#include #include #include #include "../ClipperUtils.hpp" #include "../Geometry.hpp" #include "../Layer.hpp" #include "../Print.hpp" #include "../PrintConfig.hpp" #include "../Surface.hpp" #include "FillBase.hpp" #include "FillRectilinear.hpp" #include "FillLightning.hpp" #include "FillConcentricInternal.hpp" #include "FillConcentric.hpp" #define NARROW_INFILL_AREA_THRESHOLD 3 namespace Slic3r { struct SurfaceFillParams { // Zero based extruder ID. unsigned int extruder = 0; // Infill pattern, adjusted for the density etc. InfillPattern pattern = InfillPattern(0); // FillBase // in unscaled coordinates coordf_t spacing = 0.; // infill / perimeter overlap, in unscaled coordinates coordf_t overlap = 0.; // Angle as provided by the region config, in radians. float angle = 0.f; // Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set. bool bridge; // Non-negative for a bridge. float bridge_angle = 0.f; // FillParams float density = 0.f; // Don't adjust spacing to fill the space evenly. // bool dont_adjust = false; // Length of the infill anchor along the perimeter line. // 1000mm is roughly the maximum length line that fits into a 32bit coord_t. float anchor_length = 1000.f; float anchor_length_max = 1000.f; //BBS // width, height of extrusion, nozzle diameter, is bridge // For the output, for fill generator. Flow flow; // For the output ExtrusionRole extrusion_role = ExtrusionRole(0); // Various print settings? // Index of this entry in a linear vector. size_t idx = 0; // infill speed settings float sparse_infill_speed = 0; float top_surface_speed = 0; float solid_infill_speed = 0; bool operator<(const SurfaceFillParams &rhs) const { #define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false; #define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false; // Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other. if (this->bridge_angle > rhs.bridge_angle) return true; if (this->bridge_angle < rhs.bridge_angle) return false; RETURN_COMPARE_NON_EQUAL(extruder); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern); RETURN_COMPARE_NON_EQUAL(spacing); RETURN_COMPARE_NON_EQUAL(overlap); RETURN_COMPARE_NON_EQUAL(angle); RETURN_COMPARE_NON_EQUAL(density); // RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust); RETURN_COMPARE_NON_EQUAL(anchor_length); RETURN_COMPARE_NON_EQUAL(anchor_length_max); RETURN_COMPARE_NON_EQUAL(flow.width()); RETURN_COMPARE_NON_EQUAL(flow.height()); RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter()); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role); RETURN_COMPARE_NON_EQUAL(sparse_infill_speed); RETURN_COMPARE_NON_EQUAL(top_surface_speed); RETURN_COMPARE_NON_EQUAL(solid_infill_speed); return false; } bool operator==(const SurfaceFillParams &rhs) const { return this->extruder == rhs.extruder && this->pattern == rhs.pattern && this->spacing == rhs.spacing && this->overlap == rhs.overlap && this->angle == rhs.angle && this->bridge == rhs.bridge && // this->bridge_angle == rhs.bridge_angle && this->density == rhs.density && // this->dont_adjust == rhs.dont_adjust && this->anchor_length == rhs.anchor_length && this->anchor_length_max == rhs.anchor_length_max && this->flow == rhs.flow && this->extrusion_role == rhs.extrusion_role && this->sparse_infill_speed == rhs.sparse_infill_speed && this->top_surface_speed == rhs.top_surface_speed && this->solid_infill_speed == rhs.solid_infill_speed; } }; struct SurfaceFill { SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {} size_t region_id; Surface surface; ExPolygons expolygons; SurfaceFillParams params; // BBS std::vector region_id_group; ExPolygons no_overlap_expolygons; }; // BBS: used to judge whether the internal solid infill area is narrow static bool is_narrow_infill_area(const ExPolygon& expolygon) { ExPolygons offsets = offset_ex(expolygon, -scale_(NARROW_INFILL_AREA_THRESHOLD)); if (offsets.empty()) return true; return false; } std::vector group_fills(const Layer &layer) { std::vector surface_fills; // Fill in a map of a region & surface to SurfaceFillParams. std::set set_surface_params; std::vector> region_to_surface_params(layer.regions().size(), std::vector()); SurfaceFillParams params; bool has_internal_voids = false; const PrintObjectConfig& object_config = layer.object()->config(); for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) { const