#include "libslic3r/libslic3r.h" #include "GLModel.hpp" #include "3DScene.hpp" #include "GUI_App.hpp" #include "GLShader.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/Model.hpp" #include "libslic3r/Polygon.hpp" #include #include #include namespace Slic3r { namespace GUI { void GLModel::Geometry::add_vertex(const Vec2f &position) { assert(format.vertex_layout == EVertexLayout::P2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); } void GLModel::Geometry::add_vertex(const Vec2f &position, const Vec2f &tex_coord) { assert(format.vertex_layout == EVertexLayout::P2T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec3f &position) { assert(format.vertex_layout == EVertexLayout::P3); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); } void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec2f &tex_coord) { assert(format.vertex_layout == EVertexLayout::P3T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec3f &normal) { assert(format.vertex_layout == EVertexLayout::P3N3); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(normal.x()); vertices.emplace_back(normal.y()); vertices.emplace_back(normal.z()); } void GLModel::Geometry::add_vertex(const Vec3f &position, const Vec3f &normal, const Vec2f &tex_coord) { assert(format.vertex_layout == EVertexLayout::P3N3T2); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(normal.x()); vertices.emplace_back(normal.y()); vertices.emplace_back(normal.z()); vertices.emplace_back(tex_coord.x()); vertices.emplace_back(tex_coord.y()); } void GLModel::Geometry::add_vertex(const Vec4f &position) { assert(format.vertex_layout == EVertexLayout::P4); vertices.emplace_back(position.x()); vertices.emplace_back(position.y()); vertices.emplace_back(position.z()); vertices.emplace_back(position.w()); } void GLModel::Geometry::add_index(unsigned int id) { indices.emplace_back(id); } void GLModel::Geometry::add_line(unsigned int id1, unsigned int id2) { indices.emplace_back(id1); indices.emplace_back(id2); } void GLModel::Geometry::add_triangle(unsigned int id1, unsigned int id2, unsigned int id3) { indices.emplace_back(id1); indices.emplace_back(id2); indices.emplace_back(id3); } Vec2f GLModel::Geometry::extract_position_2(size_t id) const { const size_t p_stride = position_stride_floats(format); if (p_stride != 2) { assert(false); return {FLT_MAX, FLT_MAX}; } if (vertices_count() <= id) { assert(false); return {FLT_MAX, FLT_MAX}; } const float *start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)]; return {*(start + 0), *(start + 1)}; } Vec3f GLModel::Geometry::extract_position_3(size_t id) const { const size_t p_stride = position_stride_floats(format); if (p_stride != 3) { assert(false); return {FLT_MAX, FLT_MAX, FLT_MAX}; } if (vertices_count() <= id) { assert(false); return {FLT_MAX, FLT_MAX, FLT_MAX}; } const float *start = &vertices[id * vertex_stride_floats(format) + position_offset_floats(format)]; return {*(start + 0), *(start + 1), *(start + 2)}; } Vec3f GLModel::Geometry::extract_normal_3(size_t id) const { const size_t n_stride = normal_stride_floats(format); if (n_stride != 3) { assert(false); return {FLT_MAX, FLT_MAX, FLT_MAX}; } if (vertices_count() <= id) { assert(false); return {FLT_MAX, FLT_MAX, FLT_MAX}; } const float *start = &vertices[id * vertex_stride_floats(format) + normal_offset_floats(format)]; return {*(start + 0), *(start + 1), *(start + 2)}; } Vec2f GLModel::Geometry::extract_tex_coord_2(size_t id) const { const size_t t_stride = tex_coord_stride_floats(format); if (t_stride != 2) { assert(false); return {FLT_MAX, FLT_MAX}; } if (vertices_count() <= id) { assert(false); return {FLT_MAX, FLT_MAX}; } const float *start = &vertices[id * vertex_stride_floats(format) + tex_coord_offset_floats(format)]; return {*(start + 0), *(start + 1)}; } void GLModel::Geometry::set_vertex(size_t id, const Vec3f &position, const Vec3f &normal) { assert(format.vertex_layout == EVertexLayout::P3N3); assert(id < vertices_count()); if (id < vertices_count()) { float *start = &vertices[id * vertex_stride_floats(format)]; *(start + 0) = position.x(); *(start + 1) = position.y(); *(start + 2) = position.z(); *(start + 3) = normal.x(); *(start + 4) = normal.y(); *(start + 5) = normal.z(); } } void GLModel::Geometry::set_index(size_t id, unsigned int index) { assert(id < indices_count()); if (id < indices_count()) indices[id] = index; } unsigned int GLModel::Geometry::extract_index(size_t id) const { if (indices_count() <= id) { assert(false); return -1; } return indices[id]; } void GLModel::Geometry::remove_vertex(size_t id) { assert(id < vertices_count()); if (id < vertices_count()) { const size_t stride = vertex_stride_floats(format); std::vector::const_iterator it = vertices.begin() + id * stride; vertices.erase(it, it + stride); } } indexed_triangle_set GLModel::Geometry::get_as_indexed_triangle_set() const { indexed_triangle_set its; its.vertices.reserve(vertices_count()); for (size_t i = 0; i < vertices_count(); ++i) { its.vertices.emplace_back(extract_position_3(i)); } its.indices.reserve(indices_count() / 3); for (size_t i = 0; i < indices_count() / 3; ++i) { const size_t tri_id = i * 3; its.indices.emplace_back(extract_index(tri_id), extract_index(tri_id + 1), extract_index(tri_id + 2)); } return its; } size_t GLModel::Geometry::vertex_stride_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2: { return 2; } case EVertexLayout::P2T2: { return 4; } case EVertexLayout::P3: { return 3; } case EVertexLayout::P3T2: { return 5; } case EVertexLayout::P3N3: { return 6; } case EVertexLayout::P3N3T2: { return 8; } case EVertexLayout::P4: { return 4; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::position_stride_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: { return 2; } case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } case EVertexLayout::P4: { return 4; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::position_offset_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: case EVertexLayout::P4: { return 0; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::normal_stride_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::normal_offset_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return 3; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::tex_coord_stride_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: case EVertexLayout::P3T2: case EVertexLayout::P3N3T2: { return 2; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::tex_coord_offset_floats(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: { return 2; } case EVertexLayout::P3T2: { return 3; } case EVertexLayout::P3N3T2: { return 6; } default: { assert(false); return 0; } }; } size_t GLModel::Geometry::index_stride_bytes(const Geometry &data) { switch (data.index_type) { case EIndexType::UINT: { return sizeof(unsigned int); } case EIndexType::USHORT: { return sizeof(unsigned short); } case EIndexType::UBYTE: { return sizeof(unsigned char); } default: { assert(false); return 0; } }; } bool GLModel::Geometry::has_position(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: case EVertexLayout::P4: { return true; } default: { assert(false); return false; } }; } bool GLModel::Geometry::has_normal(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2: case EVertexLayout::P2T2: case EVertexLayout::P3: case EVertexLayout::P3T2: case EVertexLayout::P4: { return false; } case EVertexLayout::P3N3: case EVertexLayout::P3N3T2: { return true; } default: { assert(false); return false; } }; } bool GLModel::Geometry::has_tex_coord(const Format &format) { switch (format.vertex_layout) { case EVertexLayout::P2T2: case EVertexLayout::P3T2: case EVertexLayout::P3N3T2: { return true; } case EVertexLayout::P2: case EVertexLayout::P3: case EVertexLayout::P3N3: case EVertexLayout::P4: { return false; } default: { assert(false); return false; } }; } size_t GLModel::InitializationData::vertices_count() const { size_t ret = 0; for (const Entity& entity : entities) { ret += entity.positions.size(); } return ret; } size_t GLModel::InitializationData::indices_count() const { size_t ret = 0; for (const Entity& entity : entities) { ret += entity.indices.size(); } return ret; } GLModel::~GLModel() { reset(); if (mesh) { delete mesh; } } void GLModel::init_from(Geometry &&data, bool generate_mesh) { if (is_initialized()) { // call reset() if you want to reuse this model assert(false); return; } if (data.vertices.empty() || data.indices.empty()) { assert(false); return; } m_render_data.clear(); m_render_data.push_back(RenderData()); m_render_data.back().indices_count = data.indices.size(); m_render_data.back().type = data.format.type; m_render_data.back().color = data.color.get_data(); if (generate_mesh) { if (!mesh) { mesh = new TriangleMesh(); } mesh->its = std::move(data.get_as_indexed_triangle_set()); } m_render_data.back().geometry = std::move(data); // update bounding box for (size_t i = 0; i < data.vertices_count(); ++i) { const size_t position_stride = Geometry::position_stride_floats(data.format); if (position_stride == 3) m_bounding_box.merge(m_render_data.back().geometry.extract_position_3(i).cast()); else if (position_stride == 2) { const Vec2f position = m_render_data.back().geometry.extract_position_2(i); m_bounding_box.merge(Vec3f(position.x(), position.y(), 0.0f).cast()); } } } void GLModel::init_from(const InitializationData& data) { if (!m_render_data.empty()) // call reset() if you want to reuse this model return; for (const InitializationData::Entity& entity : data.entities) { if (entity.positions.empty() || entity.indices.empty()) continue; assert(entity.normals.empty() || entity.normals.size() == entity.positions.size()); RenderData rdata; rdata.type = entity.type; rdata.color = entity.color; // vertices/normals data std::vector vertices(6 * entity.positions.size()); for (size_t i = 0; i < entity.positions.size(); ++i) { const size_t offset = i * 6; ::memcpy(static_cast(&vertices[offset]), static_cast(entity.positions[i].data()), 3 * sizeof(float)); if (!entity.normals.empty()) ::memcpy(static_cast(&vertices[3 + offset]), static_cast(entity.normals[i].data()), 3 * sizeof(float)); } // indices data std::vector indices = entity.indices; rdata.indices_count = static_cast(indices.size()); // update bounding box for (size_t i = 0; i < entity.positions.size(); ++i) { m_bounding_box.merge(entity.positions[i].cast()); } send_to_gpu(rdata, vertices, indices); m_render_data.emplace_back(rdata); } } void GLModel::init_from(const indexed_triangle_set& its, const BoundingBoxf3 &bbox) { if (!m_render_data.empty()) // call reset() if you want to reuse this model return; RenderData data; data.type = PrimitiveType::Triangles; std::vector vertices = std::vector(18 * its.indices.size()); std::vector indices = std::vector(3 * its.indices.size()); unsigned int vertices_count = 0; for (uint32_t i = 0; i < its.indices.size(); ++i) { stl_triangle_vertex_indices face = its.indices[i]; stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] }; stl_vertex n = face_normal_normalized(vertex); for (size_t j = 0; j < 3; ++ j) { size_t offset = i * 18 + j * 6; ::memcpy(static_cast(&vertices[offset]), static_cast(vertex[j].data()), 3 * sizeof(float)); ::memcpy(static_cast(&vertices[3 + offset]), static_cast(n.data()), 3 * sizeof(float)); } for (size_t j = 0; j < 3; ++j) indices[i * 3 + j] = vertices_count + j; vertices_count += 3; } data.indices_count = static_cast(indices.size()); m_bounding_box = bbox; send_to_gpu(data, vertices, indices); m_render_data.emplace_back(data); } void GLModel::init_from(const indexed_triangle_set& its) { this->init_from(its, bounding_box(its)); } void GLModel::init_from(const Polygons& polygons, float z) { auto append_polygon = [](const Polygon& polygon, float z, GUI::GLModel::InitializationData& data) { if (!polygon.empty()) { GUI::GLModel