#ifndef libslic3r_TriangleSelector_hpp_ #define libslic3r_TriangleSelector_hpp_ // #define PRUSASLICER_TRIANGLE_SELECTOR_DEBUG #include #include "Point.hpp" #include "TriangleMesh.hpp" #include "libslic3r/Model.hpp" namespace Slic3r { // Following class holds information about selected triangles. It also has power // to recursively subdivide the triangles and make the selection finer. class TriangleSelector { protected: class Triangle; struct Vertex; public: enum CursorType { CIRCLE, SPHERE, POINTER, // BBS HEIGHT_RANGE, GAP_FILL, }; struct ClippingPlane { Vec3f normal; float offset; ClippingPlane() : normal{0.f, 0.f, 1.f}, offset{FLT_MAX} {}; explicit ClippingPlane(const std::array &clp) : normal{clp[0], clp[1], clp[2]}, offset{clp[3]} {} bool is_active() const { return offset != FLT_MAX; } bool is_mesh_point_clipped(const Vec3f &point) const { return normal.dot(point) - offset > 0.f; } }; class Cursor { public: Cursor() = delete; virtual ~Cursor() = default; bool is_pointer_in_triangle(const Triangle &tr, const std::vector &vertices) const; virtual bool is_mesh_point_inside(const Vec3f &point) const = 0; virtual bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const = 0; virtual int vertices_inside(const Triangle &tr, const std::vector &vertices) const; virtual bool is_edge_inside_cursor(const Triangle &tr, const std::vector &vertices) const = 0; virtual bool is_facet_visible(int facet_idx, const std::vector &face_normals) const = 0; static bool is_facet_visible(const Cursor &cursor, int facet_idx, const std::vector &face_normals); protected: explicit Cursor(const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_); Transform3f trafo; Vec3f source; bool uniform_scaling; Transform3f trafo_normal; float radius; float radius_sqr; Vec3f dir = Vec3f(0.f, 0.f, 0.f); ClippingPlane clipping_plane; // Clipping plane to limit painting to not clipped facets only friend TriangleSelector; }; class SinglePointCursor : public Cursor { public: SinglePointCursor() = delete; ~SinglePointCursor() override = default; bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const override; static std::unique_ptr cursor_factory(const Vec3f ¢er, const Vec3f &camera_pos, const float cursor_radius, const CursorType cursor_type, const Transform3d &trafo_matrix, const ClippingPlane &clipping_plane) { assert(cursor_type == TriangleSelector::CursorType::CIRCLE || cursor_type == TriangleSelector::CursorType::SPHERE); if (cursor_type == TriangleSelector::CursorType::SPHERE) return std::make_unique(center, camera_pos, cursor_radius, trafo_matrix, clipping_plane); else return std::make_unique(center, camera_pos, cursor_radius, trafo_matrix, clipping_plane); } static std::unique_ptr cursor_factory(float z_world, const Vec3f& camera_pos, const float height, const Transform3d& trafo_matrix, const ClippingPlane& clipping_plane) { return std::make_unique(z_world, camera_pos, height, trafo_matrix, clipping_plane); } protected: explicit SinglePointCursor(const Vec3f ¢er_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_); Vec3f center; }; class DoublePointCursor : public Cursor { public: DoublePointCursor() = delete; ~DoublePointCursor() override = default; bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const override; static std::unique_ptr cursor_factory(const Vec3f &first_center, const Vec3f &second_center, const Vec3f &camera_pos, const float cursor_radius, const CursorType cursor_type, const Transform3d &trafo_matrix, const ClippingPlane &clipping_plane) { assert(cursor_type == TriangleSelector::CursorType::CIRCLE || cursor_type == TriangleSelector::CursorType::SPHERE); if (cursor_type == TriangleSelector::CursorType::SPHERE) return std::make_unique(first_center, second_center, camera_pos, cursor_radius, trafo_matrix, clipping_plane); else return std::make_unique(first_center, second_center, camera_pos, cursor_radius, trafo_matrix, clipping_plane); } protected: explicit DoublePointCursor(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_); Vec3f first_center; Vec3f second_center; }; class Sphere : public SinglePointCursor { public: Sphere() = delete; explicit Sphere(const Vec3f ¢er_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_) : SinglePointCursor(center_, source_, radius_world, trafo_, clipping_plane_){}; ~Sphere() override = default; bool is_mesh_point_inside(const Vec3f &point) const override; bool is_edge_inside_cursor(const