LayerRegion &layerm = *layer.regions()[region_id]; region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr); for (const Surface &surface : layerm.fill_surfaces.surfaces) if (surface.surface_type == stInternalVoid) has_internal_voids = true; else { const PrintRegionConfig ®ion_config = layerm.region().config(); FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill); bool is_bridge = layer.id() > 0 && surface.is_bridge(); params.extruder = layerm.region().extruder(extrusion_role); params.pattern = region_config.sparse_infill_pattern.value; params.density = float(region_config.sparse_infill_density); if (surface.is_solid()) { params.density = 100.f; //FIXME for non-thick bridges, shall we allow a bottom surface pattern? if (surface.is_solid_infill()) params.pattern = region_config.internal_solid_infill_pattern.value; else if (surface.is_external() && !is_bridge) params.pattern = surface.is_top() ? region_config.top_surface_pattern.value : region_config.bottom_surface_pattern.value; else params.pattern = region_config.top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear; } else if (params.density <= 0) continue; params.extrusion_role = is_bridge ? erBridgeInfill : (surface.is_solid() ? (surface.is_top() ? erTopSolidInfill : (surface.is_bottom()? erBottomSurface : erSolidInfill)) : erInternalInfill); params.bridge_angle = float(surface.bridge_angle); params.angle = float(Geometry::deg2rad(region_config.infill_direction.value)); // Calculate the actual flow we'll be using for this infill. params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern); params.flow = params.bridge ? //BBS: always enable thick bridge for internal bridge layerm.bridging_flow(extrusion_role, (surface.is_bridge() && !surface.is_external()) || object_config.thick_bridges) : layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness); //BBS: record speed params if (!params.bridge) { if (params.extrusion_role == erInternalInfill) params.sparse_infill_speed = region_config.sparse_infill_speed; else if (params.extrusion_role == erTopSolidInfill) params.top_surface_speed = region_config.top_surface_speed; else if (params.extrusion_role == erSolidInfill) params.solid_infill_speed = region_config.internal_solid_infill_speed; } // Calculate flow spacing for infill pattern generation. if (surface.is_solid() || is_bridge) { params.spacing = params.flow.spacing(); // Don't limit anchor length for solid or bridging infill. params.anchor_length = 1000.f; params.anchor_length_max = 1000.f; } else { // Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status, // so that internall infill will be aligned over all layers of the current region. params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing(); // Anchor a sparse infill to inner perimeters with the following anchor length: params.anchor_length = float(region_config.sparse_infill_anchor); if (region_config.sparse_infill_anchor.percent) params.anchor_length = float(params.anchor_length * 0.01 * params.spacing); params.anchor_length_max = float(region_config.sparse_infill_anchor_max); if (region_config.sparse_infill_anchor_max.percent) params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing); params.anchor_length = std::min(params.anchor_length, params.anchor_length_max); } auto it_params = set_surface_params.find(params); if (it_params == set_surface_params.end()) it_params = set_surface_params.insert(it_params, params); region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params); } } surface_fills.reserve(set_surface_params.size()); for (const SurfaceFillParams ¶ms : set_surface_params) { const_cast(params).idx = surface_fills.size(); surface_fills.emplace_back(params); } for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) { const LayerRegion &layerm = *layer.regions()[region_id]; for (const Surface &surface : layerm.fill_surfaces.surfaces) if (surface.surface_type != stInternalVoid) { const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()]; if (params != nullptr) { SurfaceFill &fill = surface_fills[params->idx]; if (fill.region_id == size_t(-1)) { fill.region_id = region_id; fill.surface = surface; fill.expolygons.emplace_back(std::move(fill.surface.expolygon)); //BBS fill.region_id_group.push_back(region_id); fill.no_overlap_expolygons = layerm.fill_no_overlap_expolygons; } else { fill.expolygons.emplace_back(surface.expolygon); //BBS auto t = find(fill.region_id_group.begin(), fill.region_id_group.end(), region_id); if (t == fill.region_id_group.end()) { fill.region_id_group.push_back(region_id); fill.no_overlap_expolygons = union_ex(fill.no_overlap_expolygons, layerm.fill_no_overlap_expolygons); } } } } } { Polygons all_polygons; for (SurfaceFill &fill : surface_fills) if (! fill.expolygons.empty()) { if (fill.expolygons.size() > 1 || ! all_polygons.empty()) { Polygons polys = to_polygons(std::move(fill.expolygons)); // Make a union of polygons, use a safety offset, subtract the preceding polygons. // Bridges are processed first (see SurfaceFill::operator<()) fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes); append(all_polygons, std::move(polys)); } else if (&fill != &surface_fills.back()) append(all_polygons, to_polygons(fill.expolygons)); } } // we need to detect any narrow surfaces that might collapse // when adding spacing below // such narrow surfaces are often generated in sloping walls // by bridge_over_infill() and combine_infill() as a result of the // subtraction of the combinable area from the layer infill area, // which leaves small areas near the perimeters // we are going to grow such regions by overlapping them with the void (if any) // TODO: detect and investigate whether there could be narrow regions without // any void neighbors if (has_internal_voids) { // Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active. coord_t distance_between_surfaces = 0; Polygons surfaces_polygons; Polygons voids; int region_internal_infill = -1; int region_solid_infill = -1; int region_some_infill = -1; for (SurfaceFill &surface_fill : surface_fills) if (! surface_fill.expolygons.empty()) { distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing()); append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons)); if (surface_fill.surface.surface_type == stInternalSolid) region_internal_infill = (int)surface_fill.region_id; if (surface_fill.surface.is_solid()) region_solid_infill = (int)surface_fill.region_id; if (surface_fill.surface.surface_type != stInternalVoid) region_some_infill = (int)surface_fill.region_id; } if (! voids.empty() && ! surfaces_polygons.empty()) { // First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping. voids = diff(voids, surfaces_polygons); // Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2 Polygons collapsed = diff( surfaces_polygons, opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset))); //FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being // added if two offsetted void regions merge. // polygons_append(voids, collapsed); ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes); // Now find an internal infill SurfaceFill to add these extrusions to. SurfaceFill *internal_solid_fill = nullptr; unsigned int region_id = 0; if (region_internal_infill != -1) region_id = region_internal_infill; else if (region_solid_infill != -1) region_id = region_solid_infill; else if (region_some_infill != -1) region_id = region_some_infill; const LayerRegion& layerm = *layer.regions()[region_id]; for (SurfaceFill &surface_fill : surface_fills) if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) { internal_solid_fill = &surface_fill; break; } if (internal_solid_fill == nullptr) { // Produce another solid fill. params.extruder = layerm.region().extruder(frSolidInfill); params.pattern = layerm.region().config().top_surface_pattern == ipMonotonic ? ipMonotonic : ipRectilinear; params.density = 100.f; params.extrusion_role = erInternalInfill; params.angle = float(Geometry::deg2rad(layerm.region().config().infill_direction.value)); // calculate the actual flow we'll be using for this infill params.flow = layerm.flow(frSolidInfill); params.spacing = params.flow.spacing(); surface_fills.emplace_back(params); surface_fills.back().surface.surface_type = stInternalSolid; surface_fills.back().surface.thickness = layer.height; surface_fills.back().expolygons = std::move(extensions); } else { append(extensions, std::move(internal_solid_fill->expolygons)); internal_solid_fill->expolygons = union_ex(extensions); } } } // BBS: detect narrow internal solid infill area and use ipConcentricInternal pattern instead if (layer.object()->config().detect_narrow_internal_solid_infill) { size_t surface_fills_size = surface_fills.size(); for (size_t i = 0; i < surface_fills_size; i++) { if (surface_fills[i].surface.surface_type != stInternalSolid) continue; size_t expolygons_size = surface_fills[i].expolygons.size(); std::vector narrow_expolygons_index; narrow_expolygons_index.reserve(expolygons_size); // BBS: get the index list of narrow expolygon for (size_t j = 0; j < expolygons_size; j++) if (is_narrow_infill_area(surface_fills[i].expolygons[j])) narrow_expolygons_index.push_back(j); if (narrow_expolygons_index.size() == 0) { // BBS: has no narrow expolygon continue; } else if (narrow_expolygons_index.size() == expolygons_size) { // BBS: all expolygons are narrow, directly change the fill pattern surface_fills[i].params.pattern = ipConcentricInternal; } else { // BBS: some expolygons are narrow, spilit surface_fills[i] and rearrange the expolygons params = surface_fills[i].params; params.pattern = ipConcentricInternal; surface_fills.emplace_back(params); surface_fills.back().region_id = surface_fills[i].region_id; surface_fills.back().surface.surface_type = stInternalSolid; surface_fills.back().surface.thickness = surface_fills[i].surface.thickness; surface_fills.back().region_id_group = surface_fills[i].region_id_group; surface_fills.back().no_overlap_expolygons = surface_fills[i].no_overlap_expolygons; for (size_t j = 0; j < narrow_expolygons_index.size(); j++) { // BBS: move the narrow expolygons to new surface_fills.back(); surface_fills.back().expolygons.emplace_back(std::move(surface_fills[i].expolygons[narrow_expolygons_index[j]])); } for (int j = narrow_expolygons_index.size() - 1; j >= 0; j--) { // BBS: delete the narrow expolygons from old surface_fills surface_fills[i].expolygons.erase(surface_fills[i].expolygons.begin() + narrow_expolygons_index[j]); } } } } return surface_fills; } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING void export_group_fills_to_svg(const char *path, const std::vector &fills) { BoundingBox bbox; for (const auto &fill : fills) for (const auto &expoly : fill.expolygons) bbox.merge(get_extents(expoly)); Point legend_size = export_surface_type_legend_to_svg_box_size(); Point legend_pos(bbox.min(0), bbox.max(1)); bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1))); SVG svg(path, bbox); const float transparency = 0.5f; for (const auto &fill : fills) for (const auto &expoly : fill.expolygons) svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency); export_surface_type_legend_to_svg(svg, legend_pos); svg.Close(); } #endif // friend to Layer void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator) { for (LayerRegion *layerm : m_regions) layerm->fills.clear(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING // this->export_region_fill_surfaces_to_svg_debug("10_fill-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ std::vector surface_fills = group_fills(*this); const Slic3r::BoundingBox bbox = this->object()->bounding_box(); const auto resolution = this->object()->print()->config().resolution.value; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static int iRun = 0; export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (SurfaceFill &surface_fill : surface_fills) { // Create the filler object. std::unique_ptr f = std::unique_ptr(Fill::new_from_type(surface_fill.params.pattern)); f->set_bounding_box(bbox); f->layer_id = this->id(); f->z = this->print_z; f->angle = surface_fill.params.angle; f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree; if (surface_fill.params.pattern == ipConcentricInternal) { FillConcentricInternal *fill_concentric = dynamic_cast(f.get()); assert(fill_concentric != nullptr); fill_concentric->print_config = &this->object()->print()->config(); fill_concentric->print_object_config = &this->object()->config(); } else if (surface_fill.params.pattern == ipConcentric) { FillConcentric *fill_concentric = dynamic_cast(f.get()); assert(fill_concentric != nullptr); fill_concentric->print_config = &this->object()->print()->config(); fill_concentric->print_object_config = &this->object()->config(); } else if (surface_fill.params.pattern == ipLightning) dynamic_cast(f.get())->generator = lightning_generator; // calculate flow spacing for infill pattern generation bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge; double