#include "WipeTower.hpp" #include #include #include #include #include #include #include "GCodeProcessor.hpp" #include "BoundingBox.hpp" #include "LocalesUtils.hpp" namespace Slic3r { inline float align_round(float value, float base) { return std::round(value / base) * base; } inline float align_ceil(float value, float base) { return std::ceil(value / base) * base; } inline float align_floor(float value, float base) { return std::floor((value) / base) * base; } static bool is_valid_gcode(const std::string &gcode) { int str_size = gcode.size(); int start_index = 0; int end_index = 0; bool is_valid = false; while (end_index < str_size) { if (gcode[end_index] != '\n') { end_index++; continue; } if (end_index > start_index) { std::string line_str = gcode.substr(start_index, end_index - start_index); line_str.erase(0, line_str.find_first_not_of(" ")); line_str.erase(line_str.find_last_not_of(" ") + 1); if (!line_str.empty() && line_str[0] != ';') { is_valid = true; break; } } start_index = end_index + 1; end_index = start_index; } return is_valid; } class WipeTowerWriter { public: WipeTowerWriter(float layer_height, float line_width, GCodeFlavor flavor, const std::vector& filament_parameters) : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_layer_height(layer_height), m_extrusion_flow(0.f), m_preview_suppressed(false), m_elapsed_time(0.f), #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_default_analyzer_line_width(line_width), #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING m_gcode_flavor(flavor), m_filpar(filament_parameters) { // adds tag for analyzer: std::ostringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) << std::to_string(m_layer_height) << "\n"; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role) << ExtrusionEntity::role_to_string(erWipeTower) << "\n"; m_gcode += str.str(); change_analyzer_line_width(line_width); } WipeTowerWriter& change_analyzer_line_width(float line_width) { // adds tag for analyzer: std::stringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) << std::to_string(line_width) << "\n"; m_gcode += str.str(); return *this; } #if ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) { static const float area = float(M_PI) * 1.75f * 1.75f / 4.f; float mm3_per_mm = (len == 0.f ? 0.f : area * e / len); // adds tag for processor: std::stringstream str; str << ";" << GCodeProcessor::Mm3_Per_Mm_Tag << mm3_per_mm << "\n"; m_gcode += str.str(); return *this; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) { m_wipe_tower_width = width; m_wipe_tower_depth = depth; m_internal_angle = internal_angle; m_start_pos = this->rotate(pos); m_current_pos = pos; return *this; } WipeTowerWriter& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; } WipeTowerWriter& set_z(float z) { m_current_z = z; return *this; } WipeTowerWriter& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } WipeTowerWriter& set_y_shift(float shift) { m_current_pos.y() -= shift-m_y_shift; m_y_shift = shift; return (*this); } WipeTowerWriter& disable_linear_advance() { if (m_gcode_flavor == gcfKlipper) m_gcode += "SET_PRESSURE_ADVANCE ADVANCE=0\n"; else if (m_gcode_flavor == gcfRepRapFirmware) m_gcode += std::string("M572 D") + std::to_string(m_current_tool) + " S0\n"; else m_gcode += "M900 K0\n"; return *this; } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. #if ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; } WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; } #else WipeTowerWriter& suppress_preview() { m_preview_suppressed = true; return *this; } WipeTowerWriter& resume_preview() { m_preview_suppressed = false; return *this; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING WipeTowerWriter& feedrate(float f) { if (f != m_current_feedrate) { m_gcode += "G1" + set_format_F(f) + "\n"; m_current_feedrate = f; } return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x(); } float y() const { return m_current_pos.y(); } const Vec2f& pos() const { return m_current_pos; } const Vec2f start_pos_rotated() const { return m_start_pos; } const Vec2f pos_rotated() const { return this->rotate(m_current_pos); } float elapsed_time() const { return m_elapsed_time; } float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; } // Extrude with an explicitely provided amount of extrusion. WipeTowerWriter& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); float len = std::sqrt(dx*dx+dy*dy); if (record_length) m_used_filament_length += e; // Now do the "internal rotation" with respect to the wipe tower center Vec2f rotated_current_pos(this->pos_rotated()); Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go if (! m_preview_suppressed && e > 0.f && len > 0.f) { #if ENABLE_GCODE_VIEWER_DATA_CHECKING change_analyzer_mm3_per_mm(len, e); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = e * m_filpar[0].filament_area / (len * m_layer_height); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool)); } m_gcode += "G1"; if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON) m_gcode += set_format_X(rot.x()); if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON) m_gcode += set_format_Y(rot.y()); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) { if (limit_volumetric_flow) { float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f); f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed); } m_gcode += set_format_F(f); } m_current_pos.x() = x; m_current_pos.y() = y; // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } WipeTowerWriter& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { return extrude_explicit(dest.x(), dest.y(), e, f, record_length); } // Travel to a new XY position. f=0 means use the current value. WipeTowerWriter& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } WipeTowerWriter& travel(const Vec2f &dest, float f = 0.f) { return extrude_explicit(dest.x(), dest.y(), 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. WipeTowerWriter& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true); } WipeTowerWriter& extrude(const Vec2f &dest, const float f = 0.f) { return extrude(dest.x(), dest.y(), f); } WipeTowerWriter& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f) { Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width,0.f); corners[2] = ld + Vec2f(width,height); corners[3] = ld + Vec2f(0.f,height); int index_of_closest = 0; if (x()-ld.x() > ld.x()+width-x()) // closer to the right index_of_closest = 1; if (y()-ld.y() > ld.y()+height-y()) // closer to the top index_of_closest = (index_of_closest==0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(),corners[index_of_closest].y()); int i = index_of_closest; do { ++i; if (i==4) i=0; extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter &rectangle_fill_box(const WipeTower* wipe_tower, const Vec2f &ld, float width, float height, const float f = 0.f) { bool need_change_flow = wipe_tower->need_thick_bridge_flow(ld.y()); Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width, 0.f); corners[2] = ld + Vec2f(width, height); corners[3] = ld + Vec2f(0.f, height); int index_of_closest = 0; if (x() - ld.x() > ld.x() + width - x()) // closer to the right index_of_closest = 1; if (y() - ld.y() > ld.y() + height - y()) // closer to the top index_of_closest = (index_of_closest == 0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(), corners[index_of_closest].y()); int i = index_of_closest; bool flow_changed = false; do { ++i; if (i == 4) i = 0; if (need_change_flow) { if (i == 1) { // using bridge flow in bridge area, and add notes for gcode-check when flow changed set_extrusion_flow(wipe_tower->extrusion_flow(0.2)); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); flow_changed = true; } else if (i == 2 && flow_changed) { set_extrusion_flow(wipe_tower->get_extrusion_flow()); append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } } extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter& rectangle(const WipeTower::box_coordinates& box, const float f = 0.f) { rectangle(Vec2f(box.ld.x(), box.ld.y()), box.ru.x() - box.lu.x(), box.ru.y() - box.rd.y(), f); return (*this); } WipeTowerWriter& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } WipeTowerWriter& retract(float e, float f = 0.f) { return load(-e, f); } // Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary) WipeTowerWriter& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f) { float time = std::abs(loading_dist / loading_speed); // time that the move must take float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel float x_speed = x_distance / time; // x-speed to do it in that time if (x_speed > max_x_speed) { // Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time. x_distance = max_x_speed * time; x_speed = max_x_speed; } float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance; return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false); } // Elevate the extruder head above the current print_z position. WipeTowerWriter& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. WipeTowerWriter& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. WipeTowerWriter& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, false); extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, false); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. WipeTowerWriter& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y(), e1, f, false, false); extrude_explicit(x2, m_current_pos.y(), e2, false, false); return *this; } WipeTowerWriter& set_tool(size_t tool) { m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. WipeTowerWriter& set_extruder_temp(int temperature, bool wait = false) { m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n"; return *this; } // Wait for a period of time (seconds). WipeTowerWriter& wait(float time) { if (time==0.f) return *this; m_gcode += "G4 S" + Slic3r::float_to_string_decimal_point(time, 3) + "\n"; return *this; } // Set speed factor override percentage. WipeTowerWriter& speed_override(int speed) { m_gcode += "M220 S" + std::to_string(speed) + "\n"; return *this; } // Let the firmware back up the active speed override value. WipeTowerWriter& speed_override_backup() { // BBS: BBL machine don't support speed backup #if 0 if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware) m_gcode += "M220 B\n"; #endif return *this; } // Let the firmware restore the active speed override value. WipeTowerWriter& speed_override_restore() { // BBS: BBL machine don't support speed restore #if 0 if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware) m_gcode += "M220 R\n"; #endif return *this; } // Set digital trimpot motor WipeTowerWriter& set_extruder_trimpot(int current) { // BBS: don't control trimpot #if 0 if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware) m_gcode += "M906 E"; else m_gcode += "M907 E"; m_gcode += std::to_string(current) + "\n"; #endif