#include "libslic3r/libslic3r.h" #include "3DBed.hpp" #include "libslic3r/Polygon.hpp" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/BoundingBox.hpp" #include "libslic3r/Geometry/Circle.hpp" #include "libslic3r/Tesselate.hpp" #include "libslic3r/PresetBundle.hpp" #include "GUI_App.hpp" #include "GUI_Colors.hpp" #include "GLCanvas3D.hpp" #include #include #include #include #include static const float GROUND_Z = -0.04f; static const std::array DEFAULT_MODEL_COLOR = { 0.3255f, 0.337f, 0.337f, 1.0f }; static const std::array DEFAULT_MODEL_COLOR_DARK = { 0.255f, 0.255f, 0.283f, 1.0f }; static const std::array PICKING_MODEL_COLOR = { 0.0f, 0.0f, 0.0f, 1.0f }; namespace Slic3r { namespace GUI { bool GeometryBuffer::set_from_triangles(const std::vector &triangles, float z) { if (triangles.empty()) { m_vertices.clear(); return false; } m_vertices.clear(); assert(triangles.size() % 3 == 0); m_vertices = std::vector(triangles.size(), Vertex()); Vec2f min = triangles.front(); Vec2f max = min; for (size_t v_count = 0; v_count < triangles.size(); ++ v_count) { const Vec2f &p = triangles[v_count]; Vertex &v = m_vertices[v_count]; v.position = Vec3f(p.x(), p.y(), z); v.tex_coords = p; min = min.cwiseMin(p).eval(); max = max.cwiseMax(p).eval(); } Vec2f size = max - min; if (size.x() != 0.f && size.y() != 0.f) { Vec2f inv_size = size.cwiseInverse(); inv_size.y() *= -1; for (Vertex& v : m_vertices) { v.tex_coords -= min; v.tex_coords.x() *= inv_size.x(); v.tex_coords.y() *= inv_size.y(); } } return true; } bool GeometryBuffer::set_from_lines(const Lines& lines, float z) { m_vertices.clear(); unsigned int v_size = 2 * (unsigned int)lines.size(); if (v_size == 0) return false; m_vertices = std::vector(v_size, Vertex()); unsigned int v_count = 0; for (const Line& l : lines) { Vertex& v1 = m_vertices[v_count]; v1.position[0] = unscale(l.a(0)); v1.position[1] = unscale(l.a(1)); v1.position[2] = z; ++v_count; Vertex& v2 = m_vertices[v_count]; v2.position[0] = unscale(l.b(0)); v2.position[1] = unscale(l.b(1)); v2.position[2] = z; ++v_count; } return true; } //BBS: set from 3d lines bool GeometryBuffer::set_from_3d_Lines(const Lines3& lines) { m_vertices.clear(); unsigned int v_size = 2 * (unsigned int)lines.size(); if (v_size == 0) return false; m_vertices = std::vector(v_size, Vertex()); unsigned int v_count = 0; for (const Line3& l : lines) { Vertex& v1 = m_vertices[v_count]; v1.position[0] = unscale(l.a(0)); v1.position[1] = unscale(l.a(1)); v1.position[2] = unscale(l.a(2)); ++v_count; Vertex& v2 = m_vertices[v_count]; v2.position[0] = unscale(l.b(0)); v2.position[1] = unscale(l.b(1)); v2.position[2] = unscale(l.b(2)); ++v_count; } return true; } const float* GeometryBuffer::get_vertices_data() const { return (m_vertices.size() > 0) ? (const float*)m_vertices.data() : nullptr; } const float Bed3D::Axes::DefaultStemRadius = 0.5f; const float Bed3D::Axes::DefaultStemLength = 25.0f; const float Bed3D::Axes::DefaultTipRadius = 2.5f * Bed3D::Axes::DefaultStemRadius; const float Bed3D::Axes::DefaultTipLength = 5.0f; std::array Bed3D::AXIS_X_COLOR = decode_color_to_float_array("#FF0000"); std::array Bed3D::AXIS_Y_COLOR = decode_color_to_float_array("#00FF00"); std::array Bed3D::AXIS_Z_COLOR = decode_color_to_float_array("#0000FF"); void Bed3D::update_render_colors() { Bed3D::AXIS_X_COLOR = GLColor(RenderColor::colors[RenderCol_Axis_X]); Bed3D::AXIS_Y_COLOR = GLColor(RenderColor::colors[RenderCol_Axis_Y]); Bed3D::AXIS_Z_COLOR = GLColor(RenderColor::colors[RenderCol_Axis_Z]); } void Bed3D::load_render_colors() { RenderColor::colors[RenderCol_Axis_X] = IMColor(Bed3D::AXIS_X_COLOR); RenderColor::colors[RenderCol_Axis_Y] = IMColor(Bed3D::AXIS_Y_COLOR); RenderColor::colors[RenderCol_Axis_Z] = IMColor(Bed3D::AXIS_Z_COLOR); } void