#ifndef slic3r_GCodeWriter_hpp_ #define slic3r_GCodeWriter_hpp_ #include "libslic3r.h" #include #include #include "Extruder.hpp" #include "Point.hpp" #include "PrintConfig.hpp" #include "GCode/CoolingBuffer.hpp" namespace Slic3r { enum class LiftType { NormalLift, LazyLift, SpiralLift }; class GCodeWriter { public: GCodeConfig config; bool multiple_extruders; GCodeWriter() : multiple_extruders(false), m_extruder(nullptr), m_single_extruder_multi_material(false), m_last_acceleration(0), m_max_acceleration(0), m_last_jerk(0), m_max_jerk(0), /*m_last_bed_temperature(0), */m_last_bed_temperature_reached(true), m_lifted(0), m_to_lift(0), m_to_lift_type(LiftType::NormalLift) {} Extruder* extruder() { return m_extruder; } const Extruder* extruder() const { return m_extruder; } void apply_print_config(const PrintConfig &print_config); // Extruders are expected to be sorted in an increasing order. void set_extruders(std::vector extruder_ids); const std::vector& extruders() const { return m_extruders; } std::vector extruder_ids() const { std::vector out; out.reserve(m_extruders.size()); for (const Extruder &e : m_extruders) out.push_back(e.id()); return out; } std::string preamble(); std::string postamble() const; std::string set_temperature(unsigned int temperature, bool wait = false, int tool = -1) const; std::string set_bed_temperature(int temperature, bool wait = false); std::string set_chamber_temperature(int temperature, bool wait = false); std::string set_acceleration(unsigned int acceleration); std::string set_pressure_advance(double pa) const; std::string set_jerk_xy(double jerk); std::string reset_e(bool force = false); std::string update_progress(unsigned int num, unsigned int tot, bool allow_100 = false) const; // return false if this extruder was already selected bool need_toolchange(unsigned int extruder_id) const { return m_extruder == nullptr || m_extruder->id() != extruder_id; } std::string set_extruder(unsigned int extruder_id) { return this->need_toolchange(extruder_id) ? this->toolchange(extruder_id) : ""; } // Prefix of the toolchange G-code line, to be used by the CoolingBuffer to separate sections of the G-code // printed with the same extruder. std::string toolchange_prefix() const; std::string toolchange(unsigned int extruder_id); std::string set_speed(double F, const std::string &comment = std::string(), const std::string &cooling_marker = std::string()) const; std::string travel_to_xy(const Vec2d &point, const std::string &comment = std::string()); std::string travel_to_xy_test(const Vec2d &point, const std::string &comment = std::string()); std::string travel_to_xyz(const Vec3d &point, const std::string &comment = std::string()); std::string travel_to_z(double z, const std::string &comment = std::string()); bool will_move_z(double z) const; std::string extrude_to_xy(const Vec2d &point, double dE, const std::string &comment = std::string(), bool force_no_extrusion = false); //BBS: generate G2 or G3 extrude which moves by arc std::string extrude_arc_to_xy(const Vec2d &point, const Vec2d ¢er_offset, double dE, const bool is_ccw, const std::string &comment = std::string(), bool force_no_extrusion = false); std::string extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment = std::string(), bool force_no_extrusion = false); std::string retract(bool before_wipe = false); std::string retract_for_toolchange(bool before_wipe = false); std::string unretract(); std::string lift(LiftType lift_type = LiftType::NormalLift, bool spiral_vase = false); std::string unlift(); Vec3d get_position() const { return m_pos; } void set_position(Vec3d& in) { m_pos = in; } //BBS: set offset for gcode writer void set_xy_offset(double x, double y) { m_x_offset = x; m_y_offset = y; } Vec2f get_xy_offset() { return Vec2f{m_x_offset, m_y_offset}; }; // To be called by the CoolingBuffer from another thread. static std::string set_fan(const GCodeFlavor gcode_flavor, unsigned int speed); // To be called by the main thread. It always emits the G-code, it does not remember the previous state. // Keeping the state is left to the CoolingBuffer, which runs asynchronously on another thread. std::string set_fan(unsigned int speed) const; //BBS: set additional fan speed for BBS machine only static std::string set_additional_fan(unsigned int speed); static std::string set_exhaust_fan(int speed,bool add_eol); //BBS void set_object_start_str(std::string start_string) { m_gcode_label_objects_start = start_string; } bool empty_object_start_str() { return m_gcode_label_objects_start.empty(); } void set_object_end_str(std::string end_string) { m_gcode_label_objects_end = end_string; } bool empty_object_end_str() { return m_gcode_label_objects_end.empty(); } void