volume->get_matrix(); volume->supported_facets.reset(); volume->seam_facets.reset(); if (!volume->is_model_part()) { // Modifiers are not cut, but we still need to add the instance transformation // to the modifier volume transformation to preserve their shape properly. volume->set_transformation(Geometry::Transformation(instance_matrix * volume_matrix)); upper->add_volume(*volume); } else if (!volume->mesh().empty()) { // Transform the mesh by the combined transformation matrix. // Flip the triangles in case the composite transformation is left handed. TriangleMesh mesh(volume->mesh()); mesh.transform(instance_matrix * volume_matrix, true); volume->reset_mesh(); auto mesh_segments = MeshBoolean::cgal::segment(mesh, smoothing_alpha, segment_number); // Reset volume transformation except for offset const Vec3d offset = volume->get_offset(); volume->set_transformation(Geometry::Transformation()); volume->set_offset(offset); unsigned int extruder_counter = 0; for (int idx=0;idx 0) { ModelVolume* vol = upper->add_volume(mesh_segment); vol->name = volume->name.substr(0, volume->name.find_last_of('.')) + "_" + std::to_string(idx); // Don't copy the config's ID. vol->config.assign_config(volume->config); #if 0 assert(vol->config.id().valid()); assert(vol->config.id() != volume->config.id()); vol->set_material(volume->material_id(), *volume->material()); #else vol->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter)); #endif } } } } ModelObjectPtrs res; if (upper->volumes.size() > 0) { upper->invalidate_bounding_box(); // Reset instance transformation except offset and Z-rotation for (size_t i = 0; i < instances.size(); i++) { auto& instance = upper->instances[i]; const Vec3d offset = instance->get_offset(); // BBS //const double rot_z = instance->get_rotation()(2); instance->set_transformation(Geometry::Transformation()); instance->set_offset(offset); // BBS //instance->set_rotation(Vec3d(0.0, 0.0, rot_z)); } res.push_back(upper); } BOOST_LOG_TRIVIAL(trace) << "ModelObject::segment - end"; return res; } void ModelObject::split(ModelObjectPtrs* new_objects) { std::vector all_meshes; std::vector all_transfos; std::vector> volume_mesh_counts; all_meshes.reserve(this->volumes.size() * 5); bool is_multi_volume_object = (this->volumes.size() > 1); for (int volume_idx = 0; volume_idx < this->volumes.size(); volume_idx++) { ModelVolume* volume = this->volumes[volume_idx]; if (volume->type() != ModelVolumeType::MODEL_PART) continue; if (!is_multi_volume_object) { //BBS: not multi volume object, then split mesh. std::vector volume_meshes = volume->mesh().split(); int mesh_count = 0; for (TriangleMesh& mesh : volume_meshes) { if (mesh.facets_count() < 3) continue; all_meshes.emplace_back(std::move(mesh)); all_transfos.emplace_back(volume->get_matrix()); mesh_count++; } volume_mesh_counts.push_back({ volume_idx, mesh_count }); } else { //BBS: multi volume object, then only split to volume if (volume->mesh().facets_count() >= 3) { all_meshes.emplace_back(std::move(volume->mesh())); all_transfos.emplace_back(volume->get_matrix()); volume_mesh_counts.push_back({ volume_idx, 1 }); } } } FaceDetector face_detector(all_meshes, all_transfos, 1.0); face_detector.detect_exterior_face(); int volume_mesh_begin = 0; for (int i = 0; i < volume_mesh_counts.size(); i++) { std::pair mesh_info = volume_mesh_counts[i]; ModelVolume* volume = this->volumes[mesh_info.first]; std::vector meshes; for (int mesh_idx = volume_mesh_begin; mesh_idx < volume_mesh_begin + mesh_info.second; mesh_idx++) { meshes.emplace_back(std::move(all_meshes[mesh_idx])); } volume_mesh_begin += mesh_info.second; size_t counter = 1; for (TriangleMesh& mesh : meshes) { // FIXME: crashes if not satisfied if (mesh.facets_count() < 3) continue; // XXX: this seems to be the only real usage of m_model, maybe refactor this so that it's not needed? ModelObject* new_object = m_model->add_object(); //BBS: refine the config logic //use object as basic, and add volume's config if (meshes.size() == 1) { new_object->name = volume->name; // Don't copy the config's ID. //new_object->config.assign_config(this->config.size() > 0 ? this->config : volume->config); } else { new_object->name = this->name + (meshes.size() > 1 ? "_" + std::to_string(counter++) : ""); // Don't copy the config's ID. //new_object->config.assign_config(this->config); } new_object->config.assign_config(this->config); new_object->config.apply(volume->config, true); assert(new_object->config.id().valid()); assert(new_object->config.id() != this->config.id()); new_object->instances.reserve(this->instances.size()); for (const ModelInstance* model_instance : this->instances) new_object->add_instance(*model_instance); ModelVolume* new_vol = new_object->add_volume(*volume, std::move(mesh)); if (is_multi_volume_object) { // BBS: volume geometry not changed, so we can keep the color paint facets if (new_vol->mmu_segmentation_facets.timestamp() == volume->mmu_segmentation_facets.timestamp()) new_vol->mmu_segmentation_facets.reset(); // BBS: let next assign take effect new_vol->mmu_segmentation_facets.assign(volume->mmu_segmentation_facets); } // BBS: clear volume's config, as we already set them into object new_vol->config.reset(); for (ModelInstance* model_instance : new_object->instances) { Vec3d shift = model_instance->get_transformation().get_matrix(true) * new_vol->get_offset(); model_instance->set_offset(model_instance->get_offset() + shift); //BBS: add assemble_view related logic Geometry::Transformation instance_transformation_copy = model_instance->get_transformation(); instance_transformation_copy.set_offset(-new_vol->get_offset()); const Transform3d &assemble_matrix = model_instance->get_assemble_transformation().get_matrix(); const Transform3d &instance_inverse_matrix = instance_transformation_copy.get_matrix().inverse(); Transform3d new_instance_inverse_matrix = instance_inverse_matrix * model_instance->get_transformation().get_matrix(true).inverse(); Transform3d new_assemble_transform = assemble_matrix * new_instance_inverse_matrix; model_instance->set_assemble_from_transform(new_assemble_transform); model_instance->set_offset_to_assembly(new_vol->get_offset()); } new_vol->set_offset(Vec3d::Zero()); // reset the source to disable reload from disk new_vol->source = ModelVolume::Source(); new_objects->emplace_back(new_object); } } } void ModelObject::merge() { if (this->volumes.size() == 1) { // We can't merge meshes if there's just one volume return; } TriangleMesh mesh; for (ModelVolume* volume : volumes) if (!volume->mesh().empty()) mesh.merge(volume->mesh()); this->clear_volumes(); ModelVolume* vol = this->add_volume(mesh); if (!vol) return; } ModelObjectPtrs ModelObject::merge_volumes(std::vector& vol_indeces) { ModelObjectPtrs res; if (this->volumes.size() == 1) { // We can't merge meshes if there's just one volume return res; } ModelObject* upper = ModelObject::new_clone(*this); upper->set_model(nullptr); upper->sla_support_points.clear(); upper->sla_drain_holes.clear(); upper->sla_points_status = sla::PointsStatus::NoPoints; upper->clear_volumes(); upper->input_file.clear(); #if 1 TriangleMesh mesh; for (int i : vol_indeces) { auto volume = volumes[i]; if (!volume->mesh().empty()) { const auto volume_matrix = volume->get_matrix(); TriangleMesh mesh_(volume->mesh()); mesh_.transform(volume_matrix, true); volume->reset_mesh(); mesh.merge(mesh_); } } #else std::vector meshes; for (int i : vol_indeces) { auto volume = volumes[i]; if (!volume->mesh().empty()) meshes.emplace_back(volume->mesh()); } TriangleMesh mesh = MeshBoolean::cgal::merge(meshes); #endif ModelVolume* vol = upper->add_volume(mesh); for (int i = 0; i < volumes.size();i++) { if (std::find(vol_indeces.begin(), vol_indeces.end(), i) != vol_indeces.end()) { vol->name = volumes[i]->name + "_merged"; vol->config.assign_config(volumes[i]->config); } else upper->add_volume(*volumes[i]); } upper->invalidate_bounding_box(); res.push_back(upper); return res; } // Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees, // then the scaling in world coordinate system is not representable by the Geometry::Transformation structure. // This situation is solved by baking in the instance transformation into the mesh vertices. // Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well. void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx) { assert(instance_idx < this->instances.size()); const Geometry::Transformation reference_trafo = this->instances[instance_idx]->get_transformation(); if (Geometry::is_rotation_ninety_degrees(reference_trafo.get_rotation())) // nothing to do, scaling in the world coordinate space is possible in the representation of Geometry::Transformation. return; bool left_handed = reference_trafo.is_left_handed(); bool has_mirrorring = ! reference_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.)); bool uniform_scaling = std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().y()) < EPSILON && std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().z()) < EPSILON; double new_scaling_factor = uniform_scaling ? reference_trafo.get_scaling_factor().x() : 1.; // Adjust the instances. for (size_t i = 0; i < this->instances.size(); ++ i) { ModelInstance &model_instance = *this->instances[i]; model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_rotation(), model_instance.get_rotation()))); model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor)); model_instance.set_mirror(Vec3d(1., 1., 1.)); } // Adjust the meshes. // Transformation to be applied to the meshes. Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0); Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix(); for (ModelVolume *model_volume : this->volumes) { const Geometry::Transformation volume_trafo = model_volume->get_transformation(); bool volume_left_handed = volume_trafo.is_left_handed(); bool volume_has_mirrorring = ! volume_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.)); bool volume_uniform_scaling = std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().y()) < EPSILON && std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().z()) < EPSILON; double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.; // Transform the mesh. Matrix3d volume_trafo_3x3 = volume_trafo.get_matrix(true, false, volume_uniform_scaling, !volume_has_mirrorring).matrix().block<3, 3>(0, 0); // Following method creates a new shared_ptr model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed); // Reset the rotation, scaling and mirroring. model_volume->set_rotation(Vec3d(0., 0., 0.)); model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor)); model_volume->set_mirror(Vec3d(1., 1., 1.)); // Move the reference point of the volume to compensate for the change of the instance trafo. model_volume->set_offset(volume_offset_correction * volume_trafo.get_offset()); // reset the source to disable reload from disk model_volume->source = ModelVolume::Source(); } this->invalidate_bounding_box(); } double ModelObject::get_min_z() const { if (instances.empty()) return 0.0; else { double min_z = DBL_MAX; for (size_t i = 0; i < instances.size(); ++i) { min_z = std::min(min_z, get_instance_min_z(i)); } return min_z; } } double ModelObject::get_max_z() const { if (instances.empty()) return 0.0; else { double max_z = -DBL_MAX; for (size_t i = 0; i < instances.size(); ++i) { max_z = std::max(max_z, get_instance_max_z(i)); } return max_z; } } double ModelObject::get_instance_min_z(size_t instance_idx) const { double min_z = DBL_MAX; const ModelInstance* inst = instances[instance_idx]; const Transform3d& mi = inst->get_matrix(true); for (const ModelVolume* v : volumes) { if (!v->is_model_part()) continue; const Transform3d mv = mi * v->get_matrix(); const TriangleMesh& hull = v->get_convex_hull(); //BBS: in some case the convex hull is empty due to the qhull algo //use the original mesh instead //TODO: when the vertex's x/y/z are all the same, the run_qhull can not get correct result //we need to find another algo then if (hull.its.indices.size() == 0) { const TriangleMesh& mesh = v->mesh(); for (const stl_triangle_vertex_indices& facet : mesh.its.indices) for (int i = 0; i < 3; ++i) min_z = std::min(min_z, (mv * mesh.its.vertices[facet[i]].cast()).z()); } else { for (const stl_triangle_vertex_indices& facet : hull.its.indices) for (int i = 0; i < 3; ++i) min_z = std::min(min_z, (mv * hull.its.vertices[facet[i]].cast()).z()); } } //BBS: add some logic to avoid wrong compute for min_z if (min_z == DBL_MAX) min_z = 0; return min_z + inst->get_offset(Z); } double ModelObject::get_instance_max_z(size_t instance_idx) const { double max_z = -DBL_MAX; const ModelInstance* inst = instances[instance_idx]; const Transform3d& mi = inst->get_matrix(true); for (const ModelVolume* v : volumes) { if (!v->is_model_part()) continue; const Transform3d mv = mi * v->get_matrix(); const TriangleMesh& hull = v->get_convex_hull(); for (const stl_triangle_vertex_indices& facet : hull.its.indices) for (int i = 0; i < 3; ++i) max_z = std::max(max_z, (mv * hull.its.vertices[facet[i]].cast()).z()); } return max_z + inst->get_offset(Z); } unsigned int ModelObject::update_instances_print_volume_state(const BuildVolume &build_volume) { unsigned int num_printable = 0; enum { INSIDE = 1, OUTSIDE = 2 }; //BBS: add logs for build_volume //const BoundingBoxf3& print_volume = build_volume.bounding_volume(); //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", print_volume {%1%, %2%, %3%} to {%4%, %5%, %6%}")\ // %print_volume.min.x() %print_volume.min.y() %print_volume.min.z()%print_volume.max.x() %print_volume.max.y() %print_volume.max.z(); for (ModelInstance* model_instance : this->instances) { unsigned int inside_outside = 0; for (const ModelVolume *vol : this->volumes) { if (vol->is_model_part()) { //BBS: add bounding box empty check logic, for some volume is empty before split(it will be removed after split to object) BoundingBoxf3 bb = vol->get_convex_hull().bounding_box(); Vec3d size = bb.size(); if ((size.x() == 0.f) || (size.y() == 0.f) || (size.z() == 0.f)) { BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", object %1%'s vol %2% is empty, skip it, box: {%3%, %4%, %5%} to {%6%, %7%, %8%}")%this->name %vol->name\ %bb.min.x() %bb.min.y() %bb.min.z()%bb.max.x() %bb.max.y() %bb.max.z(); continue; } const Transform3d matrix = model_instance->get_matrix() * vol->get_matrix(); BuildVolume::ObjectState state = build_volume.object_state(vol->mesh().its, matrix.cast(), true /* may be below print bed */); if (state == BuildVolume::ObjectState::Inside) // Volume is completely inside. inside_outside |= INSIDE; else if (state == BuildVolume::ObjectState::Outside) // Volume is completely outside. inside_outside |= OUTSIDE; else if (state == BuildVolume::ObjectState::Below) { // Volume below the print bed, thus it is completely outside, however this does not prevent the object to be printable // if some of its volumes are still inside the build volume. } else // Volume colliding with the build volume. inside_outside |= INSIDE | OUTSIDE; } } model_instance->print_volume_state = inside_outside == (INSIDE | OUTSIDE) ? ModelInstancePVS_Partly_Outside : inside_outside == INSIDE ? ModelInstancePVS_Inside : ModelInstancePVS_Fully_Outside; if (inside_outside == INSIDE) { //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", object %1%'s instance inside print volum")%this->name; ++num_printable; } } //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(", found %1% printable instances")%num_printable; return num_printable; } void ModelObject::print_info() const { using namespace std; cout << fixed; boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl; TriangleMesh mesh = this->raw_mesh(); BoundingBoxf3 bb = mesh.bounding_box(); Vec3d size = bb.size(); cout << "size_x = " << size(0) << endl; cout << "size_y = " << size(1) << endl; cout << "size_z = " << size(2) << endl; cout << "min_x = " << bb.min(0) << endl; cout << "min_y = " << bb.min(1) << endl; cout << "min_z = " << bb.min(2) << endl; cout << "max_x = " << bb.max(0) << endl; cout << "max_y = " << bb.max(1) << endl; cout << "max_z = " << bb.max(2) << endl; cout << "number_of_facets = " << mesh.facets_count() << endl; cout << "manifold = " << (mesh.stats().manifold() ? "yes" : "no") << endl; if (! mesh.stats().manifold()) cout << "open_edges = " << mesh.stats().open_edges << endl; if (mesh.stats().repaired()) { const RepairedMeshErrors& stats = mesh.stats().repaired_errors; if (stats.degenerate_facets > 0) cout << "degenerate_facets = " << stats.degenerate_facets << endl; if (stats.edges_fixed > 0) cout << "edges_fixed = " << stats.edges_fixed << endl; if (stats.facets_removed > 0) cout << "facets_removed = " << stats.facets_removed << endl; if (stats.facets_reversed > 0) cout << "facets_reversed = " << stats.facets_reversed << endl; if (stats.backwards_edges > 0) cout << "backwards_edges = " << stats.backwards_edges << endl; } cout << "number_of_parts = " << mesh.stats().number_of_parts << endl; cout << "volume = " << mesh.volume() << endl; } std::string ModelObject::get_export_filename() const { std::string ret = input_file; if (!name.empty()) { if (ret.empty()) // input_file was empty, just use name ret = name; else { // Replace file name in input_file with name, but keep the path and file extension. ret = (boost::filesystem::path(name).parent_path().empty()) ? (boost::filesystem::path(ret).parent_path() / name).make_preferred().string() : name; } } return ret; } TriangleMeshStats ModelObject::get_object_stl_stats() const { TriangleMeshStats full_stats; full_stats.volume = 0.f; // fill full_stats from all objet's meshes for (ModelVolume* volume : this->volumes) { const TriangleMeshStats& stats = volume->mesh().stats(); // initialize full_stats (for repaired errors) full_stats.open_edges += stats.open_edges; full_stats.repaired_errors.merge(stats.repaired_errors); // another used satistics value if (volume->is_model_part()) { Transform3d trans = instances.empty() ? volume->get_matrix() : (volume->get_matrix() * instances[0]->get_matrix()); full_stats.volume += stats.volume * std::fabs(trans.matrix().block(0, 0, 3, 3).determinant()); full_stats.number_of_parts += stats.number_of_parts; } } return full_stats; } int ModelObject::get_repaired_errors_count(const int vol_idx /*= -1*/) const { if (vol_idx >= 0) return this->volumes[vol_idx]->get_repaired_errors_count(); const RepairedMeshErrors& stats = get_object_stl_stats().repaired_errors; return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed + stats.facets_reversed + stats.backwards_edges; } void ModelVolume::set_material_id(t_model_material_id material_id) { m_material_id = material_id; // ensure m_material_id references an existing material if (! material_id.empty()) this->object->get_model()->add_material(material_id); } void ModelVolume::reset_extra_facets() { this->supported_facets.reset(); this->seam_facets.reset(); this->mmu_segmentation_facets.reset(); } ModelMaterial* ModelVolume::material() const { return this->object->get_model()->get_material(m_material_id); } void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material) { m_material_id = material_id; if (! material_id.empty()) this->object->get_model()->add_material(material_id, material); } // Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config. int ModelVolume::extruder_id() const { int extruder_id = -1; //if (this->is_model_part()) { const ConfigOption *opt = this->config.option("extruder"); if ((opt == nullptr) || (opt->getInt() == 0)) opt = this->object->config.option("extruder"); extruder_id = (opt == nullptr) ? 1 : opt->getInt(); } return extruder_id; } bool ModelVolume::is_splittable() const { // the call mesh.is_splittable() is expensive, so cache the value to calculate it only once if (m_is_splittable == -1) m_is_splittable = its_is_splittable(this->mesh().its); return m_is_splittable == 1; } void ModelVolume::apply_tolerance() { assert(cut_info.is_connector); if (!cut_info.is_processed) return; Vec3d sf = get_scaling_factor(); // make a "hole" wider double size_scale = 1.f; if (abs(cut_info.radius - 0) < EPSILON) // For compatibility with old files size_scale = 1.f + double(cut_info.radius_tolerance); else size_scale = (double(cut_info.radius) + double(cut_info.radius_tolerance)) / double(cut_info.radius); sf[X] *= size_scale; sf[Y] *= size_scale; // make a "hole" dipper double height_scale = 1.f; if (abs(cut_info.height - 0) < EPSILON) // For compatibility with old files height_scale = 1.f + double(cut_info.height_tolerance); else height_scale = (double(cut_info.height) + double(cut_info.height_tolerance)) / double(cut_info.height); sf[Z] *= height_scale; set_scaling_factor(sf); // correct offset in respect to the new depth Vec3d rot_norm = Geometry::rotation_transform(get_rotation()) * Vec3d::UnitZ(); if (rot_norm.norm() != 0.0) rot_norm.normalize(); double z_offset = 0.5 * static_cast(cut_info.height_tolerance); if (cut_info.connector_type == CutConnectorType::Plug || cut_info.connector_type == CutConnectorType::Snap) z_offset -= 0.05; // add small Z offset to better preview set_offset(get_offset() + rot_norm * z_offset); } // BBS std::vector ModelVolume::get_extruders() const { if (m_type == ModelVolumeType::INVALID || m_type == ModelVolumeType::NEGATIVE_VOLUME || m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER) return std::vector(); if (mmu_segmentation_facets.timestamp() != mmuseg_ts) { std::vector its_per_type; mmuseg_extruders.clear(); mmuseg_ts = mmu_segmentation_facets.timestamp(); mmu_segmentation_facets.get_facets(*this, its_per_type); for (int idx = 1; idx < its_per_type.size(); idx++) { indexed_triangle_set& its = its_per_type[idx]; if (its.indices.empty()) continue; mmuseg_extruders.push_back(idx); } } std::vector volume_extruders = mmuseg_extruders; int volume_extruder_id = this->extruder_id(); if (volume_extruder_id > 0) volume_extruders.push_back(volume_extruder_id); return volume_extruders; } void ModelVolume::update_extruder_count(size_t extruder_count) { std::vector used_extruders = get_extruders(); for (int extruder_id : used_extruders) { if (extruder_id > extruder_count) { mmu_segmentation_facets.set_enforcer_block_type_limit(*this, (EnforcerBlockerType)extruder_count); break; } } } void ModelVolume::center_geometry_after_creation(bool update_source_offset) { Vec3d shift = this->mesh().bounding_box().center(); if (!shift.isApprox(Vec3d::Zero())) { if (m_mesh) { const_cast(m_mesh.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); const_cast(m_mesh.get())->set_init_shift(shift); } if (m_convex_hull) const_cast(m_convex_hull.