link_max_length = 0.; if (! surface_fill.params.bridge) { #if 0 link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing()); // printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length); #else if (surface_fill.params.density > 80.) // 80% link_max_length = 3. * f->spacing; #endif } // Maximum length of the perimeter segment linking two infill lines. f->link_max_length = (coord_t)scale_(link_max_length); // Used by the concentric infill pattern to clip the loops to create extrusion paths. f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER); // apply half spacing using this flow's own spacing and generate infill FillParams params; params.density = float(0.01 * surface_fill.params.density); params.dont_adjust = false; // surface_fill.params.dont_adjust; params.anchor_length = surface_fill.params.anchor_length; params.anchor_length_max = surface_fill.params.anchor_length_max; params.resolution = resolution; params.use_arachne = surface_fill.params.pattern == ipConcentric; params.layer_height = m_regions[surface_fill.region_id]->layer()->height; // BBS params.flow = surface_fill.params.flow; params.extrusion_role = surface_fill.params.extrusion_role; params.using_internal_flow = using_internal_flow; params.no_extrusion_overlap = surface_fill.params.overlap; if (surface_fill.params.pattern == ipGrid) params.can_reverse = false; LayerRegion* layerm = this->m_regions[surface_fill.region_id]; for (ExPolygon& expoly : surface_fill.expolygons) { f->no_overlap_expolygons = intersection_ex(surface_fill.no_overlap_expolygons, ExPolygons() = {expoly}, ApplySafetyOffset::Yes); // Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon. f->spacing = surface_fill.params.spacing; surface_fill.surface.expolygon = std::move(expoly); // BBS: make fill f->fill_surface_extrusion(&surface_fill.surface, params, m_regions[surface_fill.region_id]->fills.entities); } } // add thin fill regions // Unpacks the collection, creates multiple collections per path. // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection. // Why the paths are unpacked? for (LayerRegion *layerm : m_regions) for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) { ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection()); layerm->fills.entities.push_back(&collection); collection.entities.push_back(thin_fill->clone()); } #ifndef NDEBUG for (LayerRegion *layerm : m_regions) for (size_t i = 0; i < layerm->fills.entities.size(); ++ i) assert(dynamic_cast(layerm->fills.entities[i]) != nullptr); #endif } Polylines Layer::generate_sparse_infill_polylines_for_anchoring(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator) const { std::vector surface_fills = group_fills(*this); const Slic3r::BoundingBox bbox = this->object()->bounding_box(); const auto resolution = this->object()->print()->config().resolution.value; Polylines sparse_infill_polylines{}; for (SurfaceFill& surface_fill : surface_fills) { if (surface_fill.surface.surface_type != stInternal) { continue; } switch (surface_fill.params.pattern) { case ipCount: continue; break; case ipSupportBase: continue; break; //case ipEnsuring: continue; break; case ipLightning: case ipAdaptiveCubic: case ipSupportCubic: case ipRectilinear: case ipMonotonic: case ipAlignedRectilinear: case ipGrid: case ipTriangles: case ipStars: case ipCubic: case ipLine: case ipConcentric: case ipHoneycomb: case ip3DHoneycomb: case ipGyroid: case ipHilbertCurve: case ipArchimedeanChords: case ipOctagramSpiral: break; } // Create the filler object. std::unique_ptr f = std::unique_ptr(Fill::new_from_type(surface_fill.params.pattern)); f->set_bounding_box(bbox); f->layer_id = this->id() - this->object()->get_layer(0)->id(); // We need to subtract raft layers. f->z = this->print_z; f->angle = surface_fill.params.angle; f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree; if (surface_fill.params.pattern == ipLightning) dynamic_cast(f.get())->generator = lightning_generator; // calculate flow spacing for infill pattern generation double link_max_length = 0.; if (!surface_fill.params.bridge) { #if 0 link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing()); // printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length); #else if (surface_fill.params.density > 80.) // 80% link_max_length = 