return *this; } WipeTowerWriter& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. WipeTowerWriter& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } WipeTowerWriter& comment_with_value(const char *comment, int value) { m_gcode += std::string(";") + comment + std::to_string(value) + "\n"; return *this; } WipeTowerWriter& set_fan(unsigned speed) { if (speed == m_last_fan_speed) return *this; if (speed == 0) m_gcode += "M107\n"; else m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n"; m_last_fan_speed = speed; return *this; } WipeTowerWriter& append(const std::string& text) { m_gcode += text; return *this; } const std::vector& wipe_path() const { return m_wipe_path; } WipeTowerWriter& add_wipe_point(const Vec2f& pt) { m_wipe_path.push_back(rotate(pt)); return *this; } WipeTowerWriter& add_wipe_point(float x, float y) { return add_wipe_point(Vec2f(x, y)); } private: Vec2f m_start_pos; Vec2f m_current_pos; std::vector m_wipe_path; float m_current_z; float m_current_feedrate; size_t m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_internal_angle = 0.f; float m_y_shift = 0.f; float m_wipe_tower_width = 0.f; float m_wipe_tower_depth = 0.f; unsigned m_last_fan_speed = 0; int current_temp = -1; #if ENABLE_GCODE_VIEWER_DATA_CHECKING const float m_default_analyzer_line_width; #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING float m_used_filament_length = 0.f; GCodeFlavor m_gcode_flavor; const std::vector& m_filpar; std::string set_format_X(float x) { m_current_pos.x() = x; return " X" + Slic3r::float_to_string_decimal_point(x, 3); } std::string set_format_Y(float y) { m_current_pos.y() = y; return " Y" + Slic3r::float_to_string_decimal_point(y, 3); } std::string set_format_Z(float z) { return " Z" + Slic3r::float_to_string_decimal_point(z, 3); } std::string set_format_E(float e) { return " E" + Slic3r::float_to_string_decimal_point(e, 4); } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } WipeTowerWriter& operator=(const WipeTowerWriter &rhs); // Rotate the point around center of the wipe tower about given angle (in degrees) Vec2f rotate(Vec2f pt) const { pt.x() -= m_wipe_tower_width / 2.f; pt.y() += m_y_shift - m_wipe_tower_depth / 2.f; double angle = m_internal_angle * float(M_PI/180.); double c = cos(angle); double s = sin(angle); return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f); } }; // class WipeTowerWriter WipeTower::ToolChangeResult WipeTower::construct_tcr(WipeTowerWriter& writer, bool priming, size_t old_tool, bool is_finish, float purge_volume) const { ToolChangeResult result; result.priming = priming; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = m_z_pos; result.layer_height = m_layer_height; result.elapsed_time = writer.elapsed_time(); result.start_pos = writer.start_pos_rotated(); result.end_pos = priming ? writer.pos() : writer.pos_rotated(); result.gcode = std::move(writer.gcode()); result.extrusions = std::move(writer.extrusions()); result.wipe_path = std::move(writer.wipe_path()); result.is_finish_first = is_finish; // BBS result.purge_volume = purge_volume; return result; } // BBS const std::map WipeTower::min_depth_per_height = { {100.f, 20.f}, {250.f, 40.f} }; WipeTower::WipeTower(const PrintConfig& config, int plate_idx, Vec3d plate_origin, const float prime_volume, size_t initial_tool, const float wipe_tower_height) : m_semm(config.single_extruder_multi_material.value), m_wipe_tower_pos(config.wipe_tower_x.get_at(plate_idx), config.wipe_tower_y.get_at(plate_idx)), m_wipe_tower_width(float(config.prime_tower_width)), // BBS m_wipe_tower_height(wipe_tower_height), m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)), m_wipe_tower_brim_width(float(config.prime_tower_brim_width)), m_y_shift(0.f), m_z_pos(0.f), //m_bridging(float(config.wipe_tower_bridging)), m_bridging(10.f), m_no_sparse_layers(config.wipe_tower_no_sparse_layers), m_gcode_flavor(config.gcode_flavor), m_travel_speed(config.travel_speed), m_current_tool(initial_tool), //wipe_volumes(flush_matrix) m_wipe_volume(prime_volume), m_enable_timelapse_print(config.timelapse_type.value == TimelapseType::tlSmooth) { // Read absolute value of first layer speed, if given as percentage, // it is taken over following default. Speeds from config are not // easily accessible here. const float default_speed = 60.f; m_first_layer_speed = config.get_abs_value("initial_layer_speed"); if (m_first_layer_speed == 0.f) // just to make sure autospeed doesn't break it. m_first_layer_speed = default_speed / 2.f; // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. // BBS: remove useless config #if 0 if (m_semm) { m_cooling_tube_retraction = float(config.cooling_tube_retraction); m_cooling_tube_length = float(config.cooling_tube_length); m_parking_pos_retraction = float(config.parking_pos_retraction); m_extra_loading_move = float(config.extra_loading_move); m_set_extruder_trimpot = config.high_current_on_filament_swap; } #endif // Calculate where the priming lines should be - very naive test not detecting parallelograms etc. const std::vector& bed_points = config.printable_area.values; BoundingBoxf bb(bed_points); m_bed_width = float(bb.size().x()); m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed); if (m_bed_shape == CircularBed) { // this may still be a custom bed, check that the points are roughly on a circle double r2 = std::pow(m_bed_width/2., 2.); double lim2 = std::pow(m_bed_width/10., 