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); translate(shift); } if (update_source_offset) source.mesh_offset = shift; } void ModelVolume::calculate_convex_hull() { m_convex_hull = std::make_shared(this->mesh().convex_hull_3d()); assert(m_convex_hull.get()); } //BBS: convex_hull_2d using convex_hull_3d void ModelVolume::calculate_convex_hull_2d(const Geometry::Transformation &transformation) const { const indexed_triangle_set &its = m_convex_hull->its; if (its.vertices.empty()) return; Points pts; Vec3d rotation = transformation.get_rotation(); Vec3d mirror = transformation.get_mirror(); Vec3d scale = transformation.get_scaling_factor(); //rotation(2) = 0.f; Transform3d new_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, scale, mirror); pts.reserve(its.vertices.size()); // Using the shared vertices should be a bit quicker than using the STL faces. for (size_t i = 0; i < its.vertices.size(); ++ i) { Vec3d p = new_matrix * its.vertices[i].cast(); pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y()))); } //TODO, do we need to remove the duplicate points before convex_hull? m_cached_2d_polygon = Slic3r::Geometry::convex_hull(pts); m_convex_hull_2d = m_cached_2d_polygon; m_convex_hull_2d.translate(scale_(transformation.get_offset(X)), scale_(transformation.get_offset(Y))); //int size = m_cached_2d_polygon.size(); //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": size %1%, offset {%2%, %3%}")% size% transformation.get_offset(X)% transformation.get_offset(Y); //for (int i = 0; i < size; i++) // BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% m_cached_2d_polygon[i].x()% m_cached_2d_polygon[i].y(); //m_convex_hull_2d.rotate(transformation.get_rotation(Z)); //m_convex_hull_2d.scale(transformation.get_scaling_factor(X), transformation.get_scaling_factor(Y)); } const Polygon& ModelVolume::get_convex_hull_2d(const Transform3d &trafo_instance) const { Transform3d new_matrix; new_matrix = trafo_instance * m_transformation.get_matrix(); auto need_recompute = [](Geometry::Transformation& old_transform, Geometry::Transformation& new_transform)->bool { //double old_rot_x = old_transform.get_rotation(X); //double old_rot_y = old_transform.get_rotation(Y); //double new_rot_x = new_transform.get_rotation(X); //double new_rot_y = new_transform.get_rotation(Y); const Vec3d &old_rotation = old_transform.get_rotation(); const Vec3d &new_rotation = new_transform.get_rotation(); const Vec3d &old_mirror = old_transform.get_mirror(); const Vec3d &new_mirror = new_transform.get_mirror(); const Vec3d &old_scaling = old_transform.get_scaling_factor(); const Vec3d &new_scaling = new_transform.get_scaling_factor(); if ((old_scaling != new_scaling) || (old_rotation != new_rotation) || (old_mirror != new_mirror)) return true; else return false; }; if ((new_matrix.matrix() != m_cached_trans_matrix.matrix()) || !m_convex_hull_2d.is_valid()) { Geometry::Transformation new_trans(new_matrix), old_trans(m_cached_trans_matrix); if (need_recompute(old_trans, new_trans) || !m_convex_hull_2d.is_valid()) { //need to update calculate_convex_hull_2d(new_trans); } else { m_convex_hull_2d = m_cached_2d_polygon; m_convex_hull_2d.translate(scale_(new_trans.get_offset(X)), scale_(new_trans.get_offset(Y))); //m_convex_hull_2d.rotate(new_trans.get_rotation(Z)); //m_convex_hull_2d.scale(new_trans.get_scaling_factor(X), new_trans.get_scaling_factor(Y)); //int size = m_cached_2d_polygon.size(); //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": use previous cached, size %1%, offset {%2%, %3%}")% size% new_trans.get_offset(X)% new_trans.get_offset(Y); //for (int i = 0; i < size; i++) // BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% m_cached_2d_polygon[i].x()% m_cached_2d_polygon[i].y(); } m_cached_trans_matrix = new_matrix; } return m_convex_hull_2d; } int ModelVolume::get_repaired_errors_count() const { const RepairedMeshErrors &stats = this->mesh().stats().repaired_errors; return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed + stats.facets_reversed + stats.backwards_edges; } const TriangleMesh& ModelVolume::get_convex_hull() const { return *m_convex_hull.get(); } //BBS: refine the model part names ModelVolumeType ModelVolume::type_from_string(const std::string &s) { // New type (supporting the support enforcers & blockers) if (s == "normal_part") return ModelVolumeType::MODEL_PART; if (s == "negative_part") return ModelVolumeType::NEGATIVE_VOLUME; if (s == "modifier_part") return ModelVolumeType::PARAMETER_MODIFIER; if (s == "support_enforcer") return ModelVolumeType::SUPPORT_ENFORCER; if (s == "support_blocker") return ModelVolumeType::SUPPORT_BLOCKER; //assert(s == "0"); // Default value if invalud type string received. return ModelVolumeType::MODEL_PART; } //BBS: refine the model part names std::string ModelVolume::type_to_string(const ModelVolumeType t) { switch (t) { case ModelVolumeType::MODEL_PART: return "normal_part"; case ModelVolumeType::NEGATIVE_VOLUME: return "negative_part"; case ModelVolumeType::PARAMETER_MODIFIER: return "modifier_part"; case ModelVolumeType::SUPPORT_ENFORCER: return "support_enforcer"; case ModelVolumeType::SUPPORT_BLOCKER: return "support_blocker"; default: assert(false); return "normal_part"; } } // Split this volume, append the result to the object owning this volume. // Return the number of volumes created from this one. // This is useful to assign different materials to different volumes of an object. size_t ModelVolume::split(unsigned int max_extruders) { std::vector meshes = this->mesh().split(); if (meshes.size() <= 1) return 1; size_t idx = 0; size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin(); const std::string name = this->name; unsigned int extruder_counter = 0; const Vec3d offset = this->get_offset(); for (TriangleMesh &mesh : meshes) { if (mesh.empty()) // Repair may have removed unconnected triangles, thus emptying the mesh. continue; if (idx == 0) { this->set_mesh(std::move(mesh)); this->calculate_convex_hull(); this->invalidate_convex_hull_2d(); // Assign a new unique ID, so that a new GLVolume will be generated. this->set_new_unique_id(); // reset the source to disable reload from disk this->source = ModelVolume::Source(); // BBS: reset facet annotations this->mmu_segmentation_facets.reset(); this->exterior_facets.reset(); this->supported_facets.reset(); this->seam_facets.reset(); } else this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(mesh))); this->object->volumes[ivolume]->set_offset(Vec3d::Zero()); this->object->volumes[ivolume]->center_geometry_after_creation(); this->object->volumes[ivolume]->translate(offset); this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1); //BBS: always set the extruder id the same as original this->object->volumes[ivolume]->config.set("extruder", this->extruder_id()); //this->object->volumes[ivolume]->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter)); this->object->volumes[ivolume]->m_is_splittable = 0; ++ idx; } // discard volumes for which the convex hull was not generated or is degenerate size_t i = 0; while (i < this->object->volumes.size()) { const std::shared_ptr &hull = this->object->volumes[i]->get_convex_hull_shared_ptr(); if (hull == nullptr || hull->its.vertices.empty() || hull->its.indices.empty()) { this->object->delete_volume(i); --idx; --i; } ++i; } return idx; } void ModelVolume::translate(const Vec3d& displacement) { set_offset(get_offset() + displacement); } void ModelVolume::scale(const Vec3d& scaling_factors) { set_scaling_factor(get_scaling_factor().cwiseProduct(scaling_factors)); } void ModelObject::scale_to_fit(const Vec3d &size) { Vec3d orig_size = this->bounding_box().size(); double factor = std::min( size.x() / orig_size.x(), std::min( size.y() / orig_size.y(), size.z() / orig_size.z() ) ); this->scale(factor); } void