Triangle &tr, const std::vector &vertices) const override; bool is_facet_visible(int facet_idx, const std::vector &face_normals) const override { return true; } }; class Circle : public SinglePointCursor { public: Circle() = delete; explicit Circle(const Vec3f ¢er_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_) : SinglePointCursor(center_, source_, radius_world, trafo_, clipping_plane_){}; ~Circle() override = default; bool is_mesh_point_inside(const Vec3f &point) const override; bool is_edge_inside_cursor(const Triangle &tr, const std::vector &vertices) const override; bool is_facet_visible(int facet_idx, const std::vector &face_normals) const override { return TriangleSelector::Cursor::is_facet_visible(*this, facet_idx, face_normals); } }; // BBS class HeightRange : public SinglePointCursor { public: HeightRange() = delete; // BBS: set cursor_radius to 0.1 for high smooth edge explicit HeightRange(float z_world_, const Vec3f& source_, float height_, const Transform3d& trafo_, const ClippingPlane& clipping_plane_) : SinglePointCursor(Vec3f(0.f, 0.f, 0.f), source_, 1.f, trafo_, clipping_plane_), m_z_world(z_world_), m_height(height_) {} ~HeightRange() override = default; bool is_pointer_in_triangle(const Vec3f& p1, const Vec3f& p2, const Vec3f& p3) const override; bool is_mesh_point_inside(const Vec3f& point) const override; bool is_edge_inside_cursor(const Triangle& tr, const std::vector& vertices) const override; bool is_facet_visible(int facet_idx, const std::vector& face_normals) const override { return true; } private: float m_z_world; float m_height; }; class Capsule3D : public DoublePointCursor { public: Capsule3D() = delete; explicit Capsule3D(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_) : TriangleSelector::DoublePointCursor(first_center_, second_center_, source_, radius_world, trafo_, clipping_plane_) {} ~Capsule3D() override = default; bool is_mesh_point_inside(const Vec3f &point) const override; bool is_edge_inside_cursor(const Triangle &tr, const std::vector &vertices) const override; bool is_facet_visible(int facet_idx, const std::vector &face_normals) const override { return true; } }; class Capsule2D : public DoublePointCursor { public: Capsule2D() = delete; explicit Capsule2D(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_) : TriangleSelector::DoublePointCursor(first_center_, second_center_, source_, radius_world, trafo_, clipping_plane_) {} ~Capsule2D() override = default; bool is_mesh_point_inside(const Vec3f &point) const override; bool is_edge_inside_cursor(const Triangle &tr, const std::vector &vertices) const override; bool is_facet_visible(int facet_idx, const std::vector &face_normals) const override { return TriangleSelector::Cursor::is_facet_visible(*this, facet_idx, face_normals); } }; std::pair, std::vector> precompute_all_neighbors() const; void precompute_all_neighbors_recursive(int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector &neighbors_out, std::vector &neighbors_normal_out) const; // Set a limit to the edge length, below which the edge will not be split by select_patch(). // Called by select_patch() internally. Made public for debugging purposes, see TriangleSelectorGUI::render_debug(). void set_edge_limit(float edge_limit); // Create new object on a TriangleMesh. The referenced mesh must // stay valid, a ptr to it is saved and used. explicit TriangleSelector(const TriangleMesh& mesh, float edge_limit = 0.6f); // Returns the facet_idx of the unsplit triangle containing the "hit". Returns -1 if the triangle isn't found. [[nodiscard]] int select_unsplit_triangle(const Vec3f &hit, int facet_idx) const; [[nodiscard]] int select_unsplit_triangle(const Vec3f &hit, int facet_idx, const Vec3i &neighbors) const; // Select all triangles fully inside the circle, subdivide where needed. void select_patch(int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to std::unique_ptr &&cursor, // Cursor containing information about the point where to start, camera position (mesh coords), matrix to get from mesh to world, and its shape and type. EnforcerBlockerType new_state, // enforcer or blocker? const Transform3d &trafo_no_translate, // matrix to get from mesh to world without translation bool triangle_splitting, // If triangles will be split base on the cursor or not float highlight_by_angle_deg = 0.f); // The maximal angle of overhang. If it is set to a non-zero