2.); Vec2d center = bb.center(); for (const Vec2d& pt : bed_points) if (std::abs(std::pow(pt.x()-center.x(), 2.) + std::pow(pt.y()-center.y(), 2.) - r2) > lim2) { m_bed_shape = CustomBed; break; } } m_bed_bottom_left = m_bed_shape == RectangularBed ? Vec2f(bed_points.front().x(), bed_points.front().y()) : Vec2f::Zero(); } void WipeTower::set_extruder(size_t idx, const PrintConfig& config) { //while (m_filpar.size() < idx+1) // makes sure the required element is in the vector m_filpar.push_back(FilamentParameters()); m_filpar[idx].material = config.filament_type.get_at(idx); m_filpar[idx].is_soluble = config.filament_soluble.get_at(idx); // BBS m_filpar[idx].is_support = config.filament_is_support.get_at(idx); m_filpar[idx].nozzle_temperature = config.nozzle_temperature.get_at(idx); m_filpar[idx].nozzle_temperature_initial_layer = config.nozzle_temperature_initial_layer.get_at(idx); // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. // BBS: remove useless config #if 0 if (m_semm) { m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx)); m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx)); m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx)); m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx)); m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx)); m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx); m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx)); m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx)); } #endif m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point float nozzle_diameter = float(config.nozzle_diameter.get_at(idx)); m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx)); if (max_vol_speed!= 0.f) m_filpar[idx].max_e_speed = (max_vol_speed / filament_area()); m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter // BBS: remove useless config #if 0 if (m_semm) { std::istringstream stream{config.filament_ramming_parameters.get_at(idx)}; float speed = 0.f; stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator; m_filpar[idx].ramming_line_width_multiplicator /= 100; m_filpar[idx].ramming_step_multiplicator /= 100; while (stream >> speed) m_filpar[idx].ramming_speed.push_back(speed); } #endif m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later } // Returns gcode to prime the nozzles at the front edge of the print bed. std::vector WipeTower::prime( // print_z of the first layer. float initial_layer_print_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool /*last_wipe_inside_wipe_tower*/) { return std::vector(); } WipeTower::ToolChangeResult WipeTower::tool_change(size_t tool, bool extrude_perimeter, bool first_toolchange_to_nonsoluble) { size_t old_tool = m_current_tool; float wipe_depth = 0.f; float wipe_length = 0.f; float purge_volume = 0.f; // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) { wipe_length = b.wipe_length; wipe_depth = b.required_depth; purge_volume = b.purge_volume; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } box_coordinates cleaning_box( Vec2f(m_perimeter_width, m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, (tool != (unsigned int)(-1) ? wipe_depth + m_depth_traversed - m_perimeter_width : m_wipe_tower_depth - m_perimeter_width)); WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f)) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based if (tool != (unsigned)(-1)) writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str()) .append(";--------------------\n"); writer.speed_override_backup(); writer.speed_override(100); Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); // Increase the extruder driver current to allow fast ramming. //BBS //if (m_set_extruder_trimpot) // writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1){ // This is not the last change. writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, is_first_layer() ? m_filpar[tool].nozzle_temperature_initial_layer : m_filpar[tool].nozzle_temperature); toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); // BBS //writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road if (extrude_perimeter) { box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED) ? m_layer_info->toolchanges_depth() - m_layer_info->depth : 0.f), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); // align the perimeter wt_box = align_perimeter(wt_box); writer.rectangle(wt_box); writer.travel(initial_position); } if (first_toolchange_to_nonsoluble) { writer.travel(Vec2f(0, 0)); writer.travel(initial_position); } toolchange_Wipe(writer, cleaning_box, wipe_length); // Wipe the newly loaded filament until the end of the assigned wipe area. writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); ++ m_num_tool_changes; } else toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].nozzle_temperature); m_depth_traversed += wipe_depth; //BBS //if (m_set_extruder_trimpot) // writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value. writer.speed_override_restore(); writer.feedrate(m_travel_speed * 60.f) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, false, purge_volume); } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTower::toolchange_Unload( WipeTowerWriter &writer, const box_coordinates &cleaning_box, const std::string& current_material, const int new_temperature) { // BBS: toolchange unload is done in change_filament_gcode #if 0 