Bed3D::Axes::render() const { auto render_axis = [this](const Transform3f& transform) { glsafe(::glPushMatrix()); glsafe(::glMultMatrixf(transform.data())); m_arrow.render(); glsafe(::glPopMatrix()); }; if (!m_arrow.is_initialized()) const_cast(&m_arrow)->init_from(stilized_arrow(16, DefaultTipRadius, DefaultTipLength, DefaultStemRadius, m_stem_length)); GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light"); if (shader == nullptr) return; glsafe(::glEnable(GL_DEPTH_TEST)); shader->start_using(); shader->set_uniform("emission_factor", 0.0f); // x axis const_cast(&m_arrow)->set_color(-1, AXIS_X_COLOR); render_axis(Geometry::assemble_transform(m_origin, { 0.0, 0.5 * M_PI, 0.0 }).cast()); // y axis const_cast(&m_arrow)->set_color(-1, AXIS_Y_COLOR); render_axis(Geometry::assemble_transform(m_origin, { -0.5 * M_PI, 0.0, 0.0 }).cast()); // z axis const_cast(&m_arrow)->set_color(-1, AXIS_Z_COLOR); render_axis(Geometry::assemble_transform(m_origin).cast()); shader->stop_using(); glsafe(::glDisable(GL_DEPTH_TEST)); } //BBS: add part plate logic bool Bed3D::set_shape(const Pointfs& printable_area, const double printable_height, const std::string& custom_model, bool force_as_custom, const Vec2d position, bool with_reset) { /*auto check_texture = [](const std::string& texture) { boost::system::error_code ec; // so the exists call does not throw (e.g. after a permission problem) return !texture.empty() && (boost::algorithm::iends_with(texture, ".png") || boost::algorithm::iends_with(texture, ".svg")) && boost::filesystem::exists(texture, ec); };*/ auto check_model = [](const std::string& model) { boost::system::error_code ec; return !model.empty() && boost::algorithm::iends_with(model, ".stl") && boost::filesystem::exists(model, ec); }; Type type; std::string model; std::string texture; if (force_as_custom) type = Type::Custom; else { auto [new_type, system_model, system_texture] = detect_type(printable_area); type = new_type; model = system_model; texture = system_texture; } /*std::string texture_filename = custom_texture.empty() ? texture : custom_texture; if (! texture_filename.empty() && ! check_texture(texture_filename)) { BOOST_LOG_TRIVIAL(error) << "Unable to load bed texture: " << texture_filename; texture_filename.clear(); }*/ std::string model_filename = custom_model.empty() ? model : custom_model; if (! model_filename.empty() && ! check_model(model_filename)) { BOOST_LOG_TRIVIAL(error) << "Unable to load bed model: " << model_filename; model_filename.clear(); } //BBS: add position related logic if (m_bed_shape == printable_area && m_build_volume.printable_height() == printable_height && m_type == type && m_model_filename == model_filename && position == m_position) // No change, no need to update the UI. return false; //BBS: add part plate logic, apply position to bed shape BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(":current position {%1%,%2%}, new position {%3%, %4%}") % m_position.x() % m_position.y() % position.x() % position.y(); m_position = position; m_bed_shape = printable_area; if ((position(0) != 0) || (position(1) != 0)) { Pointfs new_bed_shape; for (const Vec2d& p : m_bed_shape) { Vec2d point(p(0) + m_position.x(), p(1) + m_position.y()); new_bed_shape.push_back(point); } m_build_volume = BuildVolume { new_bed_shape, printable_height }; } else m_build_volume = BuildVolume { printable_area, printable_height }; m_type = type; //m_texture_filename = texture_filename; m_model_filename = model_filename; //BBS: add part plate logic m_extended_bounding_box = this->calc_extended_bounding_box(false); //BBS: add part plate logic //BBS add default bed #if 1 