add_object_start_labels(std::string& gcode); void add_object_end_labels(std::string& gcode); void add_object_change_labels(std::string& gcode); //BBS: void set_current_position_clear(bool clear) { m_is_current_pos_clear = clear; }; bool is_current_position_clear() const { return m_is_current_pos_clear; }; //BBS: static const bool full_gcode_comment; //Radian threshold of slope for lazy lift and spiral lift; static const double slope_threshold; private: // Extruders are sorted by their ID, so that binary search is possible. std::vector m_extruders; bool m_single_extruder_multi_material; Extruder* m_extruder; unsigned int m_last_acceleration; // Limit for setting the acceleration, to respect the machine limits set for the Marlin firmware. // If set to zero, the limit is not in action. unsigned int m_max_acceleration; double m_last_jerk; double m_max_jerk; //BBS unsigned int m_last_additional_fan_speed; int m_last_bed_temperature; bool m_last_bed_temperature_reached; double m_lifted; // BBS double m_to_lift; LiftType m_to_lift_type; Vec3d m_pos = Vec3d::Zero(); //BBS: this flag is used to indicate whether the m_pos is real. //A example that of the first move, the m_pos is zero, but the real position of extruder doesn't //Pos must be clear after the first xyz travel move bool m_is_current_pos_clear = false; //BBS: x, y offset for gcode generated double m_x_offset{ 0 }; double m_y_offset{ 0 }; std::string m_gcode_label_objects_start; std::string m_gcode_label_objects_end; std::string _travel_to_z(double z, const std::string &comment); std::string _travel_to_z_test(double z, const std::string &comment); std::string _spiral_travel_to_z(double z, const Vec2d &ij_offset, const std::string &comment); std::string _retract(double length, double restart_extra, const std::string &comment); }; class GCodeFormatter { public: GCodeFormatter() { this->buf_end = buf + buflen; this->ptr_err.ptr = this->buf; } GCodeFormatter(const GCodeFormatter&) = delete; GCodeFormatter& operator=(const GCodeFormatter&) = delete; // At layer height 0.15mm, extrusion width 0.2mm and filament diameter 1.75mm, // the crossection of extrusion is 0.4 * 0.15 = 0.06mm2 // and the filament crossection is 1.75^2 = 3.063mm2 // thus the filament moves 3.063 / 0.6 = 51x slower than the XY axes // and we need roughly two decimal digits more on extruder than on XY. #if 1 static constexpr const int XYZF_EXPORT_DIGITS = 3; static constexpr const int E_EXPORT_DIGITS = 5; #else // order of magnitude smaller extrusion rate erros static constexpr const int XYZF_EXPORT_DIGITS = 4; static constexpr const int E_EXPORT_DIGITS = 6; // excessive accuracy // static constexpr const int XYZF_EXPORT_DIGITS = 6; // static constexpr const int E_EXPORT_DIGITS = 9; #endif void emit_axis(const char axis, const double v, size_t digits); void emit_xy(const Vec2d &point) { this->emit_axis('X', point.x(), XYZF_EXPORT_DIGITS); this->emit_axis('Y', point.y(), XYZF_EXPORT_DIGITS); } void emit_xyz(const Vec3d &point) { this->emit_axis('X', point.x(), XYZF_EXPORT_DIGITS); this->emit_axis('Y', point.y(), XYZF_EXPORT_DIGITS); this->emit_z(point.z()); } void emit_z(const double z) { this->emit_axis('Z', z, XYZF_EXPORT_DIGITS); } void emit_e(double v) { this->emit_axis('E', v, E_EXPORT_DIGITS); } void emit_f(double speed) { this->emit_axis('F', speed, XYZF_EXPORT_DIGITS); } //BBS void emit_ij(const Vec2d &point) { this->emit_axis('I', point.x(), XYZF_EXPORT_DIGITS); this->emit_axis('J', point.y(), XYZF_EXPORT_DIGITS); } void emit_string(const std::string &s) { strncpy(ptr_err.ptr, s.c_str(), s.size()); ptr_err.ptr += s.size(); } void emit_comment(bool allow_comments, const std::string &comment) { if (allow_comments && ! comment.empty()) { *ptr_err.ptr ++ = ' '; *ptr_err.ptr ++ = ';'; *ptr_err.ptr ++ = ' '; this->emit_string(comment); } } std::string string() { *ptr_err.ptr ++ = '\n'; return std::string(this->buf, ptr_err.ptr - buf); } protected: static constexpr const size_t buflen = 256; char buf[buflen]; char* buf_end; std::to_chars_result ptr_err; }; class GCodeG1Formatter : public GCodeFormatter { public: GCodeG1Formatter() { this->buf[0] = 'G'; this->buf[1] = '1'; this->buf_end = buf + buflen; this->ptr_err.ptr = this->buf + 2; } GCodeG1Formatter(const GCodeG1Formatter&) = delete; GCodeG1Formatter& operator=(const GCodeG1Formatter&) = delete; }; class GCodeG2G3Formatter : public GCodeFormatter { public: GCodeG2G3Formatter(bool is_ccw) { this->buf[0] = 'G'; this->buf[1] = is_ccw ? '3' : '2'; this->buf_end = buf + buflen; this->ptr_err.ptr = this->buf + 2; } GCodeG2G3Formatter(const GCodeG2G3Formatter&) = delete; GCodeG2G3Formatter& operator=(const GCodeG2G3Formatter&) = delete; }; } /* namespace Slic3r */ #endif /* slic3r_GCodeWriter_hpp_ */