ModelVolume::assign_new_unique_ids_recursive() { ObjectBase::set_new_unique_id(); config.set_new_unique_id(); supported_facets.set_new_unique_id(); seam_facets.set_new_unique_id(); mmu_segmentation_facets.set_new_unique_id(); } void ModelVolume::rotate(double angle, Axis axis) { switch (axis) { case X: { rotate(angle, Vec3d::UnitX()); break; } case Y: { rotate(angle, Vec3d::UnitY()); break; } case Z: { rotate(angle, Vec3d::UnitZ()); break; } default: break; } } void ModelVolume::rotate(double angle, const Vec3d& axis) { set_rotation(get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix())); } void ModelVolume::mirror(Axis axis) { Vec3d mirror = get_mirror(); switch (axis) { case X: { mirror(0) *= -1.0; break; } case Y: { mirror(1) *= -1.0; break; } case Z: { mirror(2) *= -1.0; break; } default: break; } set_mirror(mirror); } // This method could only be called before the meshes of this ModelVolumes are not shared! void ModelVolume::scale_geometry_after_creation(const Vec3f& versor) { const_cast(m_mesh.get())->scale(versor); if (m_convex_hull->empty()) //BBS: recompute the convex hull if it is null for previous too small this->calculate_convex_hull(); else const_cast(m_convex_hull.get())->scale(versor); } void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed) { TriangleMesh mesh = this->mesh(); mesh.transform(mesh_trafo, fix_left_handed); this->set_mesh(std::move(mesh)); TriangleMesh convex_hull = this->get_convex_hull(); convex_hull.transform(mesh_trafo, fix_left_handed); m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed) { TriangleMesh mesh = this->mesh(); mesh.transform(matrix, fix_left_handed); this->set_mesh(std::move(mesh)); TriangleMesh convex_hull = this->get_convex_hull(); convex_hull.transform(matrix, fix_left_handed); m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } void ModelVolume::convert_from_imperial_units() { assert(! this->source.is_converted_from_meters); this->scale_geometry_after_creation(25.4f); this->set_offset(Vec3d(0, 0, 0)); this->source.is_converted_from_inches = true; } void ModelVolume::convert_from_meters() { assert(! this->source.is_converted_from_inches); this->scale_geometry_after_creation(1000.f); this->set_offset(Vec3d(0, 0, 0)); this->source.is_converted_from_meters = true; } void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const { mesh->transform(get_matrix(dont_translate)); } BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate) const { // Rotate around mesh origin. TriangleMesh copy(mesh); copy.transform(get_matrix(true, false, true, true)); BoundingBoxf3 bbox = copy.bounding_box(); if (!empty(bbox)) { // Scale the bounding box along the three axes. for (unsigned int i = 0; i < 3; ++i) { if (std::abs(get_scaling_factor((Axis)i)-1.0) > EPSILON) { bbox.min(i) *= get_scaling_factor((Axis)i); bbox.max(i) *= get_scaling_factor((Axis)i); } } // Translate the bounding box. if (! dont_translate) { bbox.min += get_offset(); bbox.max += get_offset(); } } return bbox; } BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const { return bbox.transformed(get_matrix(dont_translate)); } Vec3d ModelInstance::transform_vector(const Vec3d& v, bool dont_translate) const { return get_matrix(dont_translate) * v; } void ModelInstance::transform_polygon(Polygon* polygon) const { // CHECK_ME -> Is the following correct or it should take in account all three rotations ? polygon->rotate(get_rotation(Z)); // rotate around polygon origin // CHECK_ME -> Is the following correct ? polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin } //BBS // BBS set print speed table and find maximum speed void Model::setPrintSpeedTable(const DynamicPrintConfig& config, const PrintConfig& print_config) { //Slic3r::DynamicPrintConfig config = wxGetApp().preset_bundle->full_config(); printSpeedMap.maxSpeed = 0; if (config.has("inner_wall_speed")) { printSpeedMap.perimeterSpeed = config.opt_float("inner_wall_speed"); if (printSpeedMap.perimeterSpeed > printSpeedMap.maxSpeed) printSpeedMap.maxSpeed = printSpeedMap.perimeterSpeed; } if (config.has("outer_wall_speed")) { printSpeedMap.externalPerimeterSpeed = config.opt_float("outer_wall_speed"); printSpeedMap.maxSpeed = std::max(printSpeedMap.maxSpeed, printSpeedMap.externalPerimeterSpeed); } if (config.has("sparse_infill_speed")) { printSpeedMap.infillSpeed = config.opt_float("sparse_infill_speed"); if (printSpeedMap.infillSpeed > printSpeedMap.maxSpeed) printSpeedMap.maxSpeed = printSpeedMap.infillSpeed; } if (config.has("internal_solid_infill_speed")) { printSpeedMap.solidInfillSpeed = config.opt_float("internal_solid_infill_speed"); if (printSpeedMap.solidInfillSpeed > printSpeedMap.maxSpeed) printSpeedMap.maxSpeed = printSpeedMap.solidInfillSpeed; } if (config.has("top_surface_speed")) { printSpeedMap.topSolidInfillSpeed = config.opt_float("top_surface_speed"); if (printSpeedMap.topSolidInfillSpeed > printSpeedMap.maxSpeed) printSpeedMap.maxSpeed = printSpeedMap.topSolidInfillSpeed; } if (config.has("support_speed")) { printSpeedMap.supportSpeed = config.opt_float("support_speed"); if (printSpeedMap.supportSpeed > printSpeedMap.maxSpeed) printSpeedMap.maxSpeed = printSpeedMap.supportSpeed; } //auto& print = wxGetApp().plater()->get_partplate_list().get_current_fff_print(); //auto print_config = print.config(); //printSpeedMap.bed_poly.points = get_bed_shape(*(wxGetApp().plater()->config())); printSpeedMap.bed_poly.points = get_bed_shape(config); Pointfs excluse_area_points = print_config.bed_exclude_area.values; Polygons exclude_polys; Polygon exclude_poly; for (int i = 0; i < excluse_area_points.size(); i++) { auto pt = excluse_area_points[i]; exclude_poly.points.emplace_back(scale_(pt.x()), scale_(pt.y())); if (i % 4 == 3) { // exclude areas are always rectangle exclude_polys.push_back(exclude_poly); exclude_poly.points.clear(); } } printSpeedMap.bed_poly = diff({ printSpeedMap.bed_poly }, exclude_polys)[0]; } // find temperature of heatend and bed and matierial of an given extruder void Model::setExtruderParams(const DynamicPrintConfig& config, int extruders_count) { extruderParamsMap.clear(); //Slic3r::DynamicPrintConfig config = wxGetApp().preset_bundle->full_config(); // BBS //int numExtruders = wxGetApp().preset_bundle->filament_presets.size(); for (unsigned int i = 0; i != extruders_count; ++i) { std::string matName = ""; // BBS int bedTemp = 35; double endTemp = 0.f; if (config.has("filament_type")) { matName = config.opt_string("filament_type", i); } if (config.has("nozzle_temperature")) { endTemp = config.opt_int("nozzle_temperature", i); } // FIXME: curr_bed_type is now a plate config rather than a global config. // Currently bed temp is not used for brim generation, so just comment it for now. #if 0 if (config.has("curr_bed_type")) { BedType curr_bed_type = config.opt_enum("curr_bed_type"); bedTemp = config.opt_int(get_bed_temp_key(curr_bed_type), i); } #endif if (i == 0) extruderParamsMap.insert({ i,{matName, bedTemp, endTemp} }); extruderParamsMap.insert({ i + 1,{matName, bedTemp, endTemp} }); } } static void get_real_filament_id(const unsigned char &id, std::string &result) { if (id < CONST_FILAMENTS.size()) { result = CONST_FILAMENTS[id]; } else { result = "";//error } }; bool Model::obj_import_vertex_color_deal(const std::vector &vertex_filament_ids, const unsigned char &first_extruder_id, Model *model) { if (vertex_filament_ids.size() == 0) { return false; } // 2.generate mmu_segmentation_facets if (model->objects.size() == 1 ) { auto obj = model->objects[0]; obj->config.set("extruder", first_extruder_id); if (obj->volumes.size() == 1) { enum VertexColorCase { _3_SAME_COLOR, _3_DIFF_COLOR, _2_SAME_1_DIFF_COLOR, }; auto calc_vertex_color_case = [](const unsigned char &c0, const