ExPolygon poly{ Polygon::new_scale(printable_area) }; #else ExPolygon poly; for (const Vec2d& p : printable_area) { poly.contour.append(Point(scale_(p(0) + m_position.x()), scale_(p(1) + m_position.y()))); } #endif calc_triangles(poly); //no need gridline for 3dbed //const BoundingBox& bed_bbox = poly.contour.bounding_box(); //calc_gridlines(poly, bed_bbox); //m_polygon = offset(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0]; if (with_reset) { this->release_VBOs(); //m_texture.reset(); m_model.reset(); } //BBS: add part plate logic, always update model offset //else { update_model_offset(); //} // Set the origin and size for rendering the coordinate system axes. m_axes.set_origin({ 0.0, 0.0, static_cast(GROUND_Z) }); m_axes.set_stem_length(0.1f * static_cast(m_build_volume.bounding_volume().max_size())); // Let the calee to update the UI. return true; } //BBS: add api to set position for partplate related bed void Bed3D::set_position(Vec2d& position) { set_shape(m_bed_shape, m_build_volume.printable_height(), m_model_filename, false, position, false); } void Bed3D::set_axes_mode(bool origin) { if (origin) { m_axes.set_origin({ 0.0, 0.0, static_cast(GROUND_Z) }); } else { m_axes.set_origin({ m_position.x(), m_position.y(), static_cast(GROUND_Z) }); } } /*bool Bed3D::contains(const Point& point) const { return m_polygon.contains(point); } Point Bed3D::point_projection(const Point& point) const { return m_polygon.point_projection(point); }*/ void Bed3D::on_change_color_mode(bool is_dark) { m_is_dark = is_dark; } void Bed3D::render(GLCanvas3D& canvas, bool bottom, float scale_factor, bool show_axes) { render_internal(canvas, bottom, scale_factor, show_axes); } /*void Bed3D::render_for_picking(GLCanvas3D& canvas, bool bottom, float scale_factor) { render_internal(canvas, bottom, scale_factor, false, false, true); }*/ void Bed3D::render_internal(GLCanvas3D& canvas, bool bottom, float scale_factor, bool show_axes) { float* factor = const_cast(&m_scale_factor); *factor = scale_factor; if (show_axes) render_axes(); glsafe(::glEnable(GL_DEPTH_TEST)); m_model.set_color(-1, m_is_dark ? DEFAULT_MODEL_COLOR_DARK : DEFAULT_MODEL_COLOR); switch (m_type) { case Type::System: { render_system(canvas, bottom); break; } default: case Type::Custom: { render_custom(canvas, bottom); break; } } glsafe(::glDisable(GL_DEPTH_TEST)); } //BBS: add partplate related logic // Calculate an extended bounding box from axes and current model for visualization purposes. BoundingBoxf3 Bed3D::calc_extended_bounding_box(bool consider_model_offset) const { BoundingBoxf3 out { m_build_volume.bounding_volume() }; const Vec3d size = out.size(); // ensures that the bounding box is set as defined or the following calls to merge() will not work as intented if (size.x() > 0.0 && size.y() > 0.0 && !out.defined) out.defined = true; // Reset the build volume Z, we don't want to zoom to the top of the build volume if it is empty. out.min.z() = 0.0; out.max.z() = 0.0; // extend to contain axes //BBS: add part plate related logic. Vec3d offset{ m_position.x(), m_position.y(), 0.f }; //out.merge(m_axes.get_origin() + offset + m_axes.get_total_length() * Vec3d::Ones()); out.merge(Vec3d(0.f, 0.f, GROUND_Z) + offset + m_axes.get_total_length() * Vec3d::Ones()); out.merge(out.min + Vec3d(-Axes::DefaultTipRadius, -Axes::DefaultTipRadius, out.max.z())); //BBS: add part plate related logic. if (consider_model_offset) { // extend to contain model, if any BoundingBoxf3 model_bb = m_model.get_bounding_box(); if (model_bb.defined) { model_bb.translate(m_model_offset); out.merge(model_bb); } } return out; } void Bed3D::calc_triangles(const ExPolygon& poly) { if (! m_triangles.set_from_triangles(triangulate_expolygon_2f(poly, NORMALS_UP), GROUND_Z)) BOOST_LOG_TRIVIAL(error) << "Unable to create bed triangles"; } void Bed3D::calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox) { /*Polylines axes_lines; for (coord_t x = bed_bbox.min.x(); x <= bed_bbox.max.x(); x += scale_(10.0)) { Polyline line; line.append(Point(x, bed_bbox.min.y())); line.append(Point(x, bed_bbox.max.y())); axes_lines.push_back(line); } for (coord_t y = bed_bbox.min.y(); y <= bed_bbox.max.y(); y += scale_(10.0)) { Polyline line; line.append(Point(bed_bbox.min.x(), y)); line.append(Point(bed_bbox.max.x(), y)); axes_lines.push_back(line); } // clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, (float)SCALED_EPSILON))); // append bed contours Lines contour_lines = to_lines(poly); std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines)); if (!m_gridlines.set_from_lines(gridlines, GROUND_Z)) BOOST_LOG_TRIVIAL(error) << "Unable to create bed grid lines\n";*/ } // Try to match the print bed shape with the shape of an active profile. If such a match exists, // return the print bed model. std::tuple Bed3D::detect_type(const Pointfs& shape) { auto bundle = wxGetApp().preset_bundle; if (bundle != nullptr) { const Preset* curr = &bundle->printers.get_selected_preset(); while (curr != nullptr) { if (curr->config.has("printable_area")) { std::string texture_filename, model_filename; if (shape == dynamic_cast(curr->config.option("printable_area"))->values) { if (curr->is_system) model_filename = PresetUtils::system_printer_bed_model(*curr); else { auto *printer_model = curr->config.opt("printer_model"); if (printer_model != nullptr && ! printer_model->value.empty()) { model_filename = bundle->get_stl_model_for_printer_model(printer_model->value); } } //std::string model_filename = PresetUtils::system_printer_bed_model(*curr); //std::string texture_filename = PresetUtils::system_printer_bed_texture(*curr); if (!model_filename.empty()) return { Type::System, model_filename, texture_filename }; } } curr = bundle->printers.get_preset_parent(*curr); } } return { Type::Custom, {}, {} }; } void Bed3D::render_axes() const { if (m_build_volume.valid()) m_axes.render(); } void Bed3D::render_system(GLCanvas3D& canvas, bool bottom) const { if (!bottom) render_model(); /*if (show_texture) render_texture(bottom, canvas);*/ } /*void Bed3D::render_texture(bool bottom, GLCanvas3D& canvas) const { GLTexture* texture = const_cast(&m_texture); GLTexture* temp_texture = const_cast(&m_temp_texture); if (m_texture_filename.empty()) { texture->reset(); render_default(bottom, false); return; } if (texture->get_id() == 0 || texture->get_source() != m_texture_filename) { texture->reset(); if (boost::algorithm::iends_with(m_texture_filename, ".svg")) { // use higher resolution images if graphic card and opengl version allow GLint max_tex_size = OpenGLManager::get_gl_info().get_max_tex_size(); if (temp_texture->get_id() == 0 || temp_texture->get_source() != m_texture_filename) { // generate a temporary lower resolution texture to show while no main texture levels have been compressed if (!temp_texture->load_from_svg_file(m_texture_filename, false, false, false, max_tex_size / 8)) { render_default(bottom, false); return; } canvas.request_extra_frame(); } // starts generating the main texture, compression will run asynchronously if (!texture->load_from_svg_file(m_texture_filename, true, true, true, max_tex_size)) { render_default(bottom, false); return; } } else if (boost::algorithm::iends_with(m_texture_filename, ".png")) { // generate a temporary lower resolution texture to show while no main texture levels have been compressed if (temp_texture->get_id() == 0 || temp_texture->get_source() != m_texture_filename) { if (!temp_texture->load_from_file(m_texture_filename, false, GLTexture::None, false)) { render_default(bottom, false); return; } canvas.request_extra_frame(); } // starts generating the main texture, compression will run asynchronously if (!texture->load_from_file(m_texture_filename, true, GLTexture::MultiThreaded, true)) { render_default(bottom, false); return; } } else { render_default(bottom, false); return; } } else if (texture->unsent_compressed_data_available()) { // sends to gpu the already available compressed levels of the main texture texture->send_compressed_data_to_gpu(); // the temporary texture is not needed anymore, reset it if (temp_texture->get_id() != 0) temp_texture->reset(); canvas.request_extra_frame(); } if (m_triangles.get_vertices_count() > 0) { GLShaderProgram* shader = wxGetApp().get_shader("printbed"); if (shader != nullptr) { shader->start_using(); shader->set_uniform("transparent_background", bottom); shader->set_uniform("svg_source", boost::algorithm::iends_with(m_texture.get_source(), ".svg")); unsigned int* vbo_id = const_cast(&m_vbo_id); if (*vbo_id == 0) { glsafe(::glGenBuffers(1, vbo_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, *vbo_id)); glsafe(::glBufferData(GL_ARRAY_BUFFER, (GLsizeiptr)m_triangles.get_vertices_data_size(), (const GLvoid*)m_triangles.get_vertices_data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } glsafe(::glEnable(GL_DEPTH_TEST)); if (bottom) glsafe(::glDepthMask(GL_FALSE)); glsafe(::glEnable(GL_BLEND)); glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); if (bottom) glsafe(::glFrontFace(GL_CW)); unsigned int stride = m_triangles.get_vertex_data_size(); GLint position_id = shader->get_attrib_location("v_position"); GLint tex_coords_id = shader->get_attrib_location("v_tex_coords"); // show the temporary texture while no compressed data is available GLuint tex_id = (GLuint)temp_texture->get_id(); if (tex_id == 0) tex_id = (GLuint)texture->get_id(); glsafe(::glBindTexture(GL_TEXTURE_2D, tex_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, *vbo_id)); if (position_id != -1) { glsafe(::glEnableVertexAttribArray(position_id)); glsafe(::glVertexAttribPointer(position_id, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(intptr_t)m_triangles.get_position_offset())); } if (tex_coords_id != -1) { glsafe(::glEnableVertexAttribArray(tex_coords_id)); glsafe(::glVertexAttribPointer(tex_coords_id, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(intptr_t)m_triangles.get_tex_coords_offset())); } glsafe(::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)m_triangles.get_vertices_count())); if (tex_coords_id != -1) glsafe(::glDisableVertexAttribArray(tex_coords_id)); if (position_id != -1) glsafe(::glDisableVertexAttribArray(position_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); glsafe(::glBindTexture(GL_TEXTURE_2D, 0)); if (bottom) glsafe(::glFrontFace(GL_CCW)); glsafe(::glDisable(GL_BLEND)); if (bottom) glsafe(::glDepthMask(GL_TRUE)); shader->stop_using(); } } }*/ //BBS: add part plate related logic void Bed3D::update_model_offset() const { // move the model so that its origin (0.0, 0.0, 0.0) goes into the bed shape center and a bit down to avoid z-fighting with the texture quad Vec3d shift = m_build_volume.bounding_volume().center(); shift(2) = -0.03; Vec3d* model_offset_ptr = const_cast(&m_model_offset); *model_offset_ptr = shift; //BBS: TODO: hack for current stl for BBL printer if (std::string::npos != m_model_filename.find("bbl-3dp-")) { (*model_offset_ptr)(0) -= m_bed_shape[2].x() / 2.0f; (*model_offset_ptr)(1) -= m_bed_shape[2].y() / 2.0f; (*model_offset_ptr)(2) = -0.41 + GROUND_Z; } // update extended bounding box