float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width; float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width; const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm writer.append("; CP TOOLCHANGE UNLOAD\n") .change_analyzer_line_width(line_width); unsigned i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl ; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment writer.travel(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f ); // move to starting position // if the ending point of the ram would end up in mid air, align it with the end of the wipe tower: if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) { // this is y of the center of previous sparse infill border float sparse_beginning_y = 0.f; if (m_current_shape == SHAPE_REVERSED) sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth()) - ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ; else sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width; float sum_of_depths = 0.f; for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange if (tch.old_tool == m_current_tool) { sum_of_depths += tch.ramming_depth; float ramming_end_y = sum_of_depths; ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) || (m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) ) { writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y()); remaining -= tch.first_wipe_line-1.f*m_perimeter_width; } break; } sum_of_depths += tch.required_depth; } } writer.disable_linear_advance(); // now the ramming itself: while (i < m_filpar[m_current_tool].ramming_speed.size()) { const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * 0.25f, line_width, m_layer_height); const float e = m_filpar[m_current_tool].ramming_speed[i] * 0.25f / filament_area(); // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround const float actual_time = dist/x * 0.25f; writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f)); remaining -= dist; if (remaining < WT_EPSILON) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step, 7200); m_left_to_right = !m_left_to_right; remaining = xr - xl; } e_done += dist; // subtract what was actually done if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } Vec2f end_of_ramming(writer.x(),writer.y()); writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier // Retraction: float old_x = writer.x(); float turning_point = (!m_left_to_right ? xl : xr ); if (m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) { float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming writer.suppress_preview() .retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s .retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f) .resume_preview(); } // Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should // be already set and there is no need to change anything. Also, the temperature could be changed // for wrong extruder. if (m_semm) { if (new_temperature != 0 && (new_temperature != m_old_temperature || is_first_layer()) ) { // Set the extruder temperature, but don't wait. // If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset) // However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off). writer.set_extruder_temp(new_temperature, false); m_old_temperature = new_temperature; } } // Cooling: const int& number_of_moves = m_filpar[m_current_tool].cooling_moves; if (number_of_moves > 0) { const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed; const float& final_speed = m_filpar[m_current_tool].cooling_final_speed; float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f); writer.suppress_preview() .travel(writer.x(), writer.y() + y_step); old_x = writer.x(); turning_point = xr-old_x > old_x-xl ? xr : xl; for (int i=0; iextra_spacing * m_perimeter_width; const float target_speed = is_first_layer() ? std::min(m_first_layer_speed * 60.f, 4800.f) : 4800.f; float wipe_speed = 0.33f * target_speed; float start_y = writer.y(); #if 0 // if there is less than 2.5*m_perimeter_width to the edge, advance straightaway (there is likely a blob anyway) if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*m_perimeter_width) { writer.travel((m_left_to_right ? xr-m_perimeter_width : xl+m_perimeter_width),writer.y()+dy); m_left_to_right = !m_left_to_right; } #endif m_left_to_right = true; // BBS: do not need to move dy #if 0 if (m_depth_traversed != 0) writer.travel(xl, writer.y() + dy); #endif bool need_change_flow = false; // now the wiping itself: for (int i = 0; true; ++i) { if (i!=0) { if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed; else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed; else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed; else wipe_speed = std::min(target_speed, wipe_speed + 50.f); } // BBS: check the bridging area and use the bridge flow if (need_change_flow || need_thick_bridge_flow(writer.y())) { writer.set_extrusion_flow(extrusion_flow(0.2)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(0.2) + "\n"); need_change_flow = true; } if (m_left_to_right) writer.extrude(xr + 0.25f * m_perimeter_width, writer.y(), wipe_speed); else writer.extrude(xl - 0.25f * m_perimeter_width, writer.y(), wipe_speed); // BBS: recover the flow in non-bridging area if (need_change_flow) { writer.set_extrusion_flow(m_extrusion_flow); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) + std::to_string(m_layer_height) + "\n"); } if (writer.y() - float(EPSILON) > cleaning_box.lu.y()) break; // in case next line would not fit x_to_wipe -= (xr - xl); if (x_to_wipe < WT_EPSILON) { // BBS: Delete some unnecessary travel //writer.travel(m_left_to_right ? xl + 1.5f*m_perimeter_width : xr - 1.5f*m_perimeter_width, writer.y(), 7200); break; } // stepping to the next line: writer.extrude(writer.x(), writer.y() + dy); m_left_to_right = !m_left_to_right; } float end_y = writer.y(); // We may be going back to the model - wipe the nozzle. If this is followed // by finish_layer, this wipe path will be overwritten. //writer.add_wipe_point(writer.x(), writer.y()) // .add_wipe_point(writer.x(), writer.y() - dy) // .add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy); // BBS: modify the wipe_path after toolchange writer.add_wipe_point(writer.x(), writer.y()) .add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y()); if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) m_left_to_right = !m_left_to_right; writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. // BBS: add the note for gcode-check when the flow changed if (is_first_layer()) { writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) + std::to_string(m_perimeter_width) + "\n"); } } // BBS WipeTower::box_coordinates WipeTower::align_perimeter(const WipeTower::box_coordinates& perimeter_box) { box_coordinates aligned_box = perimeter_box; float spacing = m_extra_spacing * m_perimeter_width; float up = perimeter_box.lu(1) - m_perimeter_width; up = align_ceil(up, spacing); up += m_perimeter_width; up = std::min(up, m_wipe_tower_depth); float down = perimeter_box.ld(1) - m_perimeter_width; down = align_floor(down, spacing); down += m_perimeter_width; down = std::max(down, -m_y_shift); aligned_box.lu(1) = aligned_box.ru(1) = up; aligned_box.ld(1) = aligned_box.rd(1) = down; return aligned_box; } WipeTower::ToolChangeResult WipeTower::finish_layer(bool extrude_perimeter, bool extruder_fill) { assert(! this->layer_finished()); m_current_layer_finished = true; size_t old_tool = m_current_tool; WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, 5400.f) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, 5400.f); float fill_box_y = m_layer_info->toolchanges_depth() + m_perimeter_width; box_coordinates fill_box(Vec2f(m_perimeter_width, fill_box_y), m_wipe_tower_width - 2 * m_perimeter_width, m_layer_info->depth - fill_box_y); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; // inner perimeter of the sparse section, if there is space for it: if (fill_box.ru.y() - fill_box.rd.y() > m_perimeter_width - WT_EPSILON) writer.rectangle_fill_box(this, fill_box.ld, fill_box.rd.x() - fill_box.ld.x(), fill_box.ru.y() - fill_box.rd.y(), feedrate); // we are in one of the corners, travel to ld along the perimeter: // BBS: Delete some unnecessary travel //if (writer.x() > fill_box.ld.x() + EPSILON) writer.travel(fill_box.ld.x(), writer.y()); //if (writer.y() > fill_box.ld.y() + EPSILON) writer.travel(writer.x(), fill_box.ld.y()); // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); float left = fill_box.lu.x() + 2*m_perimeter_width; float right = fill_box.ru.x() - 2 * m_perimeter_width; std::vector finish_rect_wipe_path; if (extruder_fill && dy > m_perimeter_width) { writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Is there a soluble filament wiped/rammed at the next layer? // If so, the infill should not be sparse. bool solid_infill = m_layer_info+1 == m_plan.end() ? false : std::any_of((m_layer_info+1)->tool_changes.begin(), (m_layer_info+1)->tool_changes.end(), [this](const WipeTowerInfo::ToolChange& tch) { return m_filpar[tch.new_tool].is_soluble || m_filpar[tch.old_tool].is_soluble; }); solid_infill |= first_layer && m_adhesion; if (solid_infill) { float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc. if (first_layer) { // the infill should touch perimeters left -= m_perimeter_width; right += m_perimeter_width; sparse_factor = 1.f; } float y = fill_box.ld.y() + m_perimeter_width; int n = dy / (m_perimeter_width * sparse_factor); float spacing = (dy-m_perimeter_width)/(n-1); int i=0; for (i=0; itoolchanges_depth() : 0.f)), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); wt_box = align_perimeter(wt_box); if (extrude_perimeter) { writer.rectangle(wt_box, feedrate); } // brim chamfer float spacing = m_perimeter_width - m_layer_height * float(1. - M_PI_4); // How many perimeters shall the brim have? int loops_num = (m_wipe_tower_brim_width + spacing / 2.f) / spacing; const float max_chamfer_width = 3.f; if (!first_layer) { // stop print chamfer if depth changes if (m_layer_info->depth != m_plan.front().depth) { loops_num = 0; } else { // limit max chamfer width to 3 mm int chamfer_loops_num = (int)(max_chamfer_width / spacing); int dist_to_1st = m_layer_info - m_plan.begin() - m_first_layer_idx; loops_num = std::min(loops_num, chamfer_loops_num) - dist_to_1st; } } if (loops_num > 0) { box_coordinates box = wt_box; for (size_t i = 0; i < loops_num; ++i) { box.expand(spacing); writer.rectangle(box); } if (first_layer) { // Save actual brim width to be later passed to the Print object, which will use it // for skirt calculation and pass it to GLCanvas for precise preview box m_wipe_tower_brim_width_real = wt_box.ld.x() - box.ld.x() + spacing / 2.f; } wt_box = box; } // Now prepare future wipe. box contains rectangle that was extruded last (ccw). Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); // BBS: add wipe_path for this case: only with finish rectangle if (finish_rect_wipe_path.size() == 2 && finish_rect_wipe_path[0] == writer.pos()) target = finish_rect_wipe_path[1]; writer.add_wipe_point(writer.pos()) .add_wipe_point(target); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (! m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, true, 0.f); } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTower::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, float wipe_volume, float purge_volume) { assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if (m_first_layer_idx == size_t(-1) && (! m_no_sparse_layers || old_tool != new_tool)) m_first_layer_idx = m_plan.size() - 1; if (old_tool == new_tool) // new layer without toolchanges - we are done return; // this is an actual toolchange - let's calculate depth to reserve on the wipe tower float depth = 0.f; float width = m_wipe_tower_width - 2 * m_perimeter_width; // BBS: if the wipe tower width is too small, the depth will be infinity if (width <= EPSILON) return; // BBS: remove old filament ramming and first line #if 0 float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f), m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator, layer_height_par); depth = (int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator); float ramming_depth = depth; length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width; float first_wipe_line = -length_to_extrude; length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par); length_to_extrude = std::max(length_to_extrude,0.f); depth += (int(length_to_extrude / width) + 1) * m_perimeter_width; depth *= m_extra_spacing; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume)); #else float length_to_extrude = volume_to_length(wipe_volume, m_perimeter_width, layer_height_par); depth += std::ceil(length_to_extrude / width) * m_perimeter_width; //depth *= m_extra_spacing; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, 0.f, 0.f, wipe_volume, length_to_extrude, purge_volume)); #endif } void WipeTower::plan_tower() { // BBS // calculate extra spacing float max_depth = 0.f; for (auto& info : m_plan) max_depth = std::max(max_depth, info.toolchanges_depth()); float min_wipe_tower_depth = 0.f; auto iter = WipeTower::min_depth_per_height.begin(); while (iter != WipeTower::min_depth_per_height.end()) { auto curr_height_to_depth = *iter; // This is the case that wipe tower height is lower than the first min_depth_to_height member. if (curr_height_to_depth.first >= m_wipe_tower_height) { min_wipe_tower_depth = curr_height_to_depth.second; break; } iter++; // If curr_height_to_depth is the last member, use its min_depth. if (iter == WipeTower::min_depth_per_height.end()) { min_wipe_tower_depth = curr_height_to_depth.second; break; } // If wipe tower height is between the current and next member, set the min_depth as linear interpolation between them auto next_height_to_depth = *iter; if (next_height_to_depth.first > m_wipe_tower_height) { float height_base = curr_height_to_depth.first; float height_diff = next_height_to_depth.first - curr_height_to_depth.first; float min_depth_base = curr_height_to_depth.second; float depth_diff = next_height_to_depth.second - curr_height_to_depth.second; min_wipe_tower_depth = min_depth_base + (m_wipe_tower_height - curr_height_to_depth.first) / height_diff * depth_diff; break; } } { if (m_enable_timelapse_print && max_depth < EPSILON) max_depth = min_wipe_tower_depth; if (max_depth + EPSILON < min_wipe_tower_depth) m_extra_spacing = min_wipe_tower_depth / max_depth; else m_extra_spacing = 1.f; for (int idx = 0; idx < m_plan.size(); idx++) { auto& info = m_plan[idx]; if (idx == 0 && m_extra_spacing > 1.f + EPSILON) { // apply solid fill for the first layer info.extra_spacing = 1.f; for (auto& toolchange : info.tool_changes) { float x_to_wipe = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); float line_len = m_wipe_tower_width - 2 * m_perimeter_width; float x_to_wipe_new = x_to_wipe * m_extra_spacing; x_to_wipe_new = std::floor(x_to_wipe_new / line_len) * line_len; x_to_wipe_new = std::max(x_to_wipe_new, x_to_wipe); int line_count = std::ceil((x_to_wipe_new - WT_EPSILON) / line_len); toolchange.required_depth = line_count * m_perimeter_width; toolchange.wipe_volume = x_to_wipe_new / x_to_wipe * toolchange.wipe_volume; toolchange.wipe_length = x_to_wipe_new; } } else { info.extra_spacing = m_extra_spacing; for (auto& toolchange : info.tool_changes) { toolchange.required_depth *= m_extra_spacing; toolchange.wipe_length = volume_to_length(toolchange.wipe_volume, m_perimeter_width, info.height); } } } } // Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards m_wipe_tower_depth = 0.f; for (auto& layer : m_plan) layer.depth = 0.f; float max_depth_for_all = 0; for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index) { float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth()); if (m_enable_timelapse_print && this_layer_depth < EPSILON) this_layer_depth = min_wipe_tower_depth; m_plan[layer_index].depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width) m_wipe_tower_depth = this_layer_depth + m_perimeter_width; for (int i = layer_index - 1; i >= 0 ; i--) { if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width ) m_plan[i].depth = this_layer_depth; } if (m_enable_timelapse_print && layer_index == 0) max_depth_for_all = m_plan[0].depth; } if (m_enable_timelapse_print) { for (int i = int(m_plan.size()) - 1; i >= 