unsigned char &c1, const unsigned char &c2, VertexColorCase &vertex_color_case, unsigned char &iso_index) { if (c0 == c1 && c1 == c2) { vertex_color_case = VertexColorCase::_3_SAME_COLOR; } else if (c0 != c1 && c1 != c2 && c0 != c2) { vertex_color_case = VertexColorCase::_3_DIFF_COLOR; } else if (c0 == c1) { vertex_color_case = _2_SAME_1_DIFF_COLOR; iso_index = 2; } else if (c1 == c2) { vertex_color_case = _2_SAME_1_DIFF_COLOR; iso_index = 0; } else if (c0 == c2) { vertex_color_case = _2_SAME_1_DIFF_COLOR; iso_index = 1; } else { std::cout << "error"; } }; auto calc_tri_area = [](const Vec3f &v0, const Vec3f &v1, const Vec3f &v2) { return std::abs((v0 - v1).cross(v0 - v2).norm()) / 2; }; auto volume = obj->volumes[0]; volume->config.set("extruder", first_extruder_id); auto face_count = volume->mesh().its.indices.size(); volume->mmu_segmentation_facets.reserve(face_count); if (volume->mesh().its.vertices.size() != vertex_filament_ids.size()) { return false; } for (size_t i = 0; i < volume->mesh().its.indices.size(); i++) { auto face = volume->mesh().its.indices[i]; auto filament_id0 = vertex_filament_ids[face[0]]; auto filament_id1 = vertex_filament_ids[face[1]]; auto filament_id2 = vertex_filament_ids[face[2]]; if (filament_id0 <= 1 && filament_id1 <= 1 && filament_id2 <= 2) { continue; } if (i == 0) { std::cout << ""; } VertexColorCase vertex_color_case; unsigned char iso_index; calc_vertex_color_case(filament_id0, filament_id1, filament_id2, vertex_color_case, iso_index); switch (vertex_color_case) { case _3_SAME_COLOR: { std::string result; get_real_filament_id(filament_id0, result); volume->mmu_segmentation_facets.set_triangle_from_string(i, result); break; } case _3_DIFF_COLOR: { std::string result0, result1, result2; get_real_filament_id(filament_id0, result0); get_real_filament_id(filament_id1, result1); get_real_filament_id(filament_id2, result2); auto v0 = volume->mesh().its.vertices[face[0]]; auto v1 = volume->mesh().its.vertices[face[1]]; auto v2 = volume->mesh().its.vertices[face[2]]; auto dir_0_1 = (v1 - v0).normalized(); auto dir_0_2 = (v2 - v0).normalized(); float sita0 = acos(dir_0_1.dot(dir_0_2)); auto dir_1_0 = -dir_0_1; auto dir_1_2 = (v2 - v1).normalized(); float sita1 = acos(dir_1_0.dot(dir_1_2)); float sita2 = PI - sita0 - sita1; std::array sitas = {sita0, sita1, sita2}; float max_sita = sitas[0]; int max_sita_vertex_index = 0; for (size_t j = 1; j < sitas.size(); j++) { if (sitas[j] > max_sita) { max_sita_vertex_index = j; max_sita = sitas[j]; } } if (max_sita_vertex_index == 0) { volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result1 + result2 + "5" )+ "3"); //"1C0C2C0C1C13" } else if (max_sita_vertex_index == 1) { volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result0 + result2 + "9") + "3"); } else{// if (max_sita_vertex_index == 2) volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result2 + (result1 + result0 + "1") + "3"); } break; } case _2_SAME_1_DIFF_COLOR: { std::string result0, result1, result2; get_real_filament_id(filament_id0, result0); get_real_filament_id(filament_id1, result1); get_real_filament_id(filament_id2, result2); if (iso_index == 0) { volume->mmu_segmentation_facets.set_triangle_from_string(i, result0 + result1 + result1 + "2"); } else if (iso_index == 1) { volume->mmu_segmentation_facets.set_triangle_from_string(i, result1 + result0 + result0 + "6"); } else if (iso_index == 2) { volume->mmu_segmentation_facets.set_triangle_from_string(i, result2 + result0 + result0 + "A"); } break; } default: break; } } return true; } } return false; } bool Model::obj_import_face_color_deal(const std::vector &face_filament_ids, const unsigned char &first_extruder_id, Model *model) { if (face_filament_ids.size() == 0) { return false; } // 2.generate mmu_segmentation_facets if (model->objects.size() == 1) { auto obj = model->objects[0]; obj->config.set("extruder", first_extruder_id); if (obj->volumes.size() == 1) { auto volume = obj->volumes[0]; volume->config.set("extruder", first_extruder_id); auto face_count = volume->mesh().its.indices.size(); volume->mmu_segmentation_facets.reserve(face_count); if (volume->mesh().its.indices.size() != face_filament_ids.size()) { return false; } for (size_t i = 0; i < volume->mesh().its.indices.size(); i++) { auto face = volume->mesh().its.indices[i]; auto filament_id = face_filament_ids[i]; if (filament_id <= 1) { continue; } std::string result; get_real_filament_id(filament_id, result); volume->mmu_segmentation_facets.set_triangle_from_string(i, result); } return true; } } return false; } // update the maxSpeed of an object if it is different from the global configuration double Model::findMaxSpeed(const ModelObject* object) { auto objectKeys = object->config.keys(); double objMaxSpeed = -1.; if (objectKeys.empty()) return Model::printSpeedMap.maxSpeed; double perimeterSpeedObj = Model::printSpeedMap.perimeterSpeed; double externalPerimeterSpeedObj = Model::printSpeedMap.externalPerimeterSpeed; double infillSpeedObj = Model::printSpeedMap.infillSpeed; double solidInfillSpeedObj = Model::printSpeedMap.solidInfillSpeed; double topSolidInfillSpeedObj = Model::printSpeedMap.topSolidInfillSpeed; double supportSpeedObj = Model::printSpeedMap.supportSpeed; double smallPerimeterSpeedObj = Model::printSpeedMap.smallPerimeterSpeed; for (std::string objectKey : objectKeys) { if (objectKey == "inner_wall_speed"){ perimeterSpeedObj = object->config.opt_float(objectKey); externalPerimeterSpeedObj = Model::printSpeedMap.externalPerimeterSpeed / Model::printSpeedMap.perimeterSpeed * perimeterSpeedObj; } if (objectKey == "sparse_infill_speed") infillSpeedObj = object->config.opt_float(objectKey); if (objectKey == "internal_solid_infill_speed") solidInfillSpeedObj = object->config.opt_float(objectKey); if (objectKey == "top_surface_speed") topSolidInfillSpeedObj = object->config.opt_float(objectKey); if (objectKey == "support_speed") supportSpeedObj = object->config.opt_float(objectKey); if (objectKey == "outer_wall_speed") externalPerimeterSpeedObj = object->config.opt_float(objectKey); if (objectKey == "small_perimeter_speed") smallPerimeterSpeedObj = object->config.opt_float(objectKey); } objMaxSpeed = std::max(perimeterSpeedObj, std::max(externalPerimeterSpeedObj, std::max(infillSpeedObj, std::max(solidInfillSpeedObj, std::max(topSolidInfillSpeedObj, std::max(supportSpeedObj, std::max(smallPerimeterSpeedObj,objMaxSpeed))))))); if (objMaxSpeed <= 0) objMaxSpeed = 250.; return objMaxSpeed; } // BBS: thermal length is calculated according to the material of a volume double Model::getThermalLength(const ModelVolume* modelVolumePtr) { double thermalLength = 200.; auto aa = modelVolumePtr->extruder_id(); if (Model::extruderParamsMap.find(aa) != Model::extruderParamsMap.end()) { if (Model::extruderParamsMap.at(aa).materialName == "ABS" || Model::extruderParamsMap.at(aa).materialName == "PA-CF" || Model::extruderParamsMap.at(aa).materialName == "PET-CF") { thermalLength = 100; } if (Model::extruderParamsMap.at(aa).materialName == "PC") { thermalLength = 40; } if (Model::extruderParamsMap.at(aa).materialName == "TPU") { thermalLength = 1000; } } return thermalLength; } // BBS: thermal length calculation for a group of volumes double Model::getThermalLength(const std::vector modelVolumePtrs) { double thermalLength = 1250.; for (const auto& modelVolumePtr : modelVolumePtrs) { if (modelVolumePtr != nullptr) { // the thermal length of a group is decided by the volume with shortest thermal length thermalLength = std::min(thermalLength, getThermalLength(modelVolumePtr)); } } return thermalLength; } // max printing