const_cast(m_extended_bounding_box) = calc_extended_bounding_box(); } GeometryBuffer Bed3D::update_bed_triangles() const { GeometryBuffer new_triangles; Vec3d shift = m_extended_bounding_box.center(); shift(2) = -0.03; Vec3d* model_offset_ptr = const_cast(&m_model_offset); *model_offset_ptr = shift; //BBS: TODO: hack for default bed BoundingBoxf3 build_volume; if (!m_build_volume.valid()) return new_triangles; (*model_offset_ptr)(0) = m_build_volume.bounding_volume2d().min.x(); (*model_offset_ptr)(1) = m_build_volume.bounding_volume2d().min.y(); (*model_offset_ptr)(2) = -0.41 + GROUND_Z; std::vector origin_bed_shape; for (size_t i = 0; i < m_bed_shape.size(); i++) { origin_bed_shape.push_back(m_bed_shape[i] - m_bed_shape[0]); } std::vector new_bed_shape; // offset to correct origin for (auto point : origin_bed_shape) { Vec2d new_point(point.x() + model_offset_ptr->x(), point.y() + model_offset_ptr->y()); new_bed_shape.push_back(new_point); } ExPolygon poly{ Polygon::new_scale(new_bed_shape) }; if (!new_triangles.set_from_triangles(triangulate_expolygon_2f(poly, NORMALS_UP), GROUND_Z)) { ; } // update extended bounding box const_cast(m_extended_bounding_box) = calc_extended_bounding_box(); return new_triangles; } void Bed3D::render_model() const { if (m_model_filename.empty()) return; GLModel* model = const_cast(&m_model); if (model->get_filename() != m_model_filename && model->init_from_file(m_model_filename)) { model->set_color(-1, m_is_dark ? DEFAULT_MODEL_COLOR_DARK : DEFAULT_MODEL_COLOR); update_model_offset(); } if (!model->get_filename().empty()) { GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light"); if (shader != nullptr) { shader->start_using(); shader->set_uniform("emission_factor", 0.0f); glsafe(::glPushMatrix()); glsafe(::glTranslated(m_model_offset.x(), m_model_offset.y(), m_model_offset.z())); model->render(); glsafe(::glPopMatrix()); shader->stop_using(); } } } void Bed3D::render_custom(GLCanvas3D& canvas, bool bottom) const { if (m_model_filename.empty()) { render_default(bottom); return; } if (!bottom) render_model(); /*if (show_texture) render_texture(bottom, canvas);*/ } void Bed3D::render_default(bool bottom) const { bool picking = false; const_cast(&m_texture)->reset(); unsigned int triangles_vcount = m_triangles.get_vertices_count(); GeometryBuffer default_triangles = update_bed_triangles(); if (triangles_vcount > 0) { bool has_model = !m_model.get_filename().empty(); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glEnable(GL_BLEND)); glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); if (!has_model && !bottom) { // draw background glsafe(::glDepthMask(GL_FALSE)); glsafe(::glColor4fv(picking ? PICKING_MODEL_COLOR.data() : (m_is_dark ? DEFAULT_MODEL_COLOR_DARK.data() : DEFAULT_MODEL_COLOR.data()))); glsafe(::glNormal3d(0.0f, 0.0f, 1.0f)); glsafe(::glVertexPointer(3, GL_FLOAT, default_triangles.get_vertex_data_size(), (GLvoid*)default_triangles.get_vertices_data())); glsafe(::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount)); glsafe(::glDepthMask(GL_TRUE)); } /*if (!picking) { // draw grid glsafe(::glLineWidth(1.5f * m_scale_factor)); if (has_model && !bottom) glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 1.0f)); else glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.6f)); glsafe(::glVertexPointer(3, GL_FLOAT, default_triangles.get_vertex_data_size(), (GLvoid*)m_gridlines.get_vertices_data())); glsafe(::glDrawArrays(GL_LINES, 0, (GLsizei)m_gridlines.get_vertices_count())); }*/ glsafe(::glDisableClientState(GL_VERTEX_ARRAY)); glsafe(::glDisable(GL_BLEND)); } } void Bed3D::release_VBOs() { if (m_vbo_id > 0) { glsafe(::glDeleteBuffers(1, &m_vbo_id)); m_vbo_id = 0; } } } // GUI } // Slic3r