0; i--) { m_plan[i].depth = max_depth_for_all; } } } void WipeTower::save_on_last_wipe() { for (m_layer_info=m_plan.begin();m_layer_infoz, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z); if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer continue; // Which toolchange will finish_layer extrusions be subtracted from? // BBS: consider both soluable and support properties int idx = first_toolchange_to_nonsoluble_nonsupport(m_layer_info->tool_changes); for (int i=0; itool_changes.size()); ++i) { auto& toolchange = m_layer_info->tool_changes[i]; tool_change(toolchange.new_tool); if (i == idx) { float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into float length_to_save = finish_layer().total_extrusion_length_in_plane(); float length_to_wipe = volume_to_length(toolchange.wipe_volume, m_perimeter_width, m_layer_info->height) - toolchange.first_wipe_line - length_to_save; length_to_wipe = std::max(length_to_wipe,0.f); float depth_to_wipe = m_perimeter_width * (std::floor(length_to_wipe/width) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing; toolchange.required_depth = toolchange.ramming_depth + depth_to_wipe; } } } } // BBS: consider both soluable and support properties // Return index of first toolchange that switches to non-soluble and non-support extruder // ot -1 if there is no such toolchange. int WipeTower::first_toolchange_to_nonsoluble_nonsupport( const std::vector& tool_changes) const { for (size_t idx=0; idx> &result) { if (m_plan.empty()) return; m_extra_spacing = 1.f; plan_tower(); // BBS #if 0 for (int i=0;i<5;++i) { save_on_last_wipe(); plan_tower(); } #endif m_layer_info = m_plan.begin(); // we don't know which extruder to start with - we'll set it according to the first toolchange for (const auto& layer : m_plan) { if (!layer.tool_changes.empty()) { m_current_tool = layer.tool_changes.front().old_tool; break; } } for (auto& used : m_used_filament_length) // reset used filament stats used = 0.f; m_old_temperature = -1; // reset last temperature written in the gcode std::vector layer_result; for (auto layer : m_plan) { set_layer(layer.z, layer.height, 0, false/*layer.z == m_plan.front().z*/, layer.z == m_plan.back().z); // BBS //m_internal_rotation += 180.f; if (m_layer_info->depth < m_perimeter_width) continue; if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) { // align y shift to perimeter width float dy = m_extra_spacing * m_perimeter_width; m_y_shift = (m_wipe_tower_depth - m_layer_info->depth) / 2.f; m_y_shift = align_round(m_y_shift, dy); } // BBS: consider both soluable and support properties int idx = first_toolchange_to_nonsoluble_nonsupport (layer.tool_changes); ToolChangeResult finish_layer_tcr; ToolChangeResult timelapse_wall; if (idx == -1) { // if there is no toolchange switching to non-soluble, finish layer // will be called at the very beginning. That's the last possibility // where a nonsoluble tool can be. if (m_enable_timelapse_print) { timelapse_wall = only_generate_out_wall(); } finish_layer_tcr = finish_layer(m_enable_timelapse_print ? false : true, layer.extruder_fill); } for (int i=0; itoolchanges_depth() : 0.f)); // Slow down on the 1st layer. bool first_layer = is_first_layer(); // BBS: speed up perimeter speed to 90mm/s for non-first layer float feedrate = first_layer ? std::min(m_first_layer_speed * 60.f, 5400.f) : std::min(60.0f * m_filpar[m_current_tool].max_e_speed / m_extrusion_flow, 5400.f); float fill_box_y = m_layer_info->toolchanges_depth() + m_perimeter_width; box_coordinates fill_box(Vec2f(m_perimeter_width, fill_box_y), m_wipe_tower_width - 2 * m_perimeter_width, m_layer_info->depth - fill_box_y); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; // we are in one of the corners, travel to ld along the perimeter: // BBS: Delete some unnecessary travel //if (writer.x() > fill_box.ld.x() + EPSILON) writer.travel(fill_box.ld.x(), writer.y()); //if (writer.y() > fill_box.ld.y() + EPSILON) writer.travel(writer.x(), fill_box.ld.y()); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); // outer perimeter (always): // BBS box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); wt_box = align_perimeter(wt_box); writer.rectangle(wt_box, feedrate); // Now prepare future wipe. box contains rectangle that was extruded last (ccw). Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd : (writer.pos() == wt_box.rd ? wt_box.ru : (writer.pos() == wt_box.ru ? wt_box.lu : wt_box.ld))); writer.add_wipe_point(writer.pos()).add_wipe_point(target); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (!m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, true, 0.f); } bool WipeTower::get_floating_area(float &start_pos_y, float &end_pos_y) const { if (m_layer_info == m_plan.begin() || (m_layer_info - 1) == m_plan.begin()) return false; float last_layer_fill_box_y = (m_layer_info - 1)->toolchanges_depth() + m_perimeter_width; float last_layer_wipe_depth = (m_layer_info - 1)->depth; if (last_layer_wipe_depth - last_layer_fill_box_y <= 2 * m_perimeter_width) return false; start_pos_y = last_layer_fill_box_y + m_perimeter_width; end_pos_y = last_layer_wipe_depth - m_perimeter_width; return true; } bool WipeTower::need_thick_bridge_flow(float pos_y) const { if (m_extrusion_flow >= extrusion_flow(0.2)) return false; float y_min = 0., y_max = 0.; if (get_floating_area(y_min, y_max)) { return pos_y > y_min && pos_y < y_max; } return false; } } // namespace Slic3r