value, it is possible to paint only the triangles of overhang defined by this angle in degrees. void seed_fill_select_triangles(const Vec3f &hit, // point where to start int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to const Transform3d &trafo_no_translate, // matrix to get from mesh to world without translation const ClippingPlane &clp, // Clipping plane to limit painting to not clipped facets only float seed_fill_angle, // the maximal angle between two facets to be painted by the same color float highlight_by_angle_deg = 0.f, // The maximal angle of overhang. If it is set to a non-zero value, it is possible to paint only the triangles of overhang defined by this angle in degrees. bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle void bucket_fill_select_triangles(const Vec3f &hit, // point where to start int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to const ClippingPlane &clp, // Clipping plane to limit painting to not clipped facets only float seed_fill_angle, // BBS: the maximal angle between two facets to be painted by the same color bool propagate, // if bucket fill is propagated to neighbor faces or if it fills the only facet of the modified mesh that the hit point belongs to. bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle bool has_facets(EnforcerBlockerType state) const; static bool has_facets(const std::pair>, std::vector> &data, EnforcerBlockerType test_state); int num_facets(EnforcerBlockerType state) const; // Get facets at a given state. Don't triangulate T-joints. indexed_triangle_set get_facets(EnforcerBlockerType state) const; // Get facets at a given state. Triangulate T-joints. indexed_triangle_set get_facets_strict(EnforcerBlockerType state) const; // Get edges around the selected area by seed fill. std::vector get_seed_fill_contour() const; // BBS void get_facets(std::vector& facets_per_type) const; // Set facet of the mesh to a given state. Only works for original triangles. void set_facet(int facet_idx, EnforcerBlockerType state); // Clear everything and make the tree empty. void reset(); // Remove all unnecessary data. void garbage_collect(); // Store the division trees in compact form (a long stream of bits for each triangle of the original mesh). // First vector contains pairs of (triangle index, first bit in the second vector). std::pair>, std::vector> serialize() const; // Load serialized data. Assumes that correct mesh is loaded. void deserialize(const std::pair>, std::vector>& data, bool needs_reset = true, EnforcerBlockerType max_ebt = EnforcerBlockerType::ExtruderMax); // For all triangles, remove the flag indicating that the triangle was selected by seed fill. void seed_fill_unselect_all_triangles(); // For all triangles selected by seed fill, set new EnforcerBlockerType and remove flag indicating that triangle was selected by seed fill. // The operation may merge split triangles if they are being assigned the same color. void seed_fill_apply_on_triangles(EnforcerBlockerType new_state); protected: // Triangle and info about how it's split. class Triangle { public: // Use TriangleSelector::push_triangle to create a new triangle. // It increments/decrements reference counter on vertices. Triangle(int a, int b, int c, int source_triangle, const EnforcerBlockerType init_state) : verts_idxs{a, b, c}, source_triangle{source_triangle}, state{init_state} { // Initialize bit fields. Default member initializers are not supported by C++17. m_selected_by_seed_fill = false; m_valid = true; } // Indices into m_vertices. std::array verts_idxs; // Index of the source triangle at the initial (unsplit) mesh. int source_triangle; // Children triangles. std::array children; // Set the division type. void set_division(int sides_to_split, int special_side_idx); // Get/set current state. void set_state(EnforcerBlockerType type) { assert(!is_split()); state = type; } EnforcerBlockerType get_state() const { assert(! is_split()); return state; } // Set if the triangle has been selected or unselected by seed fill. void select_by_seed_fill() { assert(! is_split()); m_selected_by_seed_fill = true; } void unselect_by_seed_fill() { assert(! is_split()); m_selected_by_seed_fill = false; } // Get if the triangle has been selected or not by seed fill. bool is_selected_by_seed_fill() const { assert(! is_split()); return m_selected_by_seed_fill; } // Is this triangle valid or marked to be