#include "Exception.hpp" #include "Print.hpp" #include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "ElephantFootCompensation.hpp" #include "Geometry.hpp" #include "I18N.hpp" #include "Layer.hpp" #include "MutablePolygon.hpp" #include "Support/SupportMaterial.hpp" #include "Support/TreeSupport.hpp" #include "Surface.hpp" #include "Slicing.hpp" #include "Tesselate.hpp" #include "TriangleMeshSlicer.hpp" #include "Utils.hpp" #include "Fill/FillAdaptive.hpp" #include "Fill/FillLightning.hpp" #include "Format/STL.hpp" #include "InternalBridgeDetector.hpp" #include "AABBTreeLines.hpp" #include #include #include #include #include #include #include #include "format.hpp" using namespace std::literals; //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) #ifdef SLIC3R_DEBUG_SLICE_PROCESSING #define SLIC3R_DEBUG #endif // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #include "SVG.hpp" #undef assert #include #endif namespace Slic3r { // Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid. PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) : PrintObjectBaseWithState(print, model_object), m_trafo(trafo), // BBS m_tree_support_preview_cache(nullptr) { // Compute centering offet to be applied to our meshes so that we work with smaller coordinates // requiring less bits to represent Clipper coordinates. // Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied. // All the instances share the transformation matrix with the exception of translation in XY and rotation by Z, // therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center, // snug height and an approximate bounding box in XY. BoundingBoxf3 bbox = model_object->raw_bounding_box(); Vec3d bbox_center = bbox.center(); // We may need to rotate the bbox / bbox_center from the original instance to the current instance. double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation()); if (std::abs(z_diff) > EPSILON) { auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()); bbox = bbox.transformed(Transform3d(z_rot)); bbox_center = (z_rot * bbox_center).eval(); } // Center of the transformed mesh (without translation). m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y()); // Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z. m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast(); m_max_z = scaled(model_object->instance_bounding_box(0).max(2)); this->set_instances(std::move(instances)); } PrintObject::~PrintObject() { BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": this=%1%, m_shared_object %2%")%this%m_shared_object; if (m_shared_regions && -- m_shared_regions->m_ref_cnt == 0) delete m_shared_regions; clear_layers(); clear_support_layers(); } PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances) { for (PrintInstance &i : instances) // Add the center offset, which will be subtracted from the mesh when slicing. i.shift += m_center_offset; // Invalidate and set copies. PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED; bool equal_length = instances.size() == m_instances.size(); bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(), [](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; }); if (! equal) { status = PrintBase::APPLY_STATUS_CHANGED; if (m_print->invalidate_steps({ psSkirtBrim, psGCodeExport }) || (! equal_length && m_print->invalidate_step(psWipeTower))) status = PrintBase::APPLY_STATUS_INVALIDATED; m_instances = std::move(instances); for (PrintInstance &i : m_instances) i.print_object = this; } return status; } std::vector> PrintObject::all_regions() const { std::vector> out; out.reserve(m_shared_regions->all_regions.size()); for (const std::unique_ptr ®ion : m_shared_regions->all_regions) out.emplace_back(*region.get()); return out; } // 1) Merges typed region slices into stInternal type. // 2) Increases an "extra perimeters" counter at region slices where needed. // 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal). void PrintObject::make_perimeters() { // prerequisites this->slice(); if (! this->set_started(posPerimeters)) return; m_print->set_status(15, L("Generating walls")); BOOST_LOG_TRIVIAL(info) << "Generating walls..." << log_memory_info(); // Revert the typed slices into untyped slices. if (m_typed_slices) { for (Layer *layer : m_layers) { layer->restore_untyped_slices(); m_print->throw_if_canceled(); } m_typed_slices = false; } // compare each layer to the one below, and mark those slices needing // one additional inner perimeter, like the top of domed objects- // this algorithm makes sure that at least one perimeter is overlapping // but we don't generate any extra perimeter if fill density is zero, as they would be floating // inside the object - infill_only_where_needed should be the method of choice for printing // hollow objects for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); //BBS: remove extra_perimeters, always false //if (! region.config().extra_perimeters || region.config().wall_loops == 0 || region.config().sparse_infill_density == 0 || this->layer_count() < 2) continue; BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size() - 1), [this, ®ion, region_id](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); LayerRegion &layerm = *m_layers[layer_idx]->get_region(region_id); const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->get_region(region_id); const Polygons upper_layerm_polygons = to_polygons(upper_layerm.slices.surfaces); // Filter upper layer polygons in intersection_ppl by their bounding boxes? // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ]; const double total_loop_length = total_length(upper_layerm_polygons); const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing(); const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter); const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width(); const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing(); for (Surface &slice : layerm.slices.surfaces) { for (;;) { // compute the total thickness of perimeters const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2 + (region.config().wall_loops-1 + slice.extra_perimeters) * perimeter_spacing; // define a critical area where we don't want the upper slice to fall into // (it should either lay over our perimeters or outside this area) const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5); const Polygons critical_area = diff( offset(slice.expolygon, float(- perimeters_thickness)), offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth)) ); // check whether a portion of the upper slices falls inside the critical area const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area); // only add an additional loop if at least 30% of the slice loop would benefit from it if (total_length(intersection) <= total_loop_length*0.3) break; /* if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "extra.svg", no_arrows => 1, expolygons => union_ex($critical_area), polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ], ); } */ ++ slice.extra_perimeters; } #ifdef DEBUG if (slice.extra_perimeters > 0) printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx); #endif } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end"; } BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_perimeters(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end"; this->set_done(posPerimeters); } void PrintObject::prepare_infill() { if (! this->set_started(posPrepareInfill)) return; m_print->set_status(25, L("Generating infill regions")); if (m_typed_slices) { // To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442. // The preceding step (perimeter generator) only modifies extra_perimeters and the extra perimeters are only used by discover_vertical_shells() // with more than a single region. If this step does not use Surface::extra_perimeters or Surface::extra_perimeters is always zero, it is safe // to reset to the untyped slices before re-runnning detect_surfaces_type(). //为了在重新切片(使用类型化切片)时提高detect_surfaces_type()的鲁棒性,请参阅GH问题#7442。 //前面的步骤(周长生成器)仅修改extra_perimeters,并且额外的周长仅由具有多个区域的discover_vertical_shell()使用。 //如果此步骤不使用Surface::extra_perimeters或Surface::extra_perimeter始终为零,则可以在重新运行detect_surfaces_type()之前重置为非类型切片。 for (Layer* layer : m_layers) { layer->restore_untyped_slices_no_extra_perimeters(); m_print->throw_if_canceled(); } } // This will assign a type (top/bottom/internal) to $layerm->slices. // Then the classifcation of $layerm->slices is transfered onto // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces // by the cummulative area of the previous $layerm->fill_surfaces. this->detect_surfaces_type(); m_print->throw_if_canceled(); // Also tiny stInternal surfaces are turned to stInternalSolid. BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info(); for (auto *layer : m_layers) for (auto *region : layer->m_regions) { region->prepare_fill_surfaces(); m_print->throw_if_canceled(); } // Add solid fills to ensure the shell vertical thickness. this->discover_vertical_shells(); m_print->throw_if_canceled(); // this will detect bridges and reverse bridges // and rearrange top/bottom/internal surfaces // It produces enlarged overlapping bridging areas. // // 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap. // 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap. // 3) Clip the internal surfaces by the grown top/bottom surfaces. // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps. //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties. this->process_external_surfaces(); m_print->throw_if_canceled(); // Debugging output. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Detect, which fill surfaces are near external layers. // They will be split in internal and internal-solid surfaces. // The purpose is to add a configurable number of solid layers to support the TOP surfaces // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces // to close these surfaces reliably. //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters? this->discover_horizontal_shells(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. this->clip_fill_surfaces(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final"); layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // the following step needs to be done before combination because it may need // to remove only half of the combined infill this->bridge_over_infill(); m_print->throw_if_canceled(); // combine fill surfaces to honor the "infill every N layers" option this->combine_infill(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("9_prepare_infill-final"); layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer } // for each region for (const Layer *layer : m_layers) { layer->export_region_slices_to_svg_debug("9_prepare_infill-final"); layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ this->set_done(posPrepareInfill); } void PrintObject::infill() { // prerequisites this->prepare_infill(); if (this->set_started(posInfill)) { m_print->set_status(35, L("Generating infill toolpath")); const auto& adaptive_fill_octree = this->m_adaptive_fill_octrees.first; const auto& support_fill_octree = this->m_adaptive_fill_octrees.second; BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get(), this->m_lightning_generator.get()); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end"; /* we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; */ this->set_done(posInfill); } } void PrintObject::ironing() { if (this->set_started(posIroning)) { BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start"; tbb::parallel_for( // Ironing starting with layer 0 to support ironing all surfaces. tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_ironing(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end"; this->set_done(posIroning); } } // BBS void PrintObject::clear_overhangs_for_lift() { if (!m_shared_object) { for (Layer* l : m_layers) l->loverhangs.clear(); } } static const float g_min_overhang_percent_for_lift = 0.3f; void PrintObject::detect_overhangs_for_lift() { if (this->set_started(posDetectOverhangsForLift)) { const float min_overlap = m_config.line_width * g_min_overhang_percent_for_lift; size_t num_layers = this->layer_count(); size_t num_raft_layers = m_slicing_params.raft_layers(); m_print->set_status(71, L("Detect overhangs for auto-lift")); this->clear_overhangs_for_lift(); tbb::spin_mutex layer_storage_mutex; tbb::parallel_for(tbb::blocked_range(num_raft_layers + 1, num_layers), [this, min_overlap](const tbb::blocked_range& range) { for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) { Layer& layer = *m_layers[layer_id]; Layer& lower_layer = *layer.lower_layer; ExPolygons overhangs = diff_ex(layer.lslices, offset_ex(lower_layer.lslices, scale_(min_overlap))); layer.loverhangs = std::move(offset2_ex(overhangs, -0.1f * scale_(m_config.line_width), 0.1f * scale_(m_config.line_width))); layer.loverhangs_bbox = get_extents(layer.loverhangs); } }); this->set_done(posDetectOverhangsForLift); } } void PrintObject::generate_support_material() { if (this->set_started(posSupportMaterial)) { this->clear_support_layers(); if(!has_support() && !m_print->get_no_check_flag()) { // BBS: pop a warning if objects have significant amount of overhangs but support material is not enabled // Note: we also need to pop warning if support is disabled and only raft is enabled m_print->set_status(50, L("Checking support necessity")); typedef std::chrono::high_resolution_clock clock_; typedef std::chrono::duration > second_; std::chrono::time_point t0{ clock_::now() }; SupportNecessaryType sntype = this->is_support_necessary(); double duration{ std::chrono::duration_cast(clock_::now() - t0).count() }; BOOST_LOG_TRIVIAL(info) << std::fixed << std::setprecision(0) << "is_support_necessary takes " << duration << " secs."; if (sntype != NoNeedSupp) { std::map reasons = { {SharpTail,L("floating regions")}, {Cantilever,L("floating cantilever")}, {LargeOverhang,L("large overhangs")} }; std::string warning_message = Slic3r::format(L("It seems object %s has %s. Please re-orient the object or enable support generation."), this->model_object()->name, reasons[sntype]); this->active_step_add_warning(PrintStateBase::WarningLevel::NON_CRITICAL, warning_message, PrintStateBase::SlicingNeedSupportOn); } #if 0 // Printing without supports. Empty layer means some objects or object parts are levitating, // therefore they cannot be printed without supports. for (const Layer *layer : m_layers) if (layer->empty()) throw Slic3r::SlicingError("Levitating objects cannot be printed without supports."); #endif } if ((this->has_support() && m_layers.size() > 1) || (this->has_raft() && !m_layers.empty())) { m_print->set_status(50, L("Generating support")); this->_generate_support_material(); m_print->throw_if_canceled(); } this->set_done(posSupportMaterial); } } void PrintObject::simplify_extrusion_path() { if (this->set_started(posSimplifyWall)) { m_print->set_status(75, L("Optimizing toolpath")); BOOST_LOG_TRIVIAL(debug) << "Simplify wall extrusion path of object in parallel - start"; //BBS: walls tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->simplify_wall_extrusion_path(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Simplify wall extrusion path of object in parallel - end"; this->set_done(posSimplifyWall); } if (this->set_started(posSimplifyInfill)) { m_print->set_status(75, L("Optimizing toolpath")); BOOST_LOG_TRIVIAL(debug) << "Simplify infill extrusion path of object in parallel - start"; //BBS: infills tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->simplify_infill_extrusion_path(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Simplify infill extrusion path of object in parallel - end"; this->set_done(posSimplifyInfill); } if (this->set_started(posSimplifySupportPath)) { //BBS: share same progress m_print->set_status(75, L("Optimizing toolpath")); BOOST_LOG_TRIVIAL(debug) << "Simplify extrusion path of support in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_support_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_support_layers[layer_idx]->simplify_support_extrusion_path(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Simplify extrusion path of support in parallel - end"; this->set_done(posSimplifySupportPath); } } std::pair PrintObject::prepare_adaptive_infill_data( const std::vector> &surfaces_w_bottom_z) const { using namespace FillAdaptive; auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this); if ((adaptive_line_spacing == 0. && support_line_spacing == 0.) || this->layers().empty()) return std::make_pair(OctreePtr(), OctreePtr()); indexed_triangle_set mesh = this->model_object()->raw_indexed_triangle_set(); // Rotate mesh and build octree on it with axis-aligned (standart base) cubes. auto to_octree = transform_to_octree().toRotationMatrix(); its_transform(mesh, to_octree * this->trafo_centered(), true); // Triangulate internal bridging surfaces. std::vector> overhangs(std::max(surfaces_w_bottom_z.size(), size_t(1))); // ^ make sure vector is not empty, even with no briding surfaces we still want to build the adaptive trees later, some continue normally tbb::parallel_for(tbb::blocked_range(0, surfaces_w_bottom_z.size()), [this, &to_octree, &overhangs, &surfaces_w_bottom_z](const tbb::blocked_range &range) { for (int surface_idx = range.begin(); surface_idx < range.end(); ++surface_idx) { std::vector &out = overhangs[surface_idx]; m_print->throw_if_canceled(); append(out, triangulate_expolygon_3d(surfaces_w_bottom_z[surface_idx].first->expolygon, surfaces_w_bottom_z[surface_idx].second)); for (Vec3d &p : out) p = (to_octree * p).eval(); } }); // and gather them. for (size_t i = 1; i < overhangs.size(); ++ i) append(overhangs.front(), std::move(overhangs[i])); return std::make_pair( adaptive_line_spacing ? build_octree(mesh, overhangs.front(), adaptive_line_spacing, false) : OctreePtr(), support_line_spacing ? build_octree(mesh, overhangs.front(), support_line_spacing, true) : OctreePtr()); } FillLightning::GeneratorPtr PrintObject::prepare_lightning_infill_data() { bool has_lightning_infill = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) if (const PrintRegionConfig& config = this->printing_region(region_id).config(); config.sparse_infill_density > 0 && config.sparse_infill_pattern == ipLightning) { has_lightning_infill = true; break; } return has_lightning_infill ? FillLightning::build_generator(std::as_const(*this), [this]() -> void { this->throw_if_canceled(); }) : FillLightning::GeneratorPtr(); } void PrintObject::clear_layers() { if (!m_shared_object) { for (Layer *l : m_layers) delete l; m_layers.clear(); } } Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z) { m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z)); return m_layers.back(); } const SupportLayer* PrintObject::get_support_layer_at_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z - epsilon; auto it = Slic3r::lower_bound_by_predicate(m_support_layers.begin(), m_support_layers.end(), [limit](const SupportLayer* layer) { return layer->print_z < limit; }); return (it == m_support_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it; } SupportLayer* PrintObject::get_support_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast(std::as_const(*this).get_support_layer_at_printz(print_z, epsilon)); } void PrintObject::clear_support_layers() { if (!m_shared_object) { for (SupportLayer* l : m_support_layers) delete l; m_support_layers.clear(); for (auto l : m_layers) { l->sharp_tails.clear(); l->sharp_tails_height.clear(); l->cantilevers.clear(); } } } std::shared_ptr PrintObject::alloc_tree_support_preview_cache() { if (!m_tree_support_preview_cache) { const coordf_t layer_height = m_config.layer_height.value; const coordf_t xy_distance = m_config.support_object_xy_distance.value; const double angle = m_config.tree_support_branch_angle.value * M_PI / 180.; const coordf_t max_move_distance = (angle < M_PI / 2) ? (coordf_t)(tan(angle) * layer_height) : std::numeric_limits::max(); const coordf_t radius_sample_resolution = g_config_tree_support_collision_resolution; m_tree_support_preview_cache = std::make_shared(*this, xy_distance, max_move_distance, radius_sample_resolution); } return m_tree_support_preview_cache; } SupportLayer* PrintObject::add_tree_support_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z) { m_support_layers.emplace_back(new SupportLayer(id, 0, this, height, print_z, slice_z)); m_support_layers.back()->support_type = stInnerTree; return m_support_layers.back(); } SupportLayer* PrintObject::add_support_layer(int id, int interface_id, coordf_t height, coordf_t print_z) { m_support_layers.emplace_back(new SupportLayer(id, interface_id, this, height, print_z, -1)); return m_support_layers.back(); } SupportLayerPtrs::iterator PrintObject::insert_support_layer(SupportLayerPtrs::iterator pos, size_t id, size_t interface_id, coordf_t height, coordf_t print_z, coordf_t slice_z) { return m_support_layers.insert(pos, new SupportLayer(id, interface_id, this, height, print_z, slice_z)); } // Called by Print::apply(). // This method only accepts PrintObjectConfig and PrintRegionConfig option keys. bool PrintObject::invalidate_state_by_config_options( const ConfigOptionResolver &old_config, const ConfigOptionResolver &new_config, const std::vector &opt_keys) { if (opt_keys.empty()) return false; std::vector steps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if ( opt_key == "brim_width" || opt_key == "brim_object_gap" || opt_key == "brim_type" // BBS: brim generation depends on printing speed || opt_key == "outer_wall_speed" || opt_key == "sparse_infill_speed" || opt_key == "inner_wall_speed" || opt_key == "support_speed" || opt_key == "internal_solid_infill_speed" || opt_key == "top_surface_speed") { // Brim is printed below supports, support invalidates brim and skirt. steps.emplace_back(posSupportMaterial); if (opt_key == "brim_type") { const auto* old_brim_type = old_config.option>(opt_key); const auto* new_brim_type = new_config.option>(opt_key); //BBS: When switch to manual brim, the object must have brim, then re-generate perimeter //to make the wall order of first layer to be outer-first if (old_brim_type->value == btOuterOnly || new_brim_type->value == btOuterOnly) steps.emplace_back(posPerimeters); } } else if ( opt_key == "wall_loops" || opt_key == "top_one_wall_type" || opt_key == "top_area_threshold" || opt_key == "only_one_wall_first_layer" || opt_key == "initial_layer_line_width" || opt_key == "inner_wall_line_width" || opt_key == "infill_wall_overlap") { steps.emplace_back(posPerimeters); } else if (opt_key == "gap_infill_speed" || opt_key == "filter_out_gap_fill") { // Return true if gap-fill speed has changed from zero value to non-zero or from non-zero value to zero. auto is_gap_fill_changed_state_due_to_speed = [&opt_key, &old_config, &new_config]() -> bool { if (opt_key == "gap_infill_speed") { const auto *old_gap_fill_speed = old_config.option(opt_key); const auto *new_gap_fill_speed = new_config.option(opt_key); assert(old_gap_fill_speed && new_gap_fill_speed); return (old_gap_fill_speed->value > 0.f && new_gap_fill_speed->value == 0.f) || (old_gap_fill_speed->value == 0.f && new_gap_fill_speed->value > 0.f); } return false; }; // Filtering of unprintable regions in multi-material segmentation depends on if gap-fill is enabled or not. // So step posSlice is invalidated when gap-fill was enabled/disabled by option "gap_fill_enabled" or by // changing "gap_infill_speed" to force recomputation of the multi-material segmentation. if (this->is_mm_painted() && ((opt_key == "gap_infill_speed" || opt_key == "filter_out_gap_fill") && is_gap_fill_changed_state_due_to_speed())) steps.emplace_back(posSlice); steps.emplace_back(posPerimeters); } else if ( opt_key == "layer_height" || opt_key == "mmu_segmented_region_max_width" || opt_key == "mmu_segmented_region_interlocking_depth" || opt_key == "raft_layers" || opt_key == "raft_contact_distance" || opt_key == "slice_closing_radius" || opt_key == "slicing_mode") { steps.emplace_back(posSlice); } else if ( opt_key == "elefant_foot_compensation" || opt_key == "support_top_z_distance" || opt_key == "support_bottom_z_distance" || opt_key == "xy_hole_compensation" || opt_key == "xy_contour_compensation") { steps.emplace_back(posSlice); } else if (opt_key == "enable_support") { steps.emplace_back(posSupportMaterial); if (m_config.support_top_z_distance == 0.) { // Enabling / disabling supports while soluble support interface is enabled. // This changes the bridging logic (bridging enabled without supports, disabled with supports). // Reset everything. // See GH #1482 for details. steps.emplace_back(posSlice); } } else if ( opt_key == "support_type" || opt_key == "support_angle" || opt_key == "support_on_build_plate_only" || opt_key == "support_critical_regions_only" || opt_key == "support_remove_small_overhang" || opt_key == "enforce_support_layers" || opt_key == "support_filament" || opt_key == "support_line_width" || opt_key == "support_interface_top_layers" || opt_key == "support_interface_bottom_layers" || opt_key == "support_interface_pattern" || opt_key == "support_interface_loop_pattern" || opt_key == "support_interface_filament" || opt_key == "support_interface_not_for_body" || opt_key == "support_interface_spacing" || opt_key == "support_bottom_interface_spacing" //BBS || opt_key == "support_base_pattern" || opt_key == "support_style" || opt_key == "support_object_xy_distance" || opt_key == "support_object_first_layer_gap" || opt_key == "support_base_pattern_spacing" || opt_key == "support_expansion" //|| opt_key == "independent_support_layer_height" // BBS || opt_key == "support_threshold_angle" || opt_key == "raft_expansion" || opt_key == "raft_first_layer_density" || opt_key == "raft_first_layer_expansion" || opt_key == "bridge_no_support" || opt_key == "max_bridge_length" || opt_key == "initial_layer_line_width" || opt_key == "tree_support_branch_distance" || opt_key == "tree_support_branch_diameter" || opt_key == "tree_support_branch_angle" || opt_key == "tree_support_wall_count") { steps.emplace_back(posSupportMaterial); } else if ( opt_key == "bottom_shell_layers" || opt_key == "top_shell_layers") { steps.emplace_back(posSlice); #if (0) const auto *old_shell_layers = old_config.option(opt_key); const auto *new_shell_layers = new_config.option(opt_key); assert(old_shell_layers && new_shell_layers); bool value_changed = (old_shell_layers->value == 0 && new_shell_layers->value > 0) || (old_shell_layers->value > 0 && new_shell_layers->value == 0); if (value_changed && this->object_extruders().size() > 1) { steps.emplace_back(posSlice); } else if (m_print->config().spiral_mode && opt_key == "bottom_shell_layers") { // Changing the number of bottom layers when a spiral vase is enabled requires re-slicing the object again. // Otherwise, holes in the bottom layers could be filled, as is reported in GH #5528. steps.emplace_back(posSlice); } #endif } else if ( opt_key == "interface_shells" || opt_key == "infill_combination" || opt_key == "bottom_shell_thickness" || opt_key == "top_shell_thickness" || opt_key == "minimum_sparse_infill_area" || opt_key == "sparse_infill_filament" || opt_key == "solid_infill_filament" || opt_key == "sparse_infill_line_width" || opt_key == "infill_direction" || opt_key == "ensure_vertical_shell_thickness" || opt_key == "bridge_angle" //BBS ) { steps.emplace_back(posPrepareInfill); } else if ( opt_key == "top_surface_pattern" || opt_key == "bottom_surface_pattern" || opt_key == "internal_solid_infill_pattern" || opt_key == "external_fill_link_max_length" || opt_key == "sparse_infill_anchor" || opt_key == "sparse_infill_anchor_max" || opt_key == "top_surface_line_width" || opt_key == "initial_layer_line_width") { steps.emplace_back(posInfill); } else if (opt_key == "sparse_infill_pattern") { steps.emplace_back(posPrepareInfill); } else if (opt_key == "sparse_infill_density") { // One likely wants to reslice only when switching between zero infill to simulate boolean difference (subtracting volumes), // normal infill and 100% (solid) infill. const auto *old_density = old_config.option(opt_key); const auto *new_density = new_config.option(opt_key); assert(old_density && new_density); //FIXME Vojtech is not quite sure about the 100% here, maybe it is not needed. if (is_approx(old_density->value, 0.) || is_approx(old_density->value, 100.) || is_approx(new_density->value, 0.) || is_approx(new_density->value, 100.)) steps.emplace_back(posPerimeters); steps.emplace_back(posPrepareInfill); } else if (opt_key == "internal_solid_infill_line_width") { // This value is used for calculating perimeter - infill overlap, thus perimeters need to be recalculated. steps.emplace_back(posPerimeters); steps.emplace_back(posPrepareInfill); } else if ( opt_key == "outer_wall_line_width" || opt_key == "wall_filament" || opt_key == "fuzzy_skin" || opt_key == "fuzzy_skin_thickness" || opt_key == "fuzzy_skin_point_distance" || opt_key == "detect_overhang_wall" //BBS || opt_key == "enable_overhang_speed" || opt_key == "detect_thin_wall") { steps.emplace_back(posPerimeters); steps.emplace_back(posSupportMaterial); } else if (opt_key == "bridge_flow") { if (m_config.support_top_z_distance > 0.) { // Only invalidate due to bridging if bridging is enabled. // If later "support_top_z_distance" is modified, the complete PrintObject is invalidated anyway. steps.emplace_back(posPerimeters); steps.emplace_back(posInfill); steps.emplace_back(posSupportMaterial); } } else if ( opt_key == "wall_generator" || opt_key == "wall_transition_length" || opt_key == "wall_transition_filter_deviation" || opt_key == "wall_transition_angle" || opt_key == "wall_distribution_count" || opt_key == "min_feature_size" || opt_key == "min_bead_width") { steps.emplace_back(posSlice); } else if ( opt_key == "seam_position" || opt_key == "seam_slope_type" || opt_key == "seam_slope_conditional" || opt_key == "scarf_angle_threshold" || opt_key == "seam_slope_start_height" || opt_key == "seam_slope_entire_loop" || opt_key == "seam_slope_min_length" || opt_key == "seam_slope_steps" || opt_key == "seam_slope_inner_walls" || opt_key == "seam_gap" || opt_key == "wipe_speed" || opt_key == "support_speed" || opt_key == "support_interface_speed" || opt_key == "smooth_speed_discontinuity_area" || opt_key == "smooth_coefficient" || opt_key == "overhang_1_4_speed" || opt_key == "overhang_2_4_speed" || opt_key == "overhang_3_4_speed" || opt_key == "overhang_4_4_speed" || opt_key == "overhang_totally_speed" || opt_key == "bridge_speed" || opt_key == "outer_wall_speed" || opt_key == "small_perimeter_speed" || opt_key == "small_perimeter_threshold" || opt_key == "sparse_infill_speed" || opt_key == "inner_wall_speed" || opt_key == "internal_solid_infill_speed" || opt_key == "top_surface_speed") { invalidated |= m_print->invalidate_step(psGCodeExport); } else if ( opt_key == "flush_into_infill" || opt_key == "flush_into_objects" || opt_key == "flush_into_support") { invalidated |= m_print->invalidate_step(psWipeTower); invalidated |= m_print->invalidate_step(psGCodeExport); } else { // for legacy, if we can't handle this option let's invalidate all steps this->invalidate_all_steps(); invalidated = true; } } sort_remove_duplicates(steps); for (PrintObjectStep step : steps) invalidated |= this->invalidate_step(step); return invalidated; } bool PrintObject::invalidate_step(PrintObjectStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == posPerimeters) { invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill, posIroning, posSimplifyWall, posSimplifyInfill }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); } else if (step == posPrepareInfill) { invalidated |= this->invalidate_steps({ posInfill, posIroning, posSimplifyWall, posSimplifyInfill }); } else if (step == posInfill) { invalidated |= this->invalidate_steps({ posIroning, posSimplifyInfill }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); } else if (step == posSlice) { invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posIroning, posSupportMaterial, posSimplifyWall, posSimplifyInfill }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); m_slicing_params.valid = false; } else if (step == posSupportMaterial) { invalidated |= this->invalidate_steps({ posSimplifySupportPath }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); m_slicing_params.valid = false; } // Wipe tower depends on the ordering of extruders, which in turn depends on everything. // It also decides about what the flush_into_infill / wipe_into_object / flush_into_support features will do, // and that too depends on many of the settings. invalidated |= m_print->invalidate_step(psWipeTower); // Invalidate G-code export in any case. invalidated |= m_print->invalidate_step(psGCodeExport); return invalidated; } bool PrintObject::invalidate_all_steps() { // First call the "invalidate" functions, which may cancel background processing. bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps(); // Then reset some of the depending values. m_slicing_params.valid = false; return result; } // This function analyzes slices of a region (SurfaceCollection slices). // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface. // Initially all slices are of type stInternal. // Slices are compared against the top / bottom slices and regions and classified to the following groups: // stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill. // stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft. // stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer. // stInternal - Part of a region, which is supported by the same region type. // If a part of a region is of stBottom and stTop, the stBottom wins. void PrintObject::detect_surfaces_type() { BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info(); // Interface shells: the intersecting parts are treated as self standing objects supporting each other. // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers // are completely hidden inside a collective body of intersecting parts. // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells // should be visible. bool spiral_mode = this->print()->config().spiral_mode.value; bool interface_shells = ! spiral_mode && m_config.interface_shells.value; size_t num_layers = spiral_mode ? std::min(size_t(this->printing_region(0).config().bottom_shell_layers), m_layers.size()) : m_layers.size(); for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " in parallel - start"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (Layer *layer : m_layers) layer->m_regions[region_id]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads. // Cache the result of the following parallel_loop. std::vector surfaces_new; if (interface_shells) surfaces_new.assign(num_layers, Surfaces()); tbb::parallel_for( tbb::blocked_range(0, spiral_mode ? // In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom. ((num_layers > 1) ? num_layers - 1 : num_layers) : // In non-spiral vase mode, go over all layers. m_layers.size()), [this, spiral_mode, region_id, interface_shells, &surfaces_new](const tbb::blocked_range& range) { // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating // the support from the print. // BBS: the above logic only applys for normal(auto) support. Complete logic: // 1. has support, top z distance=0 (soluble material), auto support // 2. for normal(auto), bridge_no_support is off // 3. for tree(auto), interface top layers=0, max bridge length=0, support_critical_regions_only=false (only in this way the bridge is fully supported) bool bottom_is_fully_supported = this->has_support() && m_config.support_top_z_distance.value == 0 && is_auto(m_config.support_type.value); if (m_config.support_type.value == stNormalAuto) bottom_is_fully_supported &= !m_config.bridge_no_support.value; else if (m_config.support_type.value == stTreeAuto) { bottom_is_fully_supported &= (m_config.support_interface_top_layers.value > 0 && m_config.max_bridge_length.value == 0 && m_config.support_critical_regions_only.value==false); } SurfaceType surface_type_bottom_other = bottom_is_fully_supported ? stBottom : stBottomBridge; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << region_id << " and layer " << layer->print_z; Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[region_id]; // comparison happens against the *full* slices (considering all regions) // unless internal shells are requested Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr; Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr; // collapse very narrow parts (using the safety offset in the diff is not enough) float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f; bool detect_top = spiral_mode || layerm->region().config().top_shell_layers; bool detect_bottom = spiral_mode || layerm->region().config().bottom_shell_layers; // find top surfaces (difference between current surfaces // of current layer and upper one) Surfaces top; if (detect_top) { if (upper_layer) { ExPolygons upper_slices = interface_shells ? diff_ex(layerm->slices.surfaces, upper_layer->m_regions[region_id]->slices.surfaces, ApplySafetyOffset::Yes) : diff_ex(layerm->slices.surfaces, upper_layer->lslices, ApplySafetyOffset::Yes); surfaces_append(top, opening_ex(upper_slices, offset), stTop); } else { // if no upper layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection top = layerm->slices.surfaces; for (Surface& surface : top) surface.surface_type = stTop; } } // Find bottom surfaces (difference between current surfaces of current layer and lower one). Surfaces bottom; if (detect_bottom) { if (lower_layer) { #if 0 //FIXME Why is this branch failing t\multi.t ? Polygons lower_slices = interface_shells ? to_polygons(lower_layer->get_region(region_id)->slices.surfaces) : to_polygons(lower_layer->slices); surfaces_append(bottom, opening_ex(diff(layerm->slices.surfaces, lower_slices, true), offset), surface_type_bottom_other); #else // Any surface lying on the void is a true bottom bridge (an overhang) surfaces_append( bottom, opening_ex( diff_ex(layerm->slices.surfaces, lower_layer->lslices, ApplySafetyOffset::Yes), offset), surface_type_bottom_other); // if user requested internal shells, we need to identify surfaces // lying on other slices not belonging to this region if (interface_shells) { // non-bridging bottom surfaces: any part of this layer lying // on something else, excluding those lying on our own region surfaces_append( bottom, opening_ex( diff_ex( intersection(layerm->slices.surfaces, lower_layer->lslices), // supported lower_layer->m_regions[region_id]->slices.surfaces, ApplySafetyOffset::Yes), offset), stBottom); } #endif } else { // if no lower layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection bottom = layerm->slices.surfaces; for (Surface& surface : bottom) surface.surface_type = stBottom; } } // now, if the object contained a thin membrane, we could have overlapping bottom // and top surfaces; let's do an intersection to discover them and consider them // as bottom surfaces (to allow for bridge detection) if (! top.empty() && ! bottom.empty()) { // Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom)); // Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping) // if $Slic3r::debug; Polygons top_polygons = to_polygons(std::move(top)); top.clear(); surfaces_append(top, diff_ex(top_polygons, bottom), stTop); } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static int iRun = 0; std::vector> expolygons_with_attributes; expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green"))); expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown"))); expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black"))); SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, region_id, layer->print_z).c_str(), expolygons_with_attributes); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // save surfaces to layer Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces; Surfaces surfaces_backup; if (! interface_shells) { surfaces_backup = std::move(surfaces_out); surfaces_out.clear(); } const Surfaces &surfaces_prev = interface_shells ? layerm->slices.surfaces : surfaces_backup; // find internal surfaces (difference between top/bottom surfaces and others) { Polygons topbottom = to_polygons(top); polygons_append(topbottom, to_polygons(bottom)); surfaces_append(surfaces_out, diff_ex(surfaces_prev, topbottom), stInternal); } surfaces_append(surfaces_out, std::move(top)); surfaces_append(surfaces_out, std::move(bottom)); // Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", // $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } } ); // for each layer of a region m_print->throw_if_canceled(); if (interface_shells) { // Move surfaces_new to layerm->slices.surfaces for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer) m_layers[idx_layer]->m_regions[region_id]->slices.surfaces = std::move(surfaces_new[idx_layer]); } if (spiral_mode) { if (num_layers > 1) // Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern. m_layers[num_layers - 1]->m_regions[region_id]->slices.set_type(stTop); for (size_t i = num_layers; i < m_layers.size(); ++ i) m_layers[i]->m_regions[region_id]->slices.set_type(stInternal); } BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - start"; // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces. tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, region_id](const tbb::blocked_range& range) { for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); LayerRegion *layerm = m_layers[idx_layer]->m_regions[region_id]; layerm->slices_to_fill_surfaces_clipped(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer of a region }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - end"; } // for each this->print->region_count // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.) m_typed_slices = true; } void PrintObject::process_external_surfaces() { BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info(); // Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand. std::vector surfaces_covered; // Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only // over voids, which are supported by the layer below. bool has_voids = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) if (this->printing_region(region_id).config().sparse_infill_density == 0) { has_voids = true; break; } if (has_voids && m_layers.size() > 1) { // All but stInternal fill surfaces will get expanded and possibly trimmed. std::vector layer_expansions_and_voids(m_layers.size(), false); for (size_t layer_idx = 1; layer_idx < m_layers.size(); ++ layer_idx) { const Layer *layer = m_layers[layer_idx]; bool expansions = false; bool voids = false; for (const LayerRegion *layerm : layer->regions()) { for (const Surface &surface : layerm->fill_surfaces.surfaces) { if (surface.surface_type == stInternal) voids = true; else expansions = true; if (voids && expansions) { layer_expansions_and_voids[layer_idx] = true; goto end; } } } end:; } BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start"; surfaces_covered.resize(m_layers.size() - 1, Polygons()); auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN)); tbb::parallel_for( tbb::blocked_range(0, m_layers.size() - 1), [this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) if (layer_expansions_and_voids[layer_idx + 1]) { m_print->throw_if_canceled(); Polygons voids; for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) { if (layerm->region().config().sparse_infill_density.value == 0.) for (const Surface &surface : layerm->fill_surfaces.surfaces) // Shrink the holes, let the layer above expand slightly inside the unsupported areas. polygons_append(voids, offset(surface.expolygon, unsupported_width)); } surfaces_covered[layer_idx] = diff(m_layers[layer_idx]->lslices, voids); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end"; } for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, &surfaces_covered, region_id](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z; m_layers[layer_idx]->get_region(int(region_id))->process_external_surfaces( (layer_idx == 0) ? nullptr : m_layers[layer_idx - 1], (layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end"; } } void PrintObject::discover_vertical_shells() { PROFILE_FUNC(); BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info(); struct DiscoverVerticalShellsCacheEntry { // Collected polygons, offsetted Polygons top_surfaces; Polygons bottom_surfaces; Polygons holes; }; bool spiral_mode = this->print()->config().spiral_mode.value; size_t num_layers = spiral_mode ? std::min(size_t(this->printing_region(0).config().bottom_shell_layers), m_layers.size()) : m_layers.size(); std::vector cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry()); bool top_bottom_surfaces_all_regions = this->num_printing_regions() > 1 && ! m_config.interface_shells.value; static constexpr float top_bottom_expansion_coeff = 0.05f; if (top_bottom_surfaces_all_regions) { // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness // is calculated over all materials. bool has_extra_layers = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { const PrintRegionConfig &config = this->printing_region(region_id).config(); if (config.ensure_vertical_shell_thickness.value) { has_extra_layers = true; break; } } if (! has_extra_layers) // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit. return; BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(num_layers / 16, size_t(1)); tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, &cache_top_botom_regions](const tbb::blocked_range& range) { const std::initializer_list surfaces_bottom{ stBottom, stBottomBridge }; const size_t num_regions = this->num_printing_regions(); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { m_print->throw_if_canceled(); const Layer& layer = *m_layers[idx_layer]; DiscoverVerticalShellsCacheEntry& cache = cache_top_botom_regions[idx_layer]; // Simulate single set of perimeters over all merged regions. float perimeter_offset = 0.f; float perimeter_min_spacing = FLT_MAX; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (size_t region_id = 0; region_id < num_regions; ++region_id) { LayerRegion& layerm = *layer.m_regions[region_id]; float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff; // Top surfaces. append(cache.top_surfaces, offset(layerm.slices.filter_by_type(stTop), top_bottom_expansion)); // append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion)); // Bottom surfaces. append(cache.bottom_surfaces, offset(layerm.slices.filter_by_types(surfaces_bottom), top_bottom_expansion)); // append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion)); // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only. // First find the maxium number of perimeters per region slice. unsigned int perimeters = 0; for (const Surface& s : layerm.slices.surfaces) perimeters = std::max(perimeters, s.extra_perimeters); perimeters += layerm.region().config().wall_loops.value; // Then calculate the infill offset. if (perimeters > 0) { Flow extflow = layerm.flow(frExternalPerimeter); Flow flow = layerm.flow(frPerimeter); perimeter_offset = std::max(perimeter_offset, 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing()); perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing()))); } polygons_append(cache.holes, to_polygons(layerm.fill_expolygons)); } // Save some computing time by reducing the number of polygons. cache.top_surfaces = union_(cache.top_surfaces); cache.bottom_surfaces = union_(cache.bottom_surfaces); // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print. if (perimeter_offset > 0.) { // The layer.lslices are forced to merge by expanding them first. polygons_append(cache.holes, offset2(layer.lslices, 0.3f * perimeter_min_spacing, -perimeter_offset - 0.3f * perimeter_min_spacing)); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices)); svg.draw(layer.lslices, "blue"); svg.draw(union_ex(cache.holes), "red"); svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } cache.holes = union_(cache.holes); }}); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom"; } for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { //FIXME Improve the heuristics for a grain size. const PrintRegion ®ion = this->printing_region(region_id); if (!region.config().ensure_vertical_shell_thickness.value) // This region will be handled by discover_horizontal_shells(). continue; size_t grain_size = std::max(num_layers / 16, size_t(1)); if (! top_bottom_surfaces_all_regions) { // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness // is calculated over a single material. BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : cache top / bottom"; tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, region_id, &cache_top_botom_regions](const tbb::blocked_range& range) { const std::initializer_list surfaces_bottom { stBottom, stBottomBridge }; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); Layer &layer = *m_layers[idx_layer]; LayerRegion &layerm = *layer.m_regions[region_id]; float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff; // Top surfaces. auto &cache = cache_top_botom_regions[idx_layer]; cache.top_surfaces = offset(layerm.slices.filter_by_type(stTop), top_bottom_expansion); // append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion)); // Bottom surfaces. cache.bottom_surfaces = offset(layerm.slices.filter_by_types(surfaces_bottom), top_bottom_expansion); // append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion)); // Holes over all regions. Only collect them once, they are valid for all region_id iterations. if (cache.holes.empty()) { for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) polygons_append(cache.holes, to_polygons(layer.regions()[region_id]->fill_expolygons)); } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end : cache top / bottom"; } BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : ensure vertical wall thickness"; grain_size = 1; tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, region_id, &cache_top_botom_regions] (const tbb::blocked_range& range) { // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++ debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[region_id]; const PrintRegionConfig ®ion_config = layerm->region().config(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-initial"); layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Flow solid_infill_flow = layerm->flow(frSolidInfill); coord_t infill_line_spacing = solid_infill_flow.scaled_spacing(); // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness. Polygons shell; Polygons holes; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING ExPolygons shell_ex; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f; #if 0 // #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box()); for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) { if (n < 0 || n >= (int)m_layers.size()) continue; ExPolygons &expolys = m_layers[n]->perimeter_expolygons; for (size_t i = 0; i < expolys.size(); ++ i) { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i])); svg.draw(expolys[i]); svg.