3. * f->spacing; #endif } // Maximum length of the perimeter segment linking two infill lines. f->link_max_length = (coord_t)scale_(link_max_length); // Used by the concentric infill pattern to clip the loops to create extrusion paths. f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER); LayerRegion& layerm = *m_regions[surface_fill.region_id]; // apply half spacing using this flow's own spacing and generate infill FillParams params; params.density = float(0.01 * surface_fill.params.density); params.dont_adjust = false; // surface_fill.params.dont_adjust; params.anchor_length = surface_fill.params.anchor_length; params.anchor_length_max = surface_fill.params.anchor_length_max; params.resolution = resolution; params.use_arachne = false; params.layer_height = layerm.layer()->height; for (ExPolygon& expoly : surface_fill.expolygons) { // Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon. f->spacing = surface_fill.params.spacing; surface_fill.surface.expolygon = std::move(expoly); try { Polylines polylines = f->fill_surface(&surface_fill.surface, params); sparse_infill_polylines.insert(sparse_infill_polylines.end(), polylines.begin(), polylines.end()); } catch (InfillFailedException&) {} } } return sparse_infill_polylines; } // Create ironing extrusions over top surfaces. void Layer::make_ironing() { // LayerRegion::slices contains surfaces marked with SurfaceType. // Here we want to collect top surfaces extruded with the same extruder. // A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle. // First classify regions based on the extruder used. struct IroningParams { InfillPattern pattern; int extruder = -1; bool just_infill = false; // Spacing of the ironing lines, also to calculate the extrusion flow from. double line_spacing; // Height of the extrusion, to calculate the extrusion flow from. double height; double speed; double angle; bool operator<(const IroningParams &rhs) const { if (this->extruder < rhs.extruder) return true; if (this->extruder > rhs.extruder) return false; if (int(this->just_infill) < int(rhs.just_infill)) return true; if (int(this->just_infill) > int(rhs.just_infill)) return false; if (this->line_spacing < rhs.line_spacing) return true; if (this->line_spacing > rhs.line_spacing) return false; if (this->height < rhs.height) return true; if (this->height > rhs.height) return false; if (this->speed < rhs.speed) return true; if (this->speed > rhs.speed) return false; if (this->angle < rhs.angle) return true; if (this->angle > rhs.angle) return false; return false; } bool operator==(const IroningParams &rhs) const { return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill && this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed && this->angle == rhs.angle && this->pattern == rhs.pattern; } LayerRegion *layerm = nullptr; // IdeaMaker: ironing // ironing flowrate (5% percent) // ironing speed (10 mm/sec) // Kisslicer: // iron off, Sweep, Group // ironing speed: 15 mm/sec // Cura: // Pattern (zig-zag / concentric) // line spacing (0.1mm) // flow: from normal layer height. 10% // speed: 20 mm/sec }; std::vector by_extruder; double default_layer_height = this->object()->config().layer_height; for (LayerRegion *layerm : m_regions) if (! layerm->slices.empty()) { IroningParams ironing_params; const PrintRegionConfig &config = layerm->region().config(); if (config.ironing_type != IroningType::NoIroning && (config.ironing_type == IroningType::AllSolid || (config.top_shell_layers > 0 && (config.ironing_type == IroningType::TopSurfaces || (config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) { if (config.wall_filament == config.solid_infill_filament || config.wall_loops == 0) { // Iron the whole face. ironing_params.extruder = config.solid_infill_filament; } else { // Iron just the infill. ironing_params.extruder = config.solid_infill_filament; } } if (ironing_params.extruder != -1) { //TODO just_infill is currently not used. ironing_params.just_infill = false; ironing_params.line_spacing = config.ironing_spacing; ironing_params.height = default_layer_height * 0.01 * config.ironing_flow; ironing_params.speed = config.ironing_speed; ironing_params.angle = (int(config.ironing_direction.value+layerm->region().config().infill_direction.value)%180) * M_PI / 180.; ironing_params.pattern = config.ironing_pattern; ironing_params.layerm = layerm; by_extruder.emplace_back(ironing_params); } } std::sort(by_extruder.begin(), by_extruder.end()); FillParams fill_params; fill_params.density = 1.; fill_params.monotonic = true; InfillPattern f_pattern = ipRectilinear; std::unique_ptr f = std::unique_ptr(Fill::new_from_type(f_pattern)); f->set_bounding_box(this->object()->bounding_box()); f->layer_id = this->id(); f->z = this->print_z; f->overlap = 0; for (size_t i = 0; i < by_extruder.size();) { // Find span of regions equivalent to the ironing operation. IroningParams &ironing_params = by_extruder[i]; // Create the filler object. if( f_pattern != ironing_params.pattern ) { f_pattern = ironing_params.pattern; f = std::unique_ptr(Fill::new_from_type(f_pattern)); f->set_bounding_box(this->object()->bounding_box()); f->layer_id = this->id(); f->z = this->print_z; f->overlap = 0; } size_t j = i; for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ; // Create the ironing extrusions for regions object()->print()->config().nozzle_diameter.get_at(ironing_params.extruder - 1); if (ironing_params.just_infill) { //TODO just_infill is currently not used. // Just infill. } else { // Infill and perimeter. // Merge top surfaces with the same ironing parameters. Polygons polys; Polygons infills; for (size_t k = i; k < j; ++ k) { const IroningParams &ironing_params = by_extruder[k]; const PrintRegionConfig ®ion_config = ironing_params.layerm->region().config(); bool iron_everything = region_config.ironing_type == IroningType::AllSolid; bool iron_completely = iron_everything; if (iron_everything) { // Check whether there is any non-solid hole in the regions. bool internal_infill_solid = region_config.sparse_infill_density.value > 95.; for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces) if ((!internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) { // Some fill region is not quite solid. Don't iron over the whole surface. iron_completely = false; break; } } if (iron_completely) { // Iron everything. This is likely only good for solid transparent objects. for (const Surface &surface : ironing_params.layerm->slices.surfaces) polygons_append(polys, surface.expolygon); } else { for (const Surface &surface : ironing_params.layerm->slices.surfaces) if ((surface.surface_type == stTop && region_config.top_shell_layers > 0) || (iron_everything && surface.surface_type == stBottom && region_config.bottom_shell_layers > 0)) // stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges. polygons_append(polys, surface.expolygon); } if (iron_everything && ! iron_completely) { // Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these // solid fill surfaces, but it is likely better than nothing. for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternalSolid) polygons_append(infills, surface.expolygon); } } if (! infills.empty() || j > i + 1) { // Ironing over more than a single region or over solid internal infill. if (! infills.empty()) // For IroningType::AllSolid only: // Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill). append(polys, std::move(infills)); polys = union_safety_offset(polys); } // Trim the top surfaces with half the nozzle diameter. ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr)))); } // Create the filler object. f->spacing = ironing_params.line_spacing; f->angle = float(ironing_params.angle); f->link_max_length = (coord_t) scale_(3. * f->spacing); double extrusion_height = ironing_params.height * f->spacing / nozzle_dmr; float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height)); double flow_mm3_per_mm = nozzle_dmr * extrusion_height; Surface surface_fill(stTop, ExPolygon()); for (ExPolygon &expoly : ironing_areas) { surface_fill.expolygon = std::move(expoly); Polylines polylines; try { polylines = f->fill_surface(&surface_fill, fill_params); } catch (InfillFailedException &) { } if (! polylines.empty()) { // Save into layer. ExtrusionEntityCollection *eec = nullptr; ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection()); // Don't sort the ironing infill lines as they are monotonicly ordered. eec->no_sort = true; extrusion_entities_append_paths( eec->entities, std::move(polylines), erIroning, flow_mm3_per_mm, extrusion_width, float(extrusion_height)); } } // Regions up to j were processed. i = j; } } } // namespace Slic3r