removed? bool valid() const noexcept { return m_valid; } // Get info on how it's split. bool is_split() const noexcept { return number_of_split_sides() != 0; } int number_of_split_sides() const noexcept { return number_of_splits; } int special_side() const noexcept { assert(is_split()); return special_side_idx; } private: friend TriangleSelector; // Packing the rest of member variables into 4 bytes, aligned to 4 bytes boundary. char number_of_splits { 0 }; // Index of a vertex opposite to the split edge (for number_of_splits == 1) // or index of a vertex shared by the two split edges (for number_of_splits == 2). // For number_of_splits == 3, special_side_idx is always zero. char special_side_idx { 0 }; EnforcerBlockerType state; bool m_selected_by_seed_fill : 1; // Is this triangle valid or marked to be removed? bool m_valid : 1; }; struct Vertex { explicit Vertex(const stl_vertex& vert) : v{vert}, ref_cnt{0} {} stl_vertex v; int ref_cnt; }; void append_touching_subtriangles(int itriangle, int vertexi, int vertexj, std::vector& touching_subtriangles_out) const; bool verify_triangle_neighbors(const Triangle& tr, const Vec3i& neighbors) const; // Lists of vertices and triangles, both original and new std::vector m_vertices; std::vector m_triangles; const TriangleMesh &m_mesh; const std::vector m_neighbors; const std::vector m_face_normals; // BBS float m_edge_limit = 0.6f; // Number of invalid triangles (to trigger garbage collection). int m_invalid_triangles; // Limiting length of triangle side (squared). float m_edge_limit_sqr = 1.f; // Number of original vertices and triangles. int m_orig_size_vertices = 0; int m_orig_size_indices = 0; std::unique_ptr m_cursor; // Zero indicates an uninitialized state. float m_old_cursor_radius_sqr = 0; // Private functions: private: bool select_triangle(int facet_idx, EnforcerBlockerType type, bool triangle_splitting); bool select_triangle_recursive(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType type, bool triangle_splitting); void undivide_triangle(int facet_idx); void split_triangle(int facet_idx, const Vec3i &neighbors); void remove_useless_children(int facet_idx); // No hidden meaning. Triangles are meant. bool is_facet_clipped(int facet_idx, const ClippingPlane &clp) const; int push_triangle(int a, int b, int c, int source_triangle, EnforcerBlockerType state = EnforcerBlockerType{0}); void perform_split(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType old_state); Vec3i child_neighbors(const Triangle &tr, const Vec3i &neighbors, int child_idx) const; Vec3i child_neighbors_propagated(const Triangle &tr, const Vec3i &neighbors_propagated, int child_idx, const Vec3i &child_neighbors) const; // Return child of itriangle at a CCW oriented side (vertexi, vertexj), either first or 2nd part. // If itriangle == -1 or if the side sharing (vertexi, vertexj) is not split, return -1. enum class Partition { First, Second, }; int neighbor_child(const Triangle& tr, int vertexi, int vertexj, Partition partition) const; int neighbor_child(int itriangle, int vertexi, int vertexj, Partition partition) const; int triangle_midpoint(const Triangle& tr, int vertexi, int vertexj) const; int triangle_midpoint(int itriangle, int vertexi, int vertexj) const; int triangle_midpoint_or_allocate(int itriangle, int vertexi, int vertexj); static std::pair triangle_subtriangles(const Triangle &tr, int vertexi, int vertexj); std::pair triangle_subtriangles(int itriangle, int vertexi, int vertexj) const; //void append_touching_subtriangles(int itriangle, int vertexi, int vertexj, std::vector &touching_subtriangles_out) const; void append_touching_edges(int itriangle, int vertexi, int vertexj, std::vector &touching_edges_out) const; #ifndef NDEBUG //bool verify_triangle_neighbors(const Triangle& tr, const Vec3i& neighbors) const; bool verify_triangle_midpoints(const Triangle& tr) const; #endif // NDEBUG void get_facets_strict_recursive( const Triangle &tr, const Vec3i &neighbors, EnforcerBlockerType state, std::vector &out_triangles) const; void get_facets_split_by_tjoints(const Vec3i &vertices, const Vec3i &neighbors, std::vector &out_triangles) const; void get_seed_fill_contour_recursive(int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector &edges_out) const; int m_free_triangles_head { -1 }; int m_free_vertices_head { -1 }; }; } // namespace Slic3r #endif // libslic3r_TriangleSelector_hpp_