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg.draw_outline(expolys[i].holes, "blue", scale_(0.05)); svg.Close(); svg_cummulative.draw(expolys[i]); svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05)); } } } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ polygons_append(holes, cache_top_botom_regions[idx_layer].holes); auto combine_holes = [&holes](const Polygons &holes2) { if (holes.empty() || holes2.empty()) holes.clear(); else holes = intersection(holes, holes2); }; auto combine_shells = [&shell](const Polygons &shells2) { if (shell.empty()) shell = std::move(shells2); else if (! shells2.empty()) { polygons_append(shell, shells2); // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. shell = union_(shell); } }; static constexpr const bool one_more_layer_below_top_bottom_surfaces = false; if (int n_top_layers = region_config.top_shell_layers.value; n_top_layers > 0) { // Gather top regions projected to this layer. coordf_t print_z = layer->print_z; int i = int(idx_layer) + 1; int itop = int(idx_layer) + n_top_layers; bool at_least_one_top_projected = false; for (; i < int(cache_top_botom_regions.size()) && (i < itop || m_layers[i]->print_z - print_z < region_config.top_shell_thickness - EPSILON); ++ i) { at_least_one_top_projected = true; const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; combine_holes(cache.holes); combine_shells(cache.top_surfaces); } if (!at_least_one_top_projected && i < int(cache_top_botom_regions.size())) { // Lets consider this a special case - with only 1 top solid and minimal shell thickness settings, the // boundaries of solid layers are not anchored over/under perimeters, so lets fix it by adding at least one // perimeter width of area Polygons anchor_area = intersection(expand(cache_top_botom_regions[idx_layer].top_surfaces, layerm->flow(frExternalPerimeter).scaled_spacing()), to_polygons(m_layers[i]->lslices)); combine_shells(anchor_area); } if (one_more_layer_below_top_bottom_surfaces) if (i < int(cache_top_botom_regions.size()) && (i <= itop || m_layers[i]->bottom_z() - print_z < region_config.top_shell_thickness - EPSILON)) combine_holes(cache_top_botom_regions[i].holes); } if (int n_bottom_layers = region_config.bottom_shell_layers.value; n_bottom_layers > 0) { // Gather bottom regions projected to this layer. coordf_t bottom_z = layer->bottom_z(); int i = int(idx_layer) - 1; int ibottom = int(idx_layer) - n_bottom_layers; bool at_least_one_bottom_projected = false; for (; i >= 0 && (i > ibottom || bottom_z - m_layers[i]->bottom_z() < region_config.bottom_shell_thickness - EPSILON); -- i) { at_least_one_bottom_projected = true; const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; combine_holes(cache.holes); combine_shells(cache.bottom_surfaces); } if (!at_least_one_bottom_projected && i >= 0) { Polygons anchor_area = intersection(expand(cache_top_botom_regions[idx_layer].bottom_surfaces, layerm->flow(frExternalPerimeter).scaled_spacing()), to_polygons(m_layers[i]->lslices)); combine_shells(anchor_area); } if (one_more_layer_below_top_bottom_surfaces) if (i >= 0 && (i > ibottom || bottom_z - m_layers[i]->print_z < region_config.bottom_shell_thickness - EPSILON)) combine_holes(cache_top_botom_regions[i].holes); } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell); svg.draw_outline(shell, "black", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 0 // shell = union_(shell, true); shell = union_(shell, false); #endif #ifdef SLIC3R_DEBUG_SLICE_PROCESSING shell_ex = union_safety_offset_ex(shell); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ //if (shell.empty()) // continue; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell_ex); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternal), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternal), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalsolid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternalSolid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalSolid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the shells region by the internal & internal void surfaces. const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types({ stInternal, stInternalVoid, stInternalSolid })); shell = intersection(shell, polygonsInternal, ApplySafetyOffset::Yes); polygons_append(shell, diff(polygonsInternal, holes)); if (shell.empty()) continue; // Append the internal solids, so they will be merged with the new ones. polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid))); // These regions will be filled by a rectilinear full infill. Currently this type of infill // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill, // make sure that this region does not contain parts narrower than the infill spacing width. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING Polygons shell_before = shell; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ ExPolygons regularized_shell; { // Open to remove (filter out) regions narrower than a bit less than an infill extrusion line width. // Such narrow regions are difficult to fill in with a gap fill algorithm (or Arachne), however they are most likely // not needed for print stability / quality. const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing; // Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill, // thus they will be merged into the solid infill. const float narrow_sparse_infill_region_radius = 0.5f * 1.2f * min_perimeter_infill_spacing; // Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions. const float tiny_overlap_radius = 0.2f * min_perimeter_infill_spacing; regularized_shell = shrink_ex(offset2_ex(union_ex(shell), // Open to remove (filter out) regions narrower than an infill extrusion line width. -narrow_ensure_vertical_wall_thickness_region_radius, // Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill. narrow_ensure_vertical_wall_thickness_region_radius + narrow_sparse_infill_region_radius, ClipperLib::jtSquare), // Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions. narrow_sparse_infill_region_radius - tiny_overlap_radius, ClipperLib::jtSquare); Polygons object_volume; Polygons internal_volume; { Polygons shrinked_bottom_slice = idx_layer > 0 ? to_polygons(m_layers[idx_layer - 1]->lslices) : Polygons{}; Polygons shrinked_upper_slice = (idx_layer + 1) < m_layers.size() ? to_polygons(m_layers[idx_layer + 1]->lslices) : Polygons{}; object_volume = intersection(shrinked_bottom_slice, shrinked_upper_slice); internal_volume = closing(polygonsInternal, float(SCALED_EPSILON)); } // The regularization operation may cause scattered tiny drops on the smooth parts of the model, filter them out // If the region checks both following conditions, it is removed: // 1. the area is very small, // OR the area is quite small and it is fully wrapped in model (not visible) // the in-model condition is there due to small sloping surfaces, e.g. top of the hull of the benchy // 2. the area does not fully cover an internal polygon // This is there mainly for a very thin parts, where the solid layers would be missing if the part area is quite small regularized_shell.erase(std::remove_if(regularized_shell.begin(), regularized_shell.end(), [&internal_volume, &min_perimeter_infill_spacing, &object_volume](const ExPolygon &p) { return (p.area() < min_perimeter_infill_spacing * scaled(1.5) || (p.area() < min_perimeter_infill_spacing * scaled(8.0) && diff(to_polygons(p), object_volume).empty())) && diff(internal_volume, expand(to_polygons(p), min_perimeter_infill_spacing)) .size() >= internal_volume.size(); }), regularized_shell.end()); } if (regularized_shell.empty()) continue; ExPolygons new_internal_solid = intersection_ex(polygonsInternal, regularized_shell); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before)); // Source shell. svg.draw(union_safety_offset_ex(shell_before)); // Shell trimmed to the internal surfaces. svg.draw_outline(union_safety_offset_ex(shell), "black", "blue", scale_(0.05)); // Regularized infill region. svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the internal & internalvoid by the shell. Slic3r::ExPolygons new_internal = diff_ex(layerm->fill_surfaces.filter_by_type(stInternal), regularized_shell); Slic3r::ExPolygons new_internal_void = diff_ex(layerm->fill_surfaces.filter_by_type(stInternalVoid), regularized_shell); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05)); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Assign resulting internal surfaces to layer. layerm->fill_surfaces.keep_types({ stTop, stBottom, stBottomBridge }); layerm->fill_surfaces.append(new_internal, stInternal); layerm->fill_surfaces.append(new_internal_void, stInternalVoid); layerm->fill_surfaces.append(new_internal_solid, stInternalSolid); } // for each layer }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) { LayerRegion *layerm = m_layers[idx_layer]->get_region(region_id); layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final"); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each region // Write the profiler measurements to file // PROFILE_UPDATE(); // PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str()); } #if 0 /* This method applies bridge flow to the first internal solid layer above sparse infill */ void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info(); for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); // skip bridging in case there are no voids if (region.config().sparse_infill_density.value == 100) continue; for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) { // skip first layer if (layer_it == m_layers.begin()) continue; Layer *layer = *layer_it; LayerRegion *layerm = layer->m_regions[region_id]; const PrintObjectConfig& object_config = layer->object()->config(); //BBS: enable thick bridge for internal bridge only Flow bridge_flow = layerm->bridging_flow(frSolidInfill, true); // extract the stInternalSolid surfaces that might be transformed into bridges Polygons internal_solid; layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid); // check whether the lower area is deep enough for absorbing the extra flow // (for obvious physical reasons but also for preventing the bridge extrudates // from overflowing in 3D preview) ExPolygons to_bridge; { Polygons to_bridge_pp = internal_solid; // iterate through lower layers spanned by bridge_flow double bottom_z = layer->print_z - bridge_flow.height() - EPSILON; for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) { const Layer* lower_layer = m_layers[i]; // stop iterating if layer is lower than bottom_z if (lower_layer->print_z < bottom_z) break; // iterate through regions and collect internal surfaces Polygons lower_internal; for (LayerRegion *lower_layerm : lower_layer->m_regions) lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal); // intersect such lower internal surfaces with the candidate solid surfaces to_bridge_pp = intersection(to_bridge_pp, lower_internal); } // BBS: expand to make avoid gap between bridge and inner wall to_bridge_pp = expand(to_bridge_pp, bridge_flow.scaled_width()); to_bridge_pp = intersection(to_bridge_pp, internal_solid); // there's no point in bridging too thin/short regions //FIXME Vojtech: The offset2 function is not a geometric offset, // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour. // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer. { float min_width = float(bridge_flow.scaled_width()) * 3.f; to_bridge_pp = opening(to_bridge_pp, min_width); } if (to_bridge_pp.empty()) continue; // convert into ExPolygons to_bridge = union_ex(to_bridge_pp); } #ifdef SLIC3R_DEBUG printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id()); #endif // compute the remaning internal solid surfaces as difference ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, ApplySafetyOffset::Yes); to_bridge = intersection_ex(to_bridge, internal_solid, ApplySafetyOffset::Yes); // build the new collection of fill_surfaces layerm->fill_surfaces.remove_type(stInternalSolid); for (ExPolygon &ex : to_bridge) { layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex)); // BBS: detect angle for internal bridge infill InternalBridgeDetector ibd(ex, layerm->fill_no_overlap_expolygons, bridge_flow.scaled_spacing()); if (ibd.detect_angle()) { (layerm->fill_surfaces.surfaces.end() - 1)->bridge_angle = ibd.angle; } } for (ExPolygon &ex : not_to_bridge) layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex)); //BBS: modify stInternal to be stInternalWithLoop to give better support to internal bridge if (!to_bridge.empty()){ float internal_loop_thickness = object_config.internal_bridge_support_thickness.value; double bottom_z = layer->print_z - layer->height - internal_loop_thickness + EPSILON; //BBS: lighting infill doesn't support this feature. Don't need to add loop when infill density is high than 50% if (region.config().sparse_infill_pattern != InfillPattern::ipLightning && region.config().sparse_infill_density.value < 50) for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) { const Layer* lower_layer = m_layers[i]; if (lower_layer->print_z < bottom_z) break; for (LayerRegion* lower_layerm : lower_layer->m_regions) { Polygons lower_internal; lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal); ExPolygons internal_with_loop = intersection_ex(lower_internal, to_bridge); ExPolygons internal = diff_ex(lower_internal, to_bridge); if (internal_with_loop.empty()) { //BBS: don't need to do anything } else if (internal.empty()) { lower_layerm->fill_surfaces.change_to_new_type(stInternal, stInternalWithLoop); } else { lower_layerm->fill_surfaces.remove_type(stInternal); for (ExPolygon& ex : internal_with_loop) lower_layerm->fill_surfaces.surfaces.push_back(Surface(stInternalWithLoop, ex)); for (ExPolygon& ex : internal) lower_layerm->fill_surfaces.surfaces.push_back(Surface(stInternal, ex)); } } } } /* # exclude infill from the layers below if needed # see discussion at https://github.com/alexrj/Slic3r/issues/240 # Update: do not exclude any infill. Sparse infill is able to absorb the excess material. if (0) { my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height; for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) { Slic3r::debugf " skipping infill below those areas at layer %d\n", $i; foreach my $lower_layerm (@{$self->get_layer($i)->regions}) { my @new_surfaces = (); # subtract the area from all types of surfaces foreach my $group (@{$lower_layerm->fill_surfaces->group}) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => stInternalVoid, ), @{intersection_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; } $lower_layerm->fill_surfaces->clear; $lower_layerm->fill_surfaces->append($_) for @new_surfaces; } $excess -= $self->get_layer($i)->height; } } */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("7_bridge_over_infill"); layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ m_print->throw_if_canceled(); } } } #else // This method applies bridge flow to the first internal solid layer above sparse infill. // This method applies bridge flow to the first internal solid layer above sparse infill. //该方法将桥流应用于稀疏填充物上方的第一个内部固体层。 void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info(); struct CandidateSurface { CandidateSurface(const Surface *original_surface, int layer_index, Polygons new_polys, const LayerRegion *region, double bridge_angle) : original_surface(original_surface) , layer_index(layer_index) , new_polys(new_polys) , region(region) , bridge_angle(bridge_angle) {} const Surface *original_surface; int layer_index; Polygons new_polys; const LayerRegion *region; double bridge_angle; }; std::map> surfaces_by_layer; // SECTION to gather and filter surfaces for expanding, and then cluster them by layer { tbb::concurrent_vector candidate_surfaces; tbb::parallel_for(tbb::blocked_range(0, this->layers().size()), [po = static_cast(this), &candidate_surfaces](tbb::blocked_range r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { const Layer *layer = po->get_layer(lidx); if (layer->lower_layer == nullptr) { continue; } double spacing = layer->regions().front()->flow(frSolidInfill).scaled_spacing(); // unsupported area will serve as a filter for polygons worth bridging. Polygons unsupported_area; Polygons lower_layer_solids; for (const LayerRegion *region : layer->lower_layer->regions()) { Polygons fill_polys = to_polygons(region->fill_expolygons); // initially consider the whole layer unsupported, but also gather solid layers to later cut off supported parts unsupported_area.insert(unsupported_area.end(), fill_polys.begin(), fill_polys.end()); for (const Surface &surface : region->fill_surfaces.surfaces) { if (surface.surface_type != stInternal || region->region().config().sparse_infill_density.value == 100) { Polygons p = to_polygons(surface.expolygon); lower_layer_solids.insert(lower_layer_solids.end(), p.begin(), p.end()); } } } unsupported_area = closing(unsupported_area, float(SCALED_EPSILON)); // By expanding the lower layer solids, we avoid making bridges from the tiny internal overhangs that are (very likely) supported by previous layer solids // NOTE that we cannot filter out polygons worth bridging by their area, because sometimes there is a very small internal island that will grow into large hole lower_layer_solids = shrink(lower_layer_solids, 1 * spacing); // first remove thin regions that will not support anything lower_layer_solids = expand(lower_layer_solids, (1 + 3) * spacing); // then expand back (opening), and further for parts supported by internal solids // By shrinking the unsupported area, we avoid making bridges from narrow ensuring region along perimeters. unsupported_area = shrink(unsupported_area, 3 * spacing); unsupported_area = diff(unsupported_area, lower_layer_solids); for (LayerRegion *region : layer->regions()) { SurfacesPtr region_internal_solids = region->fill_surfaces.filter_by_type(stInternalSolid); for (const Surface *s : region_internal_solids) { Polygons unsupported = intersection(to_polygons(s->expolygon), unsupported_area); // The following flag marks those surfaces, which overlap with unuspported area, but at least part of them is supported. // These regions can be filtered by area, because they for sure are touching solids on lower layers, and it does not make sense to bridge their tiny overhangs bool partially_supported = area(unsupported) < area(to_polygons(s->expolygon)) - EPSILON; if (!unsupported.empty() && (!partially_supported || area(unsupported) > 3 * 3 * spacing * spacing)) { Polygons worth_bridging = intersection(to_polygons(s->expolygon), expand(unsupported, 4 * spacing)); // after we extracted the part worth briding, we go over the leftovers and merge the tiny ones back, to not brake the surface too much for (const Polygon& p : diff(to_polygons(s->expolygon), expand(worth_bridging, spacing))) { double area = p.area(); if (area < spacing * scale_(12.0) && area > spacing * spacing) { worth_bridging.push_back(p); } } worth_bridging = intersection(closing(worth_bridging, float(SCALED_EPSILON)), s->expolygon); candidate_surfaces.push_back(CandidateSurface(s, lidx, worth_bridging, region, 0)); #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(lidx) + "_candidate_surface_" + std::to_string(area(s->expolygon)), to_lines(region->layer()->lslices), to_lines(s->expolygon), to_lines(worth_bridging), to_lines(unsupported_area)); #endif #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(lidx) + "_candidate_processing_" + std::to_string(area(unsupported)), to_lines(unsupported), to_lines(intersection(to_polygons(s->expolygon), expand(unsupported, 5 * spacing))), to_lines(diff(to_polygons(s->expolygon), expand(worth_bridging, spacing))), to_lines(unsupported_area)); #endif } } } } }); for (const CandidateSurface &c : candidate_surfaces) { surfaces_by_layer[c.layer_index].push_back(c); } } // LIGHTNING INFILL SECTION - If lightning infill is used somewhere, we check the areas that are going to be bridges, and those that rely on the // lightning infill under them get expanded. This somewhat helps to ensure that most of the extrusions are anchored to the lightning infill at the ends. // It requires modifying this instance