speed, difference in bed temperature and envirument temperature and bed adhension coefficients are considered double ModelInstance::get_auto_brim_width(double deltaT, double adhension) const { BoundingBoxf3 raw_bbox = object->raw_mesh_bounding_box(); double maxSpeed = Model::findMaxSpeed(object); auto bbox_size = transform_bounding_box(raw_bbox).size(); double height_to_area = std::max(bbox_size(2) / (bbox_size(0) * bbox_size(0) * bbox_size(1)), bbox_size(2) / (bbox_size(1) * bbox_size(1) * bbox_size(0))); double thermalLength = sqrt(bbox_size(0)* bbox_size(0) + bbox_size(1)* bbox_size(1)); double thermalLengthRef = Model::getThermalLength(object->volumes); double brim_width = adhension * std::min(std::min(std::max(height_to_area * 200 * maxSpeed/200, thermalLength * 8. / thermalLengthRef * std::min(bbox_size(2), 30.) / 30.), 20.), 1.5 * thermalLength); // small brims are omitted if (brim_width < 5 && brim_width < 1.5 * thermalLength) brim_width = 0; return brim_width; } //BBS: instance's convex_hull_2d Polygon ModelInstance::convex_hull_2d() { //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": name %1%, is_valid %2%")% this->object->name.c_str()% convex_hull.is_valid(); //if (!convex_hull.is_valid()) { // this logic is not working right now, as moving instance doesn't update convex_hull const Transform3d& trafo_instance = get_matrix(false); convex_hull = get_object()->convex_hull_2d(trafo_instance); } //int size = convex_hull.size(); //BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": convex_hull, point size %1%")% size; //for (int i = 0; i < size; i++) // BOOST_LOG_TRIVIAL(info) << boost::format(": point %1%, position {%2%, %3%}")% i% convex_hull[i].x()% convex_hull[i].y(); return convex_hull; } //BBS: invalidate instance's convex_hull_2d void ModelInstance::invalidate_convex_hull_2d() { convex_hull.clear(); } //BBS adhesion coefficients from model object class double getadhesionCoeff(const ModelVolumePtrs objectVolumes) { double adhesionCoeff = 1; for (const ModelVolume* modelVolume : objectVolumes) { if (Model::extruderParamsMap.find(modelVolume->extruder_id()) != Model::extruderParamsMap.end()) if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "PETG" || Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "PCTG") { adhesionCoeff = 2; } else if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "TPU") { adhesionCoeff = 0.5; } } return adhesionCoeff; } //BBS maximum temperature difference from model object class double getTemperatureFromExtruder(const ModelVolumePtrs objectVolumes) { // BBS: FIXME #if 1 std::vector extruders; for (const ModelVolume* modelVolume : objectVolumes) { if (modelVolume->extruder_id() >= 0) extruders.push_back(modelVolume->extruder_id()); } double maxDeltaTemp = 0; for (auto extruderID : extruders) { if (Model::extruderParamsMap.find(extruderID) != Model::extruderParamsMap.end()) if (Model::extruderParamsMap.at(extruderID).bedTemp != 0){ maxDeltaTemp = std::max(maxDeltaTemp, (double)Model::extruderParamsMap.at(extruderID).bedTemp); break; } } return maxDeltaTemp; #else return 0.f; #endif } double ModelInstance::get_auto_brim_width() const { return 0.; double adhcoeff = getadhesionCoeff(object->volumes); double DeltaT = getTemperatureFromExtruder(object->volumes); // get auto brim width (Note even if the global brim_type=btOuterBrim, we can still go into this branch) return get_auto_brim_width(DeltaT, adhcoeff); } void ModelInstance::get_arrange_polygon(void *ap, const Slic3r::DynamicPrintConfig &config_global) const { // static const double SIMPLIFY_TOLERANCE_MM = 0.1; Vec3d rotation = get_rotation(); rotation.z() = 0.; Transform3d trafo_instance = Geometry::assemble_transform(get_offset().z() * Vec3d::UnitZ(), rotation, get_scaling_factor(), get_mirror()); Polygon p = get_object()->convex_hull_2d(trafo_instance); // if (!p.points.empty()) { // Polygons pp{p}; // pp = p.simplify(scaled(SIMPLIFY_TOLERANCE_MM)); // if (!pp.empty()) p = pp.front(); // } arrangement::ArrangePolygon& ret = *(arrangement::ArrangePolygon*)ap; ret.poly.contour = std::move(p); ret.translation = Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))}; ret.rotation = get_rotation(Z); //BBS: add materials related information ModelVolume *volume = NULL; for (size_t i = 0; i < object->volumes.size(); ++i) { if (object->volumes[i]->is_model_part()) { volume = object->volumes[i]; if (!volume) { BOOST_LOG_TRIVIAL(error) << __FUNCTION__ << "invalid object, should not happen"; return; } auto ve = object->volumes[i]->get_extruders(); ret.extrude_ids.insert(ret.extrude_ids.end(), ve.begin(), ve.end()); } } // get per-object support extruders auto op = object->get_config_value(config_global, "enable_support"); bool is_support_enabled = op && op->getBool(); if (is_support_enabled) { auto op1 = object->get_config_value(config_global, "support_filament"); auto op2 = object->get_config_value(config_global, "support_interface_filament"); int extruder_id; // id==0 means follow previous material, so need not be recorded if (op1 && (extruder_id = op1->getInt()) > 0) ret.extrude_ids.push_back(extruder_id); if (op2 && (extruder_id = op2->getInt()) > 0) ret.extrude_ids.push_back(extruder_id); } if (ret.extrude_ids.empty()) //the default extruder ret.extrude_ids.push_back(1); } indexed_triangle_set FacetsAnnotation::get_facets(const ModelVolume& mv, EnforcerBlockerType type) const { TriangleSelector selector(mv.mesh()); // Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize(). selector.deserialize(m_data, false); return selector.get_facets(type); } // BBS void FacetsAnnotation::get_facets(const ModelVolume& mv, std::vector& facets_per_type) const { TriangleSelector selector(mv.mesh()); selector.deserialize(m_data, false); selector.get_facets(facets_per_type); } void FacetsAnnotation::set_enforcer_block_type_limit(const ModelVolume& mv, EnforcerBlockerType max_type) { TriangleSelector selector(mv.mesh()); selector.deserialize(m_data, false, max_type); this->set(selector); } indexed_triangle_set FacetsAnnotation::get_facets_strict(const ModelVolume& mv, EnforcerBlockerType type) const { TriangleSelector selector(mv.mesh()); // Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize(). selector.deserialize(m_data, false); return selector.get_facets_strict(type); } bool FacetsAnnotation::has_facets(const ModelVolume& mv, EnforcerBlockerType type) const { return TriangleSelector::has_facets(m_data, type); } bool FacetsAnnotation::set(const TriangleSelector& selector) { std::pair>, std::vector> sel_map = selector.serialize(); if (sel_map != m_data) { m_data = std::move(sel_map); this->touch(); return true; } return false; } void FacetsAnnotation::reset() { m_data.first.clear(); m_data.second.clear(); this->touch(); } // Following function takes data from a triangle and encodes it as string // of hexadecimal numbers (one digit per triangle). Used for 3MF export, // changing it may break backwards compatibility !!!!! std::string FacetsAnnotation::get_triangle_as_string(int triangle_idx) const { std::string out; auto triangle_it = std::lower_bound(m_data.first.begin(), m_data.first.end(), triangle_idx, [](const std::pair &l, const int r) { return l.first < r; }); if (triangle_it != m_data.first.end() && triangle_it->first == triangle_idx) { int offset = triangle_it->second; int end = ++ triangle_it == m_data.first.end() ? int(m_data.second.size()) : triangle_it->second; while (offset < end) { int next_code = 0; for (int i=3; i>=0; --i) { next_code = next_code << 1; next_code |= int(m_data.second[offset + i]); } offset += 4; assert(next_code >=0 && next_code <= 15); char digit = next_code < 10 ? next_code + '0' : (next_code-10)+'A'; out.insert(out.begin(), digit); } } return out; } // Recover triangle splitting & state from string of hexadecimal values previously // generated by get_triangle_as_string. Used to load from 3MF. void FacetsAnnotation::set_triangle_from_string(int triangle_id, const std::string& str) { assert(! str.empty()); assert(m_data.first.empty() || m_data.first.back().first < triangle_id); m_data.first.emplace_back(triangle_id, int(m_data.second.size())); for (auto it = str.crbegin(); it != str.crend(); ++it) { const char ch = *it; int dec = 0; if (ch >= '0' && ch<='9') dec = int(ch - '0'); else if (ch >='A' && ch <= 'F') dec = 10 + int(ch - 'A'); else assert(false); // Convert to binary and append into code. for (int i=0; i<4; ++i) m_data.second.insert(m_data.second.end(), bool(dec & (1 << i))); } } bool FacetsAnnotation::equals(const FacetsAnnotation &other) const { const std::pair>, std::vector>& data = other.get_data(); return (m_data == data); } // Test whether the two models contain the same number of ModelObjects with the same set of IDs // ordered in the same order. In that case it is not necessary to kill the background processing. bool model_object_list_equal(const Model &model_old, const Model &model_new) { if (model_old.objects.size() != model_new.objects.size()) return false; for (size_t i = 0; i < model_old.objects.size(); ++ i) if (model_old.objects[i]->id() != model_new.objects[i]->id()) return false; return true; } // Test whether the new model is just an extension of the old model (new objects were added // to the end of the original list. In that case it is not necessary to kill the background processing. bool model_object_list_extended(const Model &model_old, const Model &model_new) { if (model_old.objects.size() >= model_new.objects.size()) return false; for (size_t i = 0; i < model_old.objects.size(); ++ i) if (model_old.objects[i]->id() != model_new.objects[i]->id()) return false; return true; } template bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter) { size_t i_old, i_new; for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (! type_filter(mv_old.type())) { ++ i_old; continue; } if (! type_filter(mv_new.type())) { ++ i_new; continue; } if (mv_old.type() != mv_new.type() || mv_old.id() != mv_new.id()) return true; //FIXME test for the content of the mesh! if (! mv_old.get_matrix().isApprox(mv_new.get_matrix())) return true; ++ i_old; ++ i_new; } for (; i_old < model_object_old.volumes.size(); ++ i_old) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; if (type_filter(mv_old.type())) // ModelVolume was deleted. return true; } for (; i_new < model_object_new.volumes.size(); ++ i_new) { const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (type_filter(mv_new.type())) // ModelVolume was added. return true; } return false; } bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type) { return model_volume_list_changed(model_object_old, model_object_new, [type](const ModelVolumeType t) { return t == type; }); } bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const std::initializer_list &types) { return model_volume_list_changed(model_object_old, model_object_new, [&types](const ModelVolumeType t) { return std::find(types.begin(), types.end(), t) != types.end(); }); } template< typename TypeFilterFn, typename CompareFn> bool model_property_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter, CompareFn compare) { assert(! model_volume_list_changed(model_object_old, model_object_new, type_filter)); size_t i_old, i_new; for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (! type_filter(mv_old.type())) { ++ i_old; continue; } if (! type_filter(mv_new.type())) { ++ i_new; continue; } assert(mv_old.type() == mv_new.type() && mv_old.id() == mv_new.id()); if (! compare(mv_old, mv_new)) return true; ++ i_old; ++ i_new; } return false; } bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.supported_facets.timestamp_matches(mv_new.supported_facets); }); } bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.seam_facets.timestamp_matches(mv_new.seam_facets); }); } bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.mmu_segmentation_facets.timestamp_matches(mv_new.mmu_segmentation_facets); }); } bool model_has_multi_part_objects(const Model &model) { for (const ModelObject *model_object : model.objects) if (model_object->volumes.size() != 1 || ! model_object->volumes.front()->is_model_part()) return true; return false; } bool model_has_advanced_features(const Model &model) { auto config_is_advanced = [](const ModelConfig &config) { return ! (config.empty() || (config.size() == 1 && config.cbegin()->first == "extruder")); }; for (const ModelObject *model_object : model.objects) { // Is there more than one instance or advanced config data? if (model_object->instances.size() > 1 || config_is_advanced(model_object->config)) return true; // Is there any modifier or advanced config data? for (const ModelVolume* model_volume : model_object->volumes) if (! model_volume->is_model_part() || config_is_advanced(model_volume->config)) return true; } return false; } #ifndef NDEBUG // Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique. void check_model_ids_validity(const Model &model) { std::set ids; auto check = [&ids](ObjectID id) { assert(id.valid()); assert(ids.find(id) == ids.end()); ids.insert(id); }; for (const ModelObject *model_object : model.objects) { check(model_object->id()); check(model_object->config.id()); for (const ModelVolume *model_volume : model_object->volumes) { check(model_volume->id()); check(model_volume->config.id()); } for (const ModelInstance *model_instance : model_object->instances) check(model_instance->id()); } for (const auto mm : model.materials) { check(mm.second->id()); check(mm.second->config.id()); } } void check_model_ids_equal(const Model &model1, const Model &model2) { // Verify whether the IDs of model1 and model match. assert(model1.objects.size() == model2.objects.size()); for (size_t idx_model = 0; idx_model < model2.objects.size(); ++ idx_model) { const ModelObject &model_object1 = *model1.objects[idx_model]; const ModelObject &model_object2 = * model2.objects[idx_model]; assert(model_object1.id() == model_object2.id()); assert(model_object1.config.id() == model_object2.config.id()); assert(model_object1.volumes.size() == model_object2.volumes.size()); assert(model_object1.instances.size() == model_object2.instances.size()); for (size_t i = 0; i < model_object1.volumes.size(); ++ i) { assert(model_object1.volumes[i]->id() == model_object2.volumes[i]->id()); assert(model_object1.volumes[i]->config.id() == model_object2.volumes[i]->config.id()); } for (size_t i = 0; i < model_object1.instances.size(); ++ i) assert(model_object1.instances[i]->id() == model_object2.instances[i]->id()); } assert(model1.materials.size() == model2.materials.size()); { auto it1 = model1.materials.begin(); auto it2 = model2.materials.begin(); for (; it1 != model1.materials.end(); ++ it1, ++ it2) { assert(it1->first == it2->first); // compare keys assert(it1->second->id() == it2->second->id()); assert(it1->second->config.id() == it2->second->config.id()); } } } #endif /* NDEBUG */ } #if 0 CEREAL_REGISTER_TYPE(Slic3r::ModelObject) CEREAL_REGISTER_TYPE(Slic3r::ModelVolume) CEREAL_REGISTER_TYPE(Slic3r::ModelInstance) CEREAL_REGISTER_TYPE(Slic3r::Model) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelObject) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelVolume) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelInstance) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::Model) #endif