// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "massmatrix.h" #include "normalize_row_sums.h" #include "sparse.h" #include "doublearea.h" #include "repmat.h" #include #include template IGL_INLINE void igl::massmatrix( const Eigen::MatrixBase & V, const Eigen::MatrixBase & F, const MassMatrixType type, Eigen::SparseMatrix& M) { using namespace Eigen; using namespace std; const int n = V.rows(); const int m = F.rows(); const int simplex_size = F.cols(); MassMatrixType eff_type = type; // Use voronoi of for triangles by default, otherwise barycentric if(type == MASSMATRIX_TYPE_DEFAULT) { eff_type = (simplex_size == 3?MASSMATRIX_TYPE_VORONOI:MASSMATRIX_TYPE_BARYCENTRIC); } // Not yet supported assert(type!=MASSMATRIX_TYPE_FULL); Matrix MI; Matrix MJ; Matrix MV; if(simplex_size == 3) { // Triangles // edge lengths numbered same as opposite vertices Matrix l(m,3); // loop over faces for(int i = 0;i dblA; doublearea(l,0.,dblA); switch(eff_type) { case MASSMATRIX_TYPE_BARYCENTRIC: // diagonal entries for each face corner MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1); MI.block(0*m,0,m,1) = F.col(0); MI.block(1*m,0,m,1) = F.col(1); MI.block(2*m,0,m,1) = F.col(2); MJ = MI; repmat(dblA,3,1,MV); MV.array() /= 6.0; break; case MASSMATRIX_TYPE_VORONOI: { // diagonal entries for each face corner // http://www.alecjacobson.com/weblog/?p=874 MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1); MI.block(0*m,0,m,1) = F.col(0); MI.block(1*m,0,m,1) = F.col(1); MI.block(2*m,0,m,1) = F.col(2); MJ = MI; // Holy shit this needs to be cleaned up and optimized Matrix cosines(m,3); cosines.col(0) = (l.col(2).array().pow(2)+l.col(1).array().pow(2)-l.col(0).array().pow(2))/(l.col(1).array()*l.col(2).array()*2.0); cosines.col(1) = (l.col(0).array().pow(2)+l.col(2).array().pow(2)-l.col(1).array().pow(2))/(l.col(2).array()*l.col(0).array()*2.0); cosines.col(2) = (l.col(1).array().pow(2)+l.col(0).array().pow(2)-l.col(2).array().pow(2))/(l.col(0).array()*l.col(1).array()*2.0); Matrix barycentric = cosines.array() * l.array(); normalize_row_sums(barycentric,barycentric); Matrix partial = barycentric; partial.col(0).array() *= dblA.array() * 0.5; partial.col(1).array() *= dblA.array() * 0.5; partial.col(2).array() *= dblA.array() * 0.5; Matrix quads(partial.rows(),partial.cols()); quads.col(0) = (partial.col(1)+partial.col(2))*0.5; quads.col(1) = (partial.col(2)+partial.col(0))*0.5; quads.col(2) = (partial.col(0)+partial.col(1))*0.5; quads.col(0) = (cosines.col(0).array()<0).select( 0.25*dblA,quads.col(0)); quads.col(1) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(1)); quads.col(2) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(2)); quads.col(0) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(0)); quads.col(1) = (cosines.col(1).array()<0).select(0.25*dblA,quads.col(1)); quads.col(2) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(2)); quads.col(0) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(0)); quads.col(1) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(1)); quads.col(2) = (cosines.col(2).array()<0).select( 0.25*dblA,quads.col(2)); MV.block(0*m,0,m,1) = quads.col(0); MV.block(1*m,0,m,1) = quads.col(1); MV.block(2*m,0,m,1) = quads.col(2); break; } case MASSMATRIX_TYPE_FULL: assert(false && "Implementation incomplete"); break; default: assert(false && "Unknown Mass matrix eff_type"); } }else if(simplex_size == 4) { assert(V.cols() == 3); assert(eff_type == MASSMATRIX_TYPE_BARYCENTRIC); MI.resize(m*4,1); MJ.resize(m*4,1); MV.resize(m*4,1); MI.block(0*m,0,m,1) = F.col(0); MI.block(1*m,0,m,1) = F.col(1); MI.block(2*m,0,m,1) = F.col(2); MI.block(3*m,0,m,1) = F.col(3); MJ = MI; // loop over tets for(int i = 0;i v0m3,v1m3,v2m3; v0m3.head(V.cols()) = V.row(F(i,0)) - V.row(F(i,3)); v1m3.head(V.cols()) = V.row(F(i,1)) - V.row(F(i,3)); v2m3.head(V.cols()) = V.row(F(i,2)) - V.row(F(i,3)); Scalar v = fabs(v0m3.dot(v1m3.cross(v2m3)))/6.0; MV(i+0*m) = v/4.0; MV(i+1*m) = v/4.0; MV(i+2*m) = v/4.0; MV(i+3*m) = v/4.0; } }else { // Unsupported simplex size assert(false && "Unsupported simplex size"); } sparse(MI,MJ,MV,n,n,M); } #ifdef IGL_STATIC_LIBRARY // Explicit template instantiation // generated by autoexplicit.sh template void igl::massmatrix, Eigen::Matrix, double>(Eigen::MatrixBase > const&, Eigen::MatrixBase > const&, igl::MassMatrixType, Eigen::SparseMatrix&); // generated by autoexplicit.sh template void igl::massmatrix, Eigen::Matrix, double>(Eigen::MatrixBase > const&, Eigen::MatrixBase > const&, igl::MassMatrixType, Eigen::SparseMatrix&); // generated by autoexplicit.sh template void igl::massmatrix, Eigen::Matrix, double>(Eigen::MatrixBase > const&, Eigen::MatrixBase > const&, igl::MassMatrixType, Eigen::SparseMatrix&); template void igl::massmatrix, Eigen::Matrix, double>(Eigen::MatrixBase > const&, Eigen::MatrixBase > const&, igl::MassMatrixType, Eigen::SparseMatrix&); template void igl::massmatrix, Eigen::Matrix, double>(Eigen::MatrixBase > const&, Eigen::MatrixBase > const&, igl::MassMatrixType, Eigen::SparseMatrix&); #endif