of print object in a specific way, so that we do not invalidate the pointers in our surfaces_by_layer structure. bool has_lightning_infill = false; for (size_t i = 0; i < this->num_printing_regions(); i++) { if (this->printing_region(i).config().sparse_infill_pattern == ipLightning) { has_lightning_infill = true; break; } } if (has_lightning_infill) { // Prepare backup data for the Layer Region infills. Before modfiyng the layer region, we backup its fill surfaces by moving! them into this map. // then a copy is created, modifiyed and passed to lightning infill generator. After generator is created, we restore the original state of the fills // again by moving the data from this map back to the layer regions. This ensures that pointers to surfaces stay valid. std::map> backup_surfaces; for (size_t lidx = 0; lidx < this->layer_count(); lidx++) { backup_surfaces[lidx] = {}; } tbb::parallel_for(tbb::blocked_range(0, this->layers().size()), [po = this, &backup_surfaces, &surfaces_by_layer](tbb::blocked_range r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end()) continue; Layer *layer = po->get_layer(lidx); const Layer *lower_layer = layer->lower_layer; if (lower_layer == nullptr) continue; Polygons lightning_fill; for (LayerRegion *region : lower_layer->regions()) { if (region->region().config().sparse_infill_pattern == ipLightning) { Polygons lf = to_polygons(region->fill_surfaces.filter_by_type(stInternal)); lightning_fill.insert(lightning_fill.end(), lf.begin(), lf.end()); } } if (lightning_fill.empty()) continue; for (LayerRegion *region : layer->regions()) { backup_surfaces[lidx][region] = std::move( region->fill_surfaces); // Make backup copy by move!! so that pointers in candidate surfaces stay valid // Copy the surfaces back, this will make copy, but we will later discard it anyway region->fill_surfaces = backup_surfaces[lidx][region]; } for (LayerRegion *region : layer->regions()) { ExPolygons sparse_infill = to_expolygons(region->fill_surfaces.filter_by_type(stInternal)); ExPolygons solid_infill = to_expolygons(region->fill_surfaces.filter_by_type(stInternalSolid)); if (sparse_infill.empty()) { break; } for (const auto &surface : surfaces_by_layer[lidx]) { if (surface.region != region) continue; ExPolygons expansion = intersection_ex(sparse_infill, expand(surface.new_polys, scaled(3.0))); solid_infill.insert(solid_infill.end(), expansion.begin(), expansion.end()); } solid_infill = union_safety_offset_ex(solid_infill); sparse_infill = diff_ex(sparse_infill, solid_infill); region->fill_surfaces.remove_types({stInternalSolid, stInternal}); for (const ExPolygon &ep : solid_infill) { region->fill_surfaces.surfaces.emplace_back(stInternalSolid, ep); } for (const ExPolygon &ep : sparse_infill) { region->fill_surfaces.surfaces.emplace_back(stInternal, ep); } } } }); // Use the modified surfaces to generate expanded lightning anchors this->m_lightning_generator = this->prepare_lightning_infill_data(); // And now restore carefully the original surfaces, again using move to avoid reallocation and preserving the validity of the // pointers in surface candidates for (size_t lidx = 0; lidx < this->layer_count(); lidx++) { Layer *layer = this->get_layer(lidx); for (LayerRegion *region : layer->regions()) { if (backup_surfaces[lidx].find(region) != backup_surfaces[lidx].end()) { region->fill_surfaces = std::move(backup_surfaces[lidx][region]); } } } } std::map infill_lines; // SECTION to generate infill polylines { std::vector> surfaces_w_bottom_z; for (const auto &pair : surfaces_by_layer) { for (const CandidateSurface &c : pair.second) { surfaces_w_bottom_z.emplace_back(c.original_surface, c.region->m_layer->bottom_z()); } } this->m_adaptive_fill_octrees = this->prepare_adaptive_infill_data(surfaces_w_bottom_z); std::vector layers_to_generate_infill; for (const auto &pair : surfaces_by_layer) { assert(pair.first > 0); infill_lines[pair.first - 1] = {}; layers_to_generate_infill.push_back(pair.first - 1); } tbb::parallel_for(tbb::blocked_range(0, layers_to_generate_infill.size()), [po = static_cast(this), &layers_to_generate_infill, &infill_lines](tbb::blocked_range r) { for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) { size_t lidx = layers_to_generate_infill[job_idx]; infill_lines.at( lidx) = po->get_layer(lidx)->generate_sparse_infill_polylines_for_anchoring(po->m_adaptive_fill_octrees.first.get(), po->m_adaptive_fill_octrees.second.get(), po->m_lightning_generator.get()); } }); #ifdef DEBUG_BRIDGE_OVER_INFILL for (const auto &il : infill_lines) { debug_draw(std::to_string(il.first) + "_infill_lines", to_lines(get_layer(il.first)->lslices), to_lines(il.second), {}, {}); } #endif } // cluster layers by depth needed for thick bridges. Each cluster is to be processed by single thread sequentially, so that bridges cannot appear one on another std::vector> clustered_layers_for_threads; float target_flow_height_factor = 0.9f; { std::vector layers_with_candidates; std::map layer_area_covered_by_candidates; for (const auto& pair : surfaces_by_layer) { layers_with_candidates.push_back(pair.first); layer_area_covered_by_candidates[pair.first] = {}; } // prepare inflated filter for each candidate on each layer. layers will be put into single thread cluster if they are close to each other (z-axis-wise) // and if the inflated AABB polygons overlap somewhere tbb::parallel_for(tbb::blocked_range(0, layers_with_candidates.size()), [&layers_with_candidates, &surfaces_by_layer, &layer_area_covered_by_candidates]( tbb::blocked_range r) { for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) { size_t lidx = layers_with_candidates[job_idx]; for (const auto &candidate : surfaces_by_layer.at(lidx)) { Polygon candiate_inflated_aabb = get_extents(candidate.new_polys).inflated(scale_(7)).polygon(); layer_area_covered_by_candidates.at(lidx) = union_(layer_area_covered_by_candidates.at(lidx), Polygons{candiate_inflated_aabb}); } } }); // note: surfaces_by_layer is ordered map for (auto pair : surfaces_by_layer) { if (clustered_layers_for_threads.empty() || this->get_layer(clustered_layers_for_threads.back().back())->print_z < this->get_layer(pair.first)->print_z - this->get_layer(pair.first)->regions()[0]->bridging_flow(frSolidInfill, true).height() * target_flow_height_factor - EPSILON || intersection(layer_area_covered_by_candidates[clustered_layers_for_threads.back().back()], layer_area_covered_by_candidates[pair.first]) .empty()) { clustered_layers_for_threads.push_back({pair.first}); } else { clustered_layers_for_threads.back().push_back(pair.first); } } #ifdef DEBUG_BRIDGE_OVER_INFILL std::cout << "BRIDGE OVER INFILL CLUSTERED LAYERS FOR SINGLE THREAD" << std::endl; for (auto cluster : clustered_layers_for_threads) { std::cout << "CLUSTER: "; for (auto l : cluster) { std::cout << l << " "; } std::cout << std::endl; } #endif } // LAMBDA to gather areas with sparse infill deep enough that we can fit thick bridges there. auto gather_areas_w_depth = [target_flow_height_factor](const PrintObject *po, int lidx, float target_flow_height) { // Gather layers sparse infill areas, to depth defined by used bridge flow ExPolygons layers_sparse_infill{}; ExPolygons not_sparse_infill{}; double bottom_z = po->get_layer(lidx)->print_z - target_flow_height * target_flow_height_factor - EPSILON; for (int i = int(lidx) - 1; i >= 0; --i) { // Stop iterating if layer is lower than bottom_z and at least one iteration was made const Layer *layer = po->get_layer(i); if (layer->print_z < bottom_z && i < int(lidx) - 1) break; for (const LayerRegion *region : layer->regions()) { bool has_low_density = region->region().config().sparse_infill_density.value < 100; for (const Surface &surface : region->fill_surfaces.surfaces) { if ((surface.surface_type == stInternal && has_low_density) || surface.surface_type == stInternalVoid ) { layers_sparse_infill.push_back(surface.expolygon); } else { not_sparse_infill.push_back(surface.expolygon); } } } } layers_sparse_infill = union_ex(layers_sparse_infill); layers_sparse_infill = closing_ex(layers_sparse_infill, float(SCALED_EPSILON)); not_sparse_infill = union_ex(not_sparse_infill); not_sparse_infill = closing_ex(not_sparse_infill, float(SCALED_EPSILON)); return diff(layers_sparse_infill, not_sparse_infill); }; // LAMBDA do determine optimal bridging angle auto determine_bridging_angle = [](const Polygons &bridged_area, const Lines &anchors, InfillPattern dominant_pattern, double infill_direction) { AABBTreeLines::LinesDistancer lines_tree(anchors); // Check it the infill that require a fixed infill angle. switch (dominant_pattern) { case ip3DHoneycomb: case ipCrossHatch: return (infill_direction + 45.0) * 2.0 * M_PI / 360.; default: break; } std::map counted_directions; for (const Polygon &p : bridged_area) { double acc_distance = 0; for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) { Vec2d start = p.points[point_idx].cast(); Vec2d next = p.points[point_idx + 1].cast(); Vec2d v = next - start; // vector from next to current double dist_to_next = v.norm(); acc_distance += dist_to_next; if (acc_distance > scaled(2.0)) { acc_distance = 0.0; v.normalize(); int lines_count = int(std::ceil(dist_to_next / scaled(2.0))); float step_size = dist_to_next / lines_count; for (int i = 0; i < lines_count; ++i) { Point a = (start + v * (i * step_size)).cast(); auto [distance, index, p] = lines_tree.distance_from_lines_extra(a); double angle = lines_tree.get_line(index).orientation(); if (angle > PI) { angle -= PI; } angle += PI * 0.5; counted_directions[angle]++; } } } } std::pair best_dir{0, 0}; // sliding window accumulation for (const auto &dir : counted_directions) { int score_acc = 0; double dir_acc = 0; double window_start_angle = dir.first - PI * 0.1; double window_end_angle = dir.first + PI * 0.1; for (auto dirs_window = counted_directions.lower_bound(window_start_angle); dirs_window != counted_directions.upper_bound(window_end_angle); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } // current span of directions is 0.5 PI to 1.5 PI (due to the aproach.). Edge values should also account for the // opposite direction. if (window_start_angle < 0.5 * PI) { for (auto dirs_window = counted_directions.lower_bound(1.5 * PI - (0.5 * PI - window_start_angle)); dirs_window != counted_directions.end(); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } } if (window_start_angle > 1.5 * PI) { for (auto dirs_window = counted_directions.begin(); dirs_window != counted_directions.upper_bound(window_start_angle - 1.5 * PI); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } } if (score_acc > best_dir.second) { best_dir = {dir_acc / score_acc, score_acc}; } } double bridging_angle = best_dir.first; if (bridging_angle == 0) { bridging_angle = 0.001; } switch (dominant_pattern) { case ipHilbertCurve: bridging_angle += 0.25 * PI; break; case ipOctagramSpiral: bridging_angle += (1.0 / 16.0) * PI; break; default: break; } return bridging_angle; }; // LAMBDA that will fill given polygons with lines, exapand the lines to the nearest anchor, and reconstruct polygons from the newly // generated lines auto construct_anchored_polygon = [](Polygons bridged_area, Lines anchors, const Flow &bridging_flow, double bridging_angle) { auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) { for (Line &l : lines) { double ax = double(l.a.x()); double ay = double(l.a.y()); l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay)); l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax)); double bx = double(l.b.x()); double by = double(l.b.y()); l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by)); l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx)); } }; auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) { return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) || (bhigh >= alow && bhigh <= ahigh); }; Polygons expanded_bridged_area{}; double aligning_angle = -bridging_angle + PI * 0.5; { polygons_rotate(bridged_area, aligning_angle); lines_rotate(anchors, cos(aligning_angle), sin(aligning_angle)); BoundingBox bb_x = get_extents(bridged_area); BoundingBox bb_y = get_extents(anchors); const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + bridging_flow.scaled_spacing() - 1) / bridging_flow.scaled_spacing(); std::vector vertical_lines(n_vlines); for (size_t i = 0; i < n_vlines; i++) { coord_t x = bb_x.min.x() + i * bridging_flow.scaled_spacing(); coord_t y_min = bb_y.min.y() - bridging_flow.scaled_spacing(); coord_t y_max = bb_y.max.y() + bridging_flow.scaled_spacing(); vertical_lines[i].a = Point{x, y_min}; vertical_lines[i].b = Point{x, y_max}; } auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer{std::move(anchors)}; auto bridged_area_tree = AABBTreeLines::LinesDistancer{to_lines(bridged_area)}; std::vector> polygon_sections(n_vlines); for (size_t i = 0; i < n_vlines; i++) { auto area_intersections = bridged_area_tree.intersections_with_line(vertical_lines[i]); for (int intersection_idx = 0; intersection_idx < int(area_intersections.size()) - 1; intersection_idx++) { if (bridged_area_tree.outside( (area_intersections[intersection_idx].first + area_intersections[intersection_idx + 1].first) / 2) < 0) { polygon_sections[i].emplace_back(area_intersections[intersection_idx].first, area_intersections[intersection_idx + 1].first); } } auto anchors_intersections = anchors_and_walls_tree.intersections_with_line(vertical_lines[i]); for (Line §ion : polygon_sections[i]) { auto maybe_below_anchor = std::upper_bound(anchors_intersections.rbegin(), anchors_intersections.rend(), section.a, [](const Point &a, const std::pair &b) { return a.y() > b.first.y(); }); if (maybe_below_anchor != anchors_intersections.rend()) { section.a = maybe_below_anchor->first; section.a.y() -= bridging_flow.scaled_width() * (0.5 + 0.5); } auto maybe_upper_anchor = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), section.b, [](const Point &a, const std::pair &b) { return a.y() < b.first.y(); }); if (maybe_upper_anchor != anchors_intersections.end()) { section.b = maybe_upper_anchor->first; section.b.y() += bridging_flow.scaled_width() * (0.5 + 0.5); } } for (int section_idx = 0; section_idx < int(polygon_sections[i].size()) - 1; section_idx++) { Line §ion_a = polygon_sections[i][section_idx]; Line §ion_b = polygon_sections[i][section_idx + 1]; if (segments_overlap(section_a.a.y(), section_a.b.y(), section_b.a.y(), section_b.b.y())) { section_b.a = section_a.a.y() < section_b.a.y() ? section_a.a : section_b.a; section_b.b = section_a.b.y() < section_b.b.y() ? section_b.b : section_a.b; section_a.a = section_a.b; } } polygon_sections[i].erase(std::remove_if(polygon_sections[i].begin(), polygon_sections[i].end(), [](const Line &s) { return s.a == s.b; }), polygon_sections[i].end()); std::sort(polygon_sections[i].begin(), polygon_sections[i].end(), [](const Line &a, const Line &b) { return a.a.y() < b.b.y(); }); } // reconstruct polygon from polygon sections struct TracedPoly { Points lows; Points highs; }; std::vector current_traced_polys; for (const auto &polygon_slice : polygon_sections) { std::unordered_set used_segments; for (TracedPoly &traced_poly : current_traced_polys) { auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(), [](const Point &low, const Line &seg) { return seg.b.y() > low.y(); }); auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(), [](const Point &high, const Line &seg) { return seg.a.y() > high.y(); }); bool segment_added = false; for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) { if (used_segments.find(&(*candidate)) != used_segments.end()) { continue; } if ((traced_poly.lows.back() - candidate->a).cast().squaredNorm() < 36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) { traced_poly.lows.push_back(candidate->a); } else { traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.lows.push_back(candidate->a - Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.lows.push_back(candidate->a); } if ((traced_poly.highs.back() - candidate->b).cast().squaredNorm() < 36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) { traced_poly.highs.push_back(candidate->b); } else { traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(candidate->b - Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(candidate->b); } segment_added = true; used_segments.insert(&(*candidate)); } if (!segment_added) { // Zero overlapping segments, we just close this polygon traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); traced_poly.lows.clear(); traced_poly.highs.clear(); } } current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(), [](const TracedPoly &tp) { return tp.lows.empty(); }), current_traced_polys.end()); for (const auto &segment : polygon_slice) { if (used_segments.find(&segment) == used_segments.end()) { TracedPoly &new_tp = current_traced_polys.emplace_back(); new_tp.lows.push_back(segment.a - Point{bridging_flow.scaled_spacing() / 2, 0}); new_tp.lows.push_back(segment.a); new_tp.highs.push_back(segment.b - Point{bridging_flow.scaled_spacing() / 2, 0}); new_tp.highs.push_back(segment.b); } } } // add not closed polys for (TracedPoly &traced_poly : current_traced_polys) { Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); } expanded_bridged_area = union_safety_offset(expanded_bridged_area); } polygons_rotate(expanded_bridged_area, -aligning_angle); return expanded_bridged_area; }; tbb::parallel_for(tbb::blocked_range(0, clustered_layers_for_threads.size()), [po = static_cast(this), target_flow_height_factor, &surfaces_by_layer, &clustered_layers_for_threads, gather_areas_w_depth, &infill_lines, determine_bridging_angle, construct_anchored_polygon]( tbb::blocked_range r) { for (size_t cluster_idx = r.begin(); cluster_idx < r.end(); cluster_idx++) { for (size_t job_idx = 0; job_idx < clustered_layers_for_threads[cluster_idx].size(); job_idx++) { size_t lidx = clustered_layers_for_threads[cluster_idx][job_idx]; const Layer *layer = po->get_layer(lidx); // this thread has exclusive access to all surfaces in layers enumerated in // clustered_layers_for_threads[cluster_idx] // Presort the candidate polygons. This will help choose the same angle for neighbournig surfaces, that // would otherwise compete over anchoring sparse infill lines, leaving one area unachored std::sort(surfaces_by_layer[lidx].begin(), surfaces_by_layer[lidx].end(), [](const CandidateSurface &left, const CandidateSurface &right) { auto a = get_extents(left.new_polys); auto b = get_extents(right.new_polys); if (a.min.x() == b.min.x()) { return a.min.y() < b.min.y(); }; return a.min.x() < b.min.x(); }); if (surfaces_by_layer[lidx].size() > 2) { Vec2d origin = get_extents(surfaces_by_layer[lidx].front().new_polys).max.cast(); std::stable_sort(surfaces_by_layer[lidx].begin() + 1, surfaces_by_layer[lidx].end(), [origin](const CandidateSurface &left, const CandidateSurface &right) { auto a = get_extents(left.new_polys); auto b = get_extents(right.new_polys); return (origin - a.min.cast()).squaredNorm() < (origin - b.min.cast()).squaredNorm(); }); } // Gather deep infill areas, where thick bridges fit coordf_t spacing = surfaces_by_layer[lidx].front().region->bridging_flow(frSolidInfill, true).scaled_spacing(); coordf_t target_flow_height = surfaces_by_layer[lidx].front().region->bridging_flow(frSolidInfill, true).height() * target_flow_height_factor; Polygons deep_infill_area = gather_areas_w_depth(po, lidx, target_flow_height); { // Now also remove area that has been already filled on lower layers by bridging expansion - For this // reason we did the clustering of layers per thread. Polygons filled_polyons_on_lower_layers; double bottom_z = layer->print_z - target_flow_height - EPSILON; if (job_idx > 0) { for (int lower_job_idx = job_idx - 1; lower_job_idx >= 0; lower_job_idx--) { size_t lower_layer_idx = clustered_layers_for_threads[cluster_idx][lower_job_idx]; const Layer *lower_layer = po->get_layer(lower_layer_idx); if (lower_layer->print_z >= bottom_z) { for (const auto &c : surfaces_by_layer[lower_layer_idx]) { filled_polyons_on_lower_layers.insert(filled_polyons_on_lower_layers.end(), c.new_polys.begin(), c.new_polys.end()); } } else { break; } } } deep_infill_area = diff(deep_infill_area, filled_polyons_on_lower_layers); } deep_infill_area = expand(deep_infill_area, spacing * 1.5); // Now gather expansion polygons - internal infill on current layer, from which we can cut off anchors Polygons lightning_area; Polygons expansion_area; Polygons total_fill_area; Polygons top_area; for (LayerRegion *region : layer->regions()) { Polygons internal_polys = to_polygons(region->fill_surfaces.filter_by_types({stInternal, stInternalSolid})); expansion_area.insert(expansion_area.end(), internal_polys.begin(), internal_polys.end()); Polygons fill_polys = to_polygons(region->fill_expolygons); total_fill_area.insert(total_fill_area.end(), fill_polys.begin(), fill_polys.end()); Polygons top_polys = to_polygons(region->fill_surfaces.filter_by_type(stTop)); top_area.insert(top_area.end(), top_polys.begin(), top_polys.end()); if (region->region().config().sparse_infill_pattern == ipLightning) { Polygons l = to_polygons(region->fill_surfaces.filter_by_type(stInternal)); lightning_area.insert(lightning_area.end(), l.begin(), l.end()); } } total_fill_area = closing(total_fill_area, float(SCALED_EPSILON)); expansion_area = closing(expansion_area, float(SCALED_EPSILON)); expansion_area = intersection(expansion_area, deep_infill_area); Polylines anchors = intersection_pl(infill_lines[lidx - 1], shrink(expansion_area, spacing)); Polygons internal_unsupported_area = shrink(deep_infill_area, spacing * 4.5); #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" + "_total_area", to_lines(total_fill_area), to_lines(expansion_area), to_lines(deep_infill_area), to_lines(anchors)); #endif std::vector expanded_surfaces; expanded_surfaces.reserve(surfaces_by_layer[lidx].size()); for (const CandidateSurface &candidate : surfaces_by_layer[lidx]) { const Flow &flow = candidate.region->bridging_flow(frSolidInfill, true); Polygons area_to_be_bridge = expand(candidate.new_polys, flow.scaled_spacing()); area_to_be_bridge = intersection(area_to_be_bridge, deep_infill_area); area_to_be_bridge.erase(std::remove_if(area_to_be_bridge.begin(), area_to_be_bridge.end(), [internal_unsupported_area](const Polygon &p) { return intersection({p}, internal_unsupported_area).empty(); }), area_to_be_bridge.end()); Polygons limiting_area = union_(area_to_be_bridge, expansion_area); if (area_to_be_bridge.empty()) continue; Polylines boundary_plines = to_polylines(expand(total_fill_area, 1.3 * flow.scaled_spacing())); { Polylines limiting_plines = to_polylines(expand(limiting_area, 0.3*flow.spacing())); boundary_plines.insert(boundary_plines.end(), limiting_plines.begin(), limiting_plines.end()); } #ifdef DEBUG_BRIDGE_OVER_INFILL int r = rand(); debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" + "_anchors_" + std::to_string(r), to_lines(area_to_be_bridge), to_lines(boundary_plines), to_lines(anchors), to_lines(expansion_area)); #endif double bridging_angle = 0; if (!anchors.empty()) { bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(anchors), candidate.region->region().config().sparse_infill_pattern.value, candidate.region->region().config().infill_direction.value); } else { // use expansion boundaries as anchors. // Also, use Infill pattern that is neutral for angle determination, since there are no infill lines. bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(boundary_plines), InfillPattern::ipLine, 0); } boundary_plines.insert(boundary_plines.end(), anchors.begin(), anchors.end()); if (!lightning_area.empty() && !intersection(area_to_be_bridge, lightning_area).empty()) { boundary_plines = intersection_pl(boundary_plines, expand(area_to_be_bridge, scale_(10))); } Polygons bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle); // Check collision with other expanded surfaces { bool reconstruct = false; Polygons tmp_expanded_area = expand(bridging_area, 3.0 * flow.scaled_spacing()); for (const CandidateSurface &s : expanded_surfaces) { if (!intersection(s.new_polys, tmp_expanded_area).empty()) { bridging_angle = s.bridge_angle; reconstruct = true; break; } } if (reconstruct) { bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle); } } bridging_area = opening(bridging_area, flow.scaled_spacing()); bridging_area = closing(bridging_area, flow.scaled_spacing()); bridging_area = intersection(bridging_area, limiting_area); bridging_area = intersection(bridging_area, total_fill_area); // BBS: substract top area bridging_area = diff(bridging_area, top_area); // BBS: open and close again to filter some narrow parts bridging_area = opening(bridging_area, flow.scaled_spacing()); bridging_area = closing(bridging_area, flow.scaled_spacing()); expansion_area = diff(expansion_area, bridging_area); #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_" + "_expanded_bridging" + std::to_string(r), to_lines(layer->lslices), to_lines(boundary_plines), to_lines(candidate.new_polys), to_lines(bridging_area)); #endif expanded_surfaces.push_back(CandidateSurface(candidate.original_surface, candidate.layer_index, bridging_area, candidate.region, bridging_angle)); } surfaces_by_layer[lidx].swap(expanded_surfaces); expanded_surfaces.clear(); } } }); BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Directions and expanded surfaces computed" << log_memory_info(); tbb::parallel_for(tbb::blocked_range(0, this->layers().size()), [po = this, &surfaces_by_layer](tbb::blocked_range r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end() && surfaces_by_layer.find(lidx + 1) == surfaces_by_layer.end()) continue; Layer *layer = po->get_layer(lidx); Polygons cut_from_infill{}; if (surfaces_by_layer.find(lidx) != surfaces_by_layer.end()) { for (const auto &surface : surfaces_by_layer.at(lidx)) { cut_from_infill.insert(cut_from_infill.end(), surface.new_polys.begin(), surface.new_polys.end()); } } Polygons additional_ensuring_areas{}; if (surfaces_by_layer.find(lidx + 1) != surfaces_by_layer.end()) { for (const auto &surface : surfaces_by_layer.at(lidx + 1)) { auto additional_area = diff(surface.new_polys, shrink(surface.new_polys, surface.region->flow(frSolidInfill).scaled_spacing())); additional_ensuring_areas.insert(additional_ensuring_areas.end(), additional_area.begin(), additional_area.end()); } } for (LayerRegion *region : layer->regions()) { Surfaces new_surfaces; Polygons near_perimeters = to_polygons(union_safety_offset_ex(to_polygons(region->fill_surfaces.surfaces))); near_perimeters = diff(near_perimeters, shrink(near_perimeters, region->flow(frSolidInfill).scaled_spacing())); ExPolygons additional_ensuring = intersection_ex(additional_ensuring_areas, near_perimeters); SurfacesPtr internal_infills = region->fill_surfaces.filter_by_type(stInternal); ExPolygons new_internal_infills = diff_ex(internal_infills, cut_from_infill); new_internal_infills = diff_ex(new_internal_infills, additional_ensuring); for (const ExPolygon &ep : new_internal_infills) { new_surfaces.emplace_back(stInternal, ep); } SurfacesPtr internal_solids = region->fill_surfaces.filter_by_type(stInternalSolid); if (surfaces_by_layer.find(lidx) != surfaces_by_layer.end()) { for (const CandidateSurface &cs : surfaces_by_layer.at(lidx)) { for (const Surface *surface : internal_solids) { if (cs.original_surface == surface) { Surface tmp{*surface, {}}; tmp.surface_type = stInternalBridge; tmp.bridge_angle = cs.bridge_angle; for (const ExPolygon &ep : union_ex(cs.new_polys)) { new_surfaces.emplace_back(tmp, ep); } break; } } } } ExPolygons new_internal_solids = to_expolygons(internal_solids); new_internal_solids.insert(new_internal_solids.end(), additional_ensuring.begin(), additional_ensuring.end()); new_internal_solids = diff_ex(new_internal_solids, cut_from_infill); new_internal_solids = union_safety_offset_ex(new_internal_solids); for (const ExPolygon &ep : new_internal_solids) { new_surfaces.emplace_back(stInternalSolid, ep); } #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw("Aensuring_" + std::to_string(reinterpret_cast(®ion)), to_polylines(additional_ensuring), to_polylines(near_perimeters), to_polylines(to_polygons(internal_infills)), to_polylines(to_polygons(internal_solids))); debug_draw("Aensuring_" + std::to_string(reinterpret_cast(®ion)) + "_new", to_polylines(additional_ensuring), to_polylines(near_perimeters), to_polylines(to_polygons(new_internal_infills)), to_polylines(to_polygons(new_internal_solids))); #endif region->fill_surfaces.remove_types({stInternalSolid, stInternal}); region->fill_surfaces.append(new_surfaces); } } }); BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info(); } // void PrintObject::bridge_over_infill() #endif static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders) { if (opt.value > (int)num_extruders) // assign the default extruder opt.value = 1; } PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders) { PrintObjectConfig config = default_object_config; { DynamicPrintConfig src_normalized(object.config.get()); src_normalized.normalize_fdm(); config.apply(src_normalized, true); } // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.support_filament, num_extruders); clamp_exturder_to_default(config.support_interface_filament, num_extruders); return config; } const std::string key_extruder { "extruder" }; static constexpr const std::initializer_list keys_extruders { "sparse_infill_filament"sv, "solid_infill_filament"sv, "wall_filament"sv }; static void apply_to_print_region_config(PrintRegionConfig &out, const DynamicPrintConfig &in) { // 1) Copy the "extruder key to sparse_infill_filament and wall_filament. auto *opt_extruder = in.opt(key_extruder); if (opt_extruder) if (int extruder = opt_extruder->value; extruder != 0) { // Not a default extruder. out.sparse_infill_filament .value = extruder; out.solid_infill_filament.value = extruder; out.wall_filament .value = extruder; } // 2) Copy the rest of the values. for (auto it = in.cbegin(); it != in.cend(); ++ it) if (it->first != key_extruder) if (ConfigOption* my_opt = out.option(it->first, false); my_opt != nullptr) { if (one_of(it->first, keys_extruders)) { // Ignore "default" extruders. int extruder = static_cast(it->second.get())->value; if (extruder > 0) my_opt->setInt(extruder); } else my_opt->set(it->second.get()); } } PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders) { PrintRegionConfig config = default_or_parent_region_config; if (volume.is_model_part()) { // default_or_parent_region_config contains the Print's PrintRegionConfig. // Override with ModelObject's PrintRegionConfig values. apply_to_print_region_config(config, volume.get_object()->config.get()); } else { // default_or_parent_region_config contains parent PrintRegion config, which already contains ModelVolume's config. } apply_to_print_region_config(config, volume.config.get()); if (! volume.material_id().empty()) apply_to_print_region_config(config, volume.material()->config.get()); if (layer_range_config != nullptr) { // Not applicable to modifiers. assert(volume.is_model_part()); apply_to_print_region_config(config, *layer_range_config); } // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.sparse_infill_filament, num_extruders); clamp_exturder_to_default(config.wall_filament, num_extruders); clamp_exturder_to_default(config.solid_infill_filament, num_extruders); if (config.sparse_infill_density.value < 0.00011f) // Switch of infill for very low infill rates, also avoid division by zero in infill generator for these very low rates. // See GH issue #5910. config.sparse_infill_density.value = 0; else config.sparse_infill_density.value = std::min(config.sparse_infill_density.value, 100.); if (config.fuzzy_skin.value != FuzzySkinType::None && (config.fuzzy_skin_point_distance.value < 0.01 || config.fuzzy_skin_thickness.value < 0.001)) config.fuzzy_skin.value = FuzzySkinType::None; return config; } struct POProfiler { uint32_t duration1; uint32_t duration2; }; void PrintObject::generate_support_preview() { POProfiler profiler; boost::posix_time::ptime ts1 = boost::posix_time::microsec_clock::local_time(); this->slice(); boost::posix_time::ptime ts2 = boost::posix_time::microsec_clock::local_time(); profiler.duration1 = (ts2 - ts1).total_milliseconds(); this->generate_support_material(); boost::posix_time::ptime ts3 = boost::posix_time::microsec_clock::local_time(); profiler.duration2 = (ts3 - ts2).total_milliseconds(); } void PrintObject::update_slicing_parameters() { if (!m_slicing_params.valid) m_slicing_params = SlicingParameters::create_from_config( this->print()->config(), m_config, this->model_object()->bounding_box().max.z(), this->object_extruders()); } SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z) { PrintConfig print_config; PrintObjectConfig object_config; PrintRegionConfig default_region_config; print_config.apply(full_config, true); object_config.apply(full_config, true); default_region_config.apply(full_config, true); // BBS size_t filament_extruders = print_config.filament_diameter.size(); object_config = object_config_from_model_object(object_config, model_object, filament_extruders); std::vector object_extruders; for (const ModelVolume* model_volume : model_object.volumes) if (model_volume->is_model_part()) { PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, nullptr, *model_volume, filament_extruders), object_config.brim_type != btNoBrim && object_config.brim_width > 0., object_extruders); for (const std::pair &range_and_config : model_object.layer_config_ranges) if (range_and_config.second.has("wall_filament") || range_and_config.second.has("sparse_infill_filament") || range_and_config.second.has("solid_infill_filament")) PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, &range_and_config.second.get(), *model_volume, filament_extruders), object_config.brim_type != btNoBrim && object_config.brim_width > 0., object_extruders); } sort_remove_duplicates(object_extruders); //FIXME add painting extruders if (object_max_z <= 0.f) object_max_z = (float)model_object.raw_bounding_box().size().z(); return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders); } // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions) std::vector PrintObject::object_extruders() const { std::vector extruders; extruders.reserve(this->all_regions().size() * 3); #if 0 for (const PrintRegion ®ion : this->all_regions()) region.collect_object_printing_extruders(*this->print(), extruders); #else const ModelObject* mo = this->model_object(); for (const ModelVolume* mv : mo->volumes) { std::vector volume_extruders = mv->get_extruders(); for (int extruder : volume_extruders) { assert(extruder > 0); extruders.push_back(extruder - 1); } } #endif sort_remove_duplicates(extruders); return extruders; } bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector &layer_height_profile) { bool updated = false; if (layer_height_profile.empty()) { // use the constructor because the assignement is crashing on ASAN OsX layer_height_profile = std::vector(model_object.layer_height_profile.get()); // layer_height_profile = model_object.layer_height_profile; updated = true; } // Verify the layer_height_profile. if (!layer_height_profile.empty() && // Must not be of even length. ((layer_height_profile.size() & 1) != 0 || // Last entry must be at the top of the object. std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_max + slicing_parameters.object_print_z_min) > 1e-3)) layer_height_profile.clear(); if (layer_height_profile.empty() || layer_height_profile[1] != slicing_parameters.first_object_layer_height) { //layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes); layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges); updated = true; } return updated; } //BBS: void PrintObject::get_certain_layers(float start, float end, std::vector &out, std::vector &boundingbox_objects) { BoundingBox temp; LayerPtrs out_temp; for (const auto &layer : layers()) { if (layer->print_z < start) continue; if (layer->print_z > end + EPSILON) break; temp.merge(layer->loverhangs_bbox); out_temp.emplace_back(layer); } boundingbox_objects.emplace_back(std::move(temp)); out.emplace_back(std::move(out_temp)); }; std::vector PrintObject::get_instances_shift_without_plate_offset() { std::vector out; out.reserve(m_instances.size()); for (const auto& instance : m_instances) out.push_back(instance.shift_without_plate_offset()); return out; } // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::clip_fill_surfaces() { if (! PrintObject::infill_only_where_needed) return; bool has_infill = false; for (size_t i = 0; i < this->num_printing_regions(); ++ i) if (this->printing_region(i).config().sparse_infill_density > 0) { has_infill = true; break; } if (! has_infill) return; // We only want infill under ceilings; this is almost like an // internal support material. // Proceed top-down, skipping the bottom layer. Polygons upper_internal; for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) { Layer *layer = m_layers[layer_id]; Layer *lower_layer = m_layers[layer_id - 1]; // Detect things that we need to support. // Cummulative fill surfaces. Polygons fill_surfaces; // Solid surfaces to be supported. Polygons overhangs; for (const LayerRegion *layerm : layer->m_regions) for (const Surface &surface : layerm->fill_surfaces.surfaces) { Polygons polygons = to_polygons(surface.expolygon); if (surface.is_solid()) polygons_append(overhangs, polygons); polygons_append(fill_surfaces, std::move(polygons)); } Polygons lower_layer_fill_surfaces; Polygons lower_layer_internal_surfaces; for (const LayerRegion *layerm : lower_layer->m_regions) for (const Surface &surface : layerm->fill_surfaces.surfaces) { Polygons polygons = to_polygons(surface.expolygon); if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(lower_layer_internal_surfaces, polygons); polygons_append(lower_layer_fill_surfaces, std::move(polygons)); } // We also need to support perimeters when there's at least one full unsupported loop { // Get perimeters area as the difference between slices and fill_surfaces // Only consider the area that is not supported by lower perimeters Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces); // Only consider perimeter areas that are at least one extrusion width thick. //FIXME Offset2 eats out from both sides, while the perimeters are create outside in. //Should the pw not be half of the current value? float pw = FLT_MAX; for (const LayerRegion *layerm : layer->m_regions) pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width()); // Append such thick perimeters to the areas that need support polygons_append(overhangs, opening(perimeters, pw)); } // Merge the new overhangs, find new internal infill. polygons_append(upper_internal, std::move(overhangs)); static constexpr const auto closing_radius = scaled(2.f); upper_internal = intersection( // Regularize the overhang regions, so that the infill areas will not become excessively jagged. smooth_outward( closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.), scaled(0.1)), lower_layer_internal_surfaces); // Apply new internal infill to regions. for (LayerRegion *layerm : lower_layer->m_regions) { if (layerm->region().config().sparse_infill_density.value == 0) continue; Polygons internal; for (Surface &surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(internal, std::move(surface.expolygon)); layerm->fill_surfaces.remove_types({ stInternal, stInternalVoid }); layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal); layerm->fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid); // If there are voids it means that our internal infill is not adjacent to // perimeters. In this case it would be nice to add a loop around infill to // make it more robust and nicer. TODO. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces"); #endif } m_print->throw_if_canceled(); } } void PrintObject::discover_horizontal_shells() { BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()"; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { for (size_t i = 0; i < m_layers.size(); ++i) { m_print->throw_if_canceled(); Layer* layer = m_layers[i]; LayerRegion* layerm = layer->regions()[region_id]; const PrintRegionConfig& region_config = layerm->region().config(); #if 0 if (region_config.solid_infill_every_layers.value > 0 && region_config.sparse_infill_density.value > 0 && (i % region_config.solid_infill_every_layers) == 0) { // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge. SurfaceType type = (region_config.sparse_infill_density == 100 || region_config.solid_infill_every_layers == 1) ? stInternalSolid : stInternalBridge; for (Surface& surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal) surface.surface_type = type; } #endif // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells(). if (region_config.ensure_vertical_shell_thickness.value) continue; coordf_t print_z = layer->print_z; coordf_t bottom_z = layer->bottom_z(); for (size_t idx_surface_type = 0; idx_surface_type < 3; ++idx_surface_type) { m_print->throw_if_canceled(); SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge; int num_solid_layers = (type == stTop) ? region_config.top_shell_layers.value : region_config.bottom_shell_layers.value; if (num_solid_layers == 0) continue; // Find slices of current type for current layer. // Use slices instead of fill_surfaces, because they also include the perimeter area, // which needs to be propagated in shells; we need to grow slices like we did for // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will // not work in some situations, as there won't be any grown region in the perimeter // area (this was seen in a model where the top layer had one extra perimeter, thus // its fill_surfaces were thinner than the lower layer's infill), however it's the best // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put // too much solid infill inside nearly-vertical slopes. // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom // (not covered by a layer above / below). // This does not contain the areas covered by perimeters! Polygons solid; for (const Surface& surface : layerm->slices.surfaces) if (surface.surface_type == type) polygons_append(solid, to_polygons(surface.expolygon)); // Infill areas (slices without the perimeters). for (const Surface& surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == type) polygons_append(solid, to_polygons(surface.expolygon)); if (solid.empty()) continue; // Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom'; // Scatter top / bottom regions to other layers. Scattering process is inherently serial, it is difficult to parallelize without locking. for (int n = (type == stTop) ? int(i) - 1 : int(i) + 1; (type == stTop) ? (n >= 0 && (int(i) - n < num_solid_layers || print_z - m_layers[n]->print_z < region_config.top_shell_thickness.value - EPSILON)) : (n < int(m_layers.size()) && (n - int(i) < num_solid_layers || m_layers[n]->bottom_z() - bottom_z < region_config.bottom_shell_thickness.value - EPSILON)); (type == stTop) ? --n : ++n) { // Slic3r::debugf " looking for neighbors on layer %d...\n", $n; // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface. LayerRegion* neighbor_layerm = m_layers[n]->regions()[region_id]; // find intersection between neighbor and current layer's surfaces // intersections have contours and holes // we update $solid so that we limit the next neighbor layer to the areas that were // found on this one - in other words, solid shells on one layer (for a given external surface) // are always a subset of the shells found on the previous shell layer // this approach allows for DWIM in hollow sloping vases, where we want bottom // shells to be generated in the base but not in the walls (where there are many // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the // upper perimeter as an obstacle and shell will not be propagated to more upper layers //FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work. Polygons new_internal_solid; { Polygons internal; for (const Surface& surface : neighbor_layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid) polygons_append(internal, to_polygons(surface.expolygon)); new_internal_solid = intersection(solid, internal, ApplySafetyOffset::Yes); } if (new_internal_solid.empty()) { // No internal solid needed on this layer. In order to decide whether to continue // searching on the next neighbor (thus enforcing the configured number of solid // layers, use different strategies according to configured infill density: if (region_config.sparse_infill_density.value == 0) { // If user expects the object to be void (for example a hollow sloping vase), // don't continue the search. In this case, we only generate the external solid // shell if the object would otherwise show a hole (gap between perimeters of // the two layers), and internal solid shells are a subset of the shells found // on each previous layer. goto EXTERNAL; } else { // If we have internal infill, we can generate internal solid shells freely. continue; } } if (region_config.sparse_infill_density.value == 0) { // if we're printing a hollow object we discard any solid shell thinner // than a perimeter width, since it's probably just crossing a sloping wall // and it's not wanted in a hollow print even if it would make sense when // obeying the solid shell count option strictly (DWIM!) float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width()); Polygons too_narrow = diff( new_internal_solid, opening(new_internal_solid, margin, margin + ClipperSafetyOffset, jtMiter, 5)); // Trim the regularized region by the original region. if (!too_narrow.empty()) new_internal_solid = solid = diff(new_internal_solid, too_narrow); } // make sure the new internal solid is wide enough, as it might get collapsed // when spacing is added in Fill.pm { //FIXME Vojtech: Disable this and you will be sorry. float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size // we use a higher miterLimit here to handle areas with acute angles // in those cases, the default miterLimit would cut the corner and we'd // get a triangle in $too_narrow; if we grow it below then the shell // would have a different shape from the external surface and we'd still // have the same angle, so the next shell would be grown even more and so on. Polygons too_narrow = diff( new_internal_solid, opening(new_internal_solid, margin, margin + ClipperSafetyOffset, ClipperLib::jtMiter, 5)); if (!too_narrow.empty()) { // grow the collapsing parts and add the extra area to the neighbor layer // as well as to our original surfaces so that we support this // additional area in the next shell too // make sure our grown surfaces don't exceed the fill area Polygons internal; for (const Surface& surface : neighbor_layerm->fill_surfaces.surfaces) if (surface.is_internal() && !surface.is_bridge()) polygons_append(internal, to_polygons(surface.expolygon)); polygons_append(new_internal_solid, intersection( expand(too_narrow, +margin), // Discard bridges as they are grown for anchoring and we can't // remove such anchors. (This may happen when a bridge is being // anchored onto a wall where little space remains after the bridge // is grown, and that little space is an internal solid shell so // it triggers this too_narrow logic.) internal)); // solid = new_internal_solid; } } // internal-solid are the union of the existing internal-solid surfaces // and new ones SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces); polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid))); ExPolygons internal_solid = union_ex(new_internal_solid); // assign new internal-solid surfaces to layer neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid); // subtract intersections from layer surfaces to get resulting internal surfaces Polygons polygons_internal = to_polygons(std::move(internal_solid)); ExPolygons internal = diff_ex(backup.filter_by_type(stInternal), polygons_internal, ApplySafetyOffset::Yes); // assign resulting internal surfaces to layer neighbor_layerm->fill_surfaces.append(internal, stInternal); polygons_append(polygons_internal, to_polygons(std::move(internal))); // assign top and bottom surfaces to layer backup.keep_types({ stTop, stBottom, stBottomBridge }); std::vector top_bottom_groups; backup.group(&top_bottom_groups); for (SurfacesPtr& group : top_bottom_groups) neighbor_layerm->fill_surfaces.append( diff_ex(group, polygons_internal), // Use an existing surface as a template, it carries the bridge angle etc. *group.front()); } EXTERNAL:; } // foreach type (stTop, stBottom, stBottomBridge) } // for each layer } // for each region #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { for (const Layer* layer : m_layers) { const LayerRegion* layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells"); layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // combine fill surfaces across layers to honor the "infill every N layers" option // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::combine_infill() { // Work on each region separately. for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); //BBS const bool enable_combine_infill = region.config().infill_combination.value; if (enable_combine_infill == false || region.config().sparse_infill_density == 0.) continue; // Limit the number of combined layers to the maximum height allowed by this regions' nozzle. //FIXME limit the layer height to max_layer_height double nozzle_diameter = std::min( this->print()->config().nozzle_diameter.get_at(region.config().sparse_infill_filament.value - 1), this->print()->config().nozzle_diameter.get_at(region.config().solid_infill_filament.value - 1)); // define the combinations std::vector combine(m_layers.size(), 0); { double current_height = 0.; size_t num_layers = 0; for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); const Layer *layer = m_layers[layer_idx]; if (layer->id() == 0) // Skip first print layer (which may not be first layer in array because of raft). continue; // Check whether the combination of this layer with the lower layers' buffer // would exceed max layer height or max combined layer count. // BBS: automatically calculate how many layers should be combined if (current_height + layer->height >= nozzle_diameter + EPSILON) { // Append combination to lower layer. combine[layer_idx - 1] = num_layers; current_height = 0.; num_layers = 0; } current_height += layer->height; ++ num_layers; } // Append lower layers (if any) to uppermost layer. combine[m_layers.size() - 1] = num_layers; } // loop through layers to which we have assigned layers to combine for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); size_t num_layers = combine[layer_idx]; if (num_layers <= 1) continue; // Get all the LayerRegion objects to be combined. std::vector layerms; layerms.reserve(num_layers); for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i) layerms.emplace_back(m_layers[i]->regions()[region_id]); // We need to perform a multi-layer intersection, so let's split it in pairs. // Initialize the intersection with the candidates of the lowest layer. ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal)); // Start looping from the second layer and intersect the current intersection with it. for (size_t i = 1; i < layerms.size(); ++ i) intersection = intersection_ex(layerms[i]->fill_surfaces.filter_by_type(stInternal), intersection); double area_threshold = layerms.front()->infill_area_threshold(); if (! intersection.empty() && area_threshold > 0.) intersection.erase(std::remove_if(intersection.begin(), intersection.end(), [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), intersection.end()); if (intersection.empty()) continue; // Slic3r::debugf " combining %d %s regions from layers %d-%d\n", // scalar(@$intersection), // ($type == stInternal ? 'internal' : 'internal-solid'), // $layer_idx-($every-1), $layer_idx; // intersection now contains the regions that can be combined across the full amount of layers, // so let's remove those areas from all layers. Polygons intersection_with_clearance; intersection_with_clearance.reserve(intersection.size()); float clearance_offset = 0.5f * layerms.back()->flow(frPerimeter).scaled_width() + // Because fill areas for rectilinear and honeycomb are grown // later to overlap perimeters, we need to counteract that too. ((region.config().sparse_infill_pattern == ipRectilinear || region.config().sparse_infill_pattern == ipMonotonic || region.config().sparse_infill_pattern == ipGrid || region.config().sparse_infill_pattern == ipLine || region.config().sparse_infill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * layerms.back()->flow(frSolidInfill).scaled_width(); for (ExPolygon &expoly : intersection) polygons_append(intersection_with_clearance, offset(expoly, clearance_offset)); for (LayerRegion *layerm : layerms) { Polygons internal = to_polygons(std::move(layerm->fill_surfaces.filter_by_type(stInternal))); layerm->fill_surfaces.remove_type(stInternal); layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance), stInternal); if (layerm == layerms.back()) { // Apply surfaces back with adjusted depth to the uppermost layer. Surface templ(stInternal, ExPolygon()); templ.thickness = 0.; for (LayerRegion *layerm2 : layerms) templ.thickness += layerm2->layer()->height; templ.thickness_layers = (unsigned short)layerms.size(); layerm->fill_surfaces.append(intersection, templ); } else { // Save void surfaces. layerm->fill_surfaces.append( intersection_ex(internal, intersection_with_clearance), stInternalVoid); } } } } } void PrintObject::_generate_support_material() { if (is_tree(m_config.support_type.value)) { TreeSupport tree_support(*this, m_slicing_params); tree_support.throw_on_cancel = [this]() { this->throw_if_canceled(); }; tree_support.generate(); } else { PrintObjectSupportMaterial support_material(this, m_slicing_params); support_material.generate(*this); } } // BBS #define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0. #define SUPPORT_MATERIAL_MARGIN 1.2 template void PrintObject::remove_bridges_from_contacts( const Layer* lower_layer, const Layer* current_layer, float extrusion_width, PolysType* overhang_regions, float max_bridge_length, bool break_bridge) { // Extrusion width accounts for the roundings of the extrudates. // It is the maximum widh of the extrudate. float fw = extrusion_width; Lines overhang_perimeters = to_lines(*overhang_regions); auto layer_regions = current_layer->regions(); Polygons lower_layer_polygons = to_polygons(lower_layer->lslices); const PrintObjectConfig& object_config = current_layer->object()->config(); Polygons all_bridges; for (LayerRegion* layerm : layer_regions) { Polygons bridges; // Surface supporting this layer, expanded by 0.5 * nozzle_diameter, as we consider this kind of overhang to be sufficiently supported. Polygons lower_grown_slices = offset(lower_layer_polygons, //FIXME to mimic the decision in the perimeter generator, we should use half the external perimeter width. 0.5f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS); Polylines overhang_perimeters = diff_pl(layerm->perimeters.as_polylines(), lower_grown_slices); // only consider straight overhangs // only consider overhangs having endpoints inside layer's slices // convert bridging polylines into polygons by inflating them with their thickness // since we're dealing with bridges, we can't assume width is larger than spacing, // so we take the largest value and also apply safety offset to be ensure no gaps // are left in between Flow bridge_flow = layerm->bridging_flow(frPerimeter, object_config.thick_bridges); float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing())); for (Polyline& polyline : overhang_perimeters) if (polyline.is_straight()) { // This is a bridge polyline.extend_start(fw); polyline.extend_end(fw); // Is the straight perimeter segment supported at both sides? Point pts[2] = { polyline.first_point(), polyline.last_point() }; bool supported[2] = { false, false }; for (size_t i = 0; i < lower_layer->lslices.size() && !(supported[0] && supported[1]); ++i) for (int j = 0; j < 2; ++j) if (!supported[j] && lower_layer->lslices_bboxes[i].contains(pts[j]) && lower_layer->lslices[i].contains(pts[j])) supported[j] = true; if (supported[0] && supported[1]) { Polylines lines; if (polyline.length() > max_bridge_length + 10) { if (break_bridge) { // equally divide the polyline float len = polyline.length() / ceil(polyline.length() / max_bridge_length); lines = polyline.equally_spaced_lines(len); for (auto& line : lines) { if (line.is_valid()) line.clip_start(fw); if (line.is_valid()) line.clip_end(fw); } } } else lines.push_back(polyline); // Offset a polyline into a thick line. polygons_append(bridges, offset(lines, 0.5f * w + 10.f)); } } bridges = union_(bridges); // remove the entire bridges and only support the unsupported edges //FIXME the brided regions are already collected as layerm->bridged. Use it? for (const Surface& surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1) { auto bbox = get_extents(surface.expolygon); auto bbox_size = bbox.size(); if (bbox_size[0] < max_bridge_length && bbox_size[1] < max_bridge_length) polygons_append(bridges, surface.expolygon); else { if (break_bridge) { Polygons holes; coord_t x0 = bbox.min.x(); coord_t x1 = bbox.max.x(); coord_t y0 = bbox.min.y(); coord_t y1 = bbox.max.y(); const int grid_lw = int(w/2); // grid line width Vec2f bridge_direction{ cos(surface.bridge_angle),sin(surface.bridge_angle) }; if (fabs(bridge_direction(0)) > fabs(bridge_direction(1))) { // cut bridge along x-axis if bridge direction is aligned to x-axis more than to y-axis // Note: surface.bridge_angle may be pi, so we can't compare it to 0 & pi/2. int step = bbox_size(0) / ceil(bbox_size(0) / max_bridge_length); for (int x = x0 + step; x < x1; x += step) { Polygon poly; poly.points = {Point(x - grid_lw, y0), Point(x + grid_lw, y0), Point(x + grid_lw, y1), Point(x - grid_lw, y1)}; holes.emplace_back(poly); } } else { int step = bbox_size(1) / ceil(bbox_size(1) / max_bridge_length); for (int y = y0 + step; y < y1; y += step) { Polygon poly; poly.points = {Point(x0, y - grid_lw), Point(x0, y + grid_lw), Point(x1, y + grid_lw), Point(x1, y - grid_lw)}; holes.emplace_back(poly); } } auto expoly = diff_ex(surface.expolygon, holes); polygons_append(bridges, expoly); } } } //FIXME add the gap filled areas. Extrude the gaps with a bridge flow? // Remove the unsupported ends of the bridges from the bridged areas. //FIXME add supports at regular intervals to support long bridges! bridges = diff(bridges, // Offset unsupported edges into polygons. offset(layerm->unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS)); append(all_bridges, bridges); } if (typeid(overhang_regions) == typeid(ExPolygons*)) { *(ExPolygons*)overhang_regions = diff_ex(*overhang_regions, all_bridges, ApplySafetyOffset::Yes); } else if (typeid(overhang_regions) == typeid(Polygons*)) { *(Polygons*)overhang_regions = diff(*overhang_regions, all_bridges, ApplySafetyOffset::Yes); } } template void PrintObject::remove_bridges_from_contacts( const Layer* lower_layer, const Layer* current_layer, float extrusion_width, ExPolygons* overhang_regions, float max_bridge_length, bool break_bridge); template void PrintObject::remove_bridges_from_contacts( const Layer* lower_layer, const Layer* current_layer, float extrusion_width, Polygons* overhang_regions, float max_bridge_length, bool break_bridge); SupportNecessaryType PrintObject::is_support_necessary() { static const double super_overhang_area_threshold = SQ(scale_(5.0)); const double cantilevel_dist_thresh = scale_(6); #if 0 double threshold_rad = (m_config.support_threshold_angle.value < EPSILON ? 30 : m_config.support_threshold_angle.value + 1) * M_PI / 180.; int enforce_support_layers = m_config.enforce_support_layers; const coordf_t extrusion_width = m_config.line_width.value; const coordf_t extrusion_width_scaled = scale_(extrusion_width); float max_bridge_length = scale_(m_config.max_bridge_length.value); const bool bridge_no_support = max_bridge_length > 0;// config.bridge_no_support.value; for (size_t layer_nr = enforce_support_layers + 1; layer_nr < this->layer_count(); layer_nr++) { Layer* layer = m_layers[layer_nr]; Layer* lower_layer = layer->lower_layer; coordf_t support_offset_scaled = extrusion_width_scaled * 0.9; ExPolygons lower_layer_offseted = offset_ex(lower_layer->lslices, support_offset_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS); // 1. check sharp tail for (const LayerRegion* layerm : layer->regions()) { for (const ExPolygon& expoly : layerm->raw_slices) { // detect sharp tail if (intersection_ex({ expoly }, lower_layer_offseted).empty()) return SharpTail; } } // 2. check overhang area ExPolygons super_overhang_expolys = std::move(diff_ex(layer->lslices, lower_layer_offseted)); super_overhang_expolys.erase(std::remove_if( super_overhang_expolys.begin(), super_overhang_expolys.end(), [extrusion_width_scaled](ExPolygon& area) { return offset_ex(area, -0.1 * extrusion_width_scaled).empty(); }), super_overhang_expolys.end()); // remove bridge if (bridge_no_support) remove_bridges_from_contacts(lower_layer, layer, extrusion_width_scaled, &super_overhang_expolys, max_bridge_length); Polygons super_overhang_polys = to_polygons(super_overhang_expolys); super_overhang_polys.erase(std::remove_if( super_overhang_polys.begin(), super_overhang_polys.end(), [extrusion_width_scaled](Polygon& area) { return offset_ex(area, -0.1 * extrusion_width_scaled).empty(); }), super_overhang_polys.end()); double super_overhang_area = 0.0; for (Polygon& poly : super_overhang_polys) { bool is_ccw = poly.is_counter_clockwise(); double area_ = poly.area(); if (is_ccw) { if (area_ > super_overhang_area_threshold) return LargeOverhang; super_overhang_area += area_; } else { super_overhang_area -= area_; } } //if (super_overhang_area > super_overhang_area_threshold) // return LargeOverhang; // 3. check overhang distance const double distance_threshold_scaled = extrusion_width_scaled * 2; ExPolygons lower_layer_offseted_2 = offset_ex(lower_layer->lslices, distance_threshold_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS); ExPolygons exceed_overhang = std::move(diff_ex(super_overhang_polys, lower_layer_offseted_2)); exceed_overhang.erase(std::remove_if( exceed_overhang.begin(), exceed_overhang.end(), [extrusion_width_scaled](ExPolygon& area) { // tolerance for 1 extrusion width offset return offset_ex(area, -0.5 * extrusion_width_scaled).empty(); }), exceed_overhang.end()); if (!exceed_overhang.empty()) return LargeOverhang; } #else TreeSupport tree_support(*this, m_slicing_params); tree_support.support_type = SupportType::stTreeAuto; // need to set support type to fully utilize the power of feature detection tree_support.detect_overhangs(true); this->clear_support_layers(); if (tree_support.has_sharp_tails) return SharpTail; else if (tree_support.has_cantilever && tree_support.max_cantilever_dist > cantilevel_dist_thresh) return Cantilever; #endif return NoNeedSupp; } static void project_triangles_to_slabs(ConstLayerPtrsAdaptor layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector &out) { if (custom_facets.indices.empty()) return; const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f); // The projection will be at most a pentagon. Let's minimize heap // reallocations by saving in in the following struct. // Points are used so that scaling can be done in parallel // and they can be moved from to create an ExPolygon later. struct LightPolygon { LightPolygon() { pts.reserve(5); } LightPolygon(const std::array& tri) { pts.reserve(3); pts.emplace_back(scaled(tri.front())); pts.emplace_back(scaled(tri[1])); pts.emplace_back(scaled(tri.back())); } Points pts; void add(const Vec2f& pt) { pts.emplace_back(scaled(pt)); assert(pts.size() <= 5); } }; // Structure to collect projected polygons. One element for each triangle. // Saves vector of polygons and layer_id of the first one. struct TriangleProjections { size_t first_layer_id; std::vector polygons; }; // Vector to collect resulting projections from each triangle. std::vector projections_of_triangles(custom_facets.indices.size()); // Iterate over all triangles. tbb::parallel_for( tbb::blocked_range(0, custom_facets.indices.size()), [&custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range& range) { for (size_t idx = range.begin(); idx < range.end(); ++ idx) { std::array facet; // Transform the triangle into worlds coords. for (int i=0; i<3; ++i) facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)]; // Ignore triangles with upward-pointing normal. Don't forget about mirroring. float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z(); if (! seam && tr_det_sign * z_comp > 0.) continue; // The algorithm does not process vertical triangles, but it should for seam. // In that case, tilt the triangle a bit so the projection does not degenerate. if (seam && z_comp == 0.f) facet[0].x() += float(EPSILON); // Sort the three vertices according to z-coordinate. std::sort(facet.begin(), facet.end(), [](const Vec3f& pt1, const Vec3f&pt2) { return pt1.z() < pt2.z(); }); std::array trianglef; for (int i=0; i<3; ++i) trianglef[i] = to_2d(facet[i]); // Find lowest slice not below the triangle. auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON, [](const Layer* l1, float z) { return l1->slice_z < z; }); // Count how many projections will be generated for this triangle // and allocate respective amount in projections_of_triangles. size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin(); size_t last_layer_id = first_layer_id; // The cast in the condition below is important. The comparison must // be an exact opposite of the one lower in the code where // the polygons are appended. And that one is on floats. while (last_layer_id + 1 < layers.size() && float(layers[last_layer_id]->slice_z) <= facet[2].z()) ++last_layer_id; if (first_layer_id == last_layer_id) { // The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles. float dz = facet[2].z() - facet[0].z(); assert(dz >= 0); // The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1. // Rather add this face to both the planes. bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON; projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1); projections_of_triangles[idx].polygons.emplace_back(trianglef); if (add_below) { -- projections_of_triangles[idx].first_layer_id; projections_of_triangles[idx].polygons.emplace_back(trianglef); } continue; } projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1); // Calculate how to move points on triangle sides per unit z increment. Vec2f ta(trianglef[1] - trianglef[0]); Vec2f tb(trianglef[2] - trianglef[0]); ta *= 1.f/(facet[1].z() - facet[0].z()); tb *= 1.f/(facet[2].z() - facet[0].z()); // Projection on current slice will be built directly in place. LightPolygon* proj = &projections_of_triangles[idx].polygons[0]; proj->add(trianglef[0]); bool passed_first = false; bool stop = false; // Project a sub-polygon on all slices intersecting the triangle. while (it != layers.end()) { const float z = float((*it)->slice_z); // Projections of triangle sides intersections with slices. // a moves along one side, b tracks the other. Vec2f a; Vec2f b; // If the middle vertex was already passed, append the vertex // and use ta for tracking the remaining side. if (z > facet[1].z() && ! passed_first) { proj->add(trianglef[1]); ta = trianglef[2]-trianglef[1]; ta *= 1.f/(facet[2].z() - facet[1].z()); passed_first = true; } // This slice is above the triangle already. if (z > facet[2].z() || it+1 == layers.end()) { proj->add(trianglef[2]); stop = true; } else { // Move a, b along the side it currently tracks to get // projected intersection with current slice. a = passed_first ? (trianglef[1]+ta*(z-facet[1].z())) : (trianglef[0]+ta*(z-facet[0].z())); b = trianglef[0]+tb*(z-facet[0].z()); proj->add(a); proj->add(b); } if (stop) break; // Advance to the next layer. ++it; ++proj; assert(proj <= &projections_of_triangles[idx].polygons.back() ); // a, b are first two points of the polygon for the next layer. proj->add(b); proj->add(a); } } }); // end of parallel_for // Make sure that the output vector can be used. out.resize(layers.size()); // Now append the collected polygons to respective layers. for (auto& trg : projections_of_triangles) { int layer_id = int(trg.first_layer_id); for (LightPolygon &poly : trg.polygons) { if (layer_id >= int(out.size())) break; // part of triangle could be projected above top layer assert(! poly.pts.empty()); // The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well. // if (cross2(Vec2d((poly.pts[1] - poly.pts[0]).cast()), Vec2d((poly.pts[2] - poly.pts[1]).cast())) < 0) // std::swap(poly.pts.front(), poly.pts.back()); out[layer_id].emplace_back(std::move(poly.pts)); ++layer_id; } } } void PrintObject::project_and_append_custom_facets( bool seam, EnforcerBlockerType type, std::vector& out) const { for (const ModelVolume* mv : this->model_object()->volumes) if (mv->is_model_part()) { const indexed_triangle_set custom_facets = seam ? mv->seam_facets.get_facets_strict(*mv, type) : mv->supported_facets.get_facets_strict(*mv, type); if (! custom_facets.indices.empty()) { if (seam) project_triangles_to_slabs(this->layers(), custom_facets, (this->trafo_centered() * mv->get_matrix()).cast(), seam, out); else { std::vector projected; // Support blockers or enforcers. Project downward facing painted areas upwards to their respective slicing plane. slice_mesh_slabs(custom_facets, zs_from_layers(this->layers()), this->trafo_centered() * mv->get_matrix(), nullptr, &projected, [](){}); // Merge these projections with the output, layer by layer. assert(! projected.empty()); assert(out.empty() || out.size() == projected.size()); if (out.empty()) out = std::move(projected); else for (size_t i = 0; i < out.size(); ++ i) append(out[i], std::move(projected[i])); } } } } const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const { auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; }); return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z)); } // Get a layer approximately at print_z. const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z - epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); } const Layer *PrintObject::get_first_layer_bellow_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z + epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.begin()) ? nullptr : *(--it); } int PrintObject::get_layer_idx_get_printz(coordf_t print_z, coordf_t epsilon) { coordf_t limit = print_z + epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.begin()) ? -1 : std::distance(m_layers.begin(), it); } // BBS const Layer* PrintObject::get_layer_at_bottomz(coordf_t bottom_z, coordf_t epsilon) const { coordf_t limit_upper = bottom_z + epsilon; coordf_t limit_lower = bottom_z - epsilon; for (const Layer* layer : m_layers) { if (layer->bottom_z() > limit_lower) return layer->bottom_z() < limit_upper ? layer : nullptr; } return nullptr; } Layer* PrintObject::get_layer_at_bottomz(coordf_t bottom_z, coordf_t epsilon) { return const_cast(std::as_const(*this).get_layer_at_bottomz(bottom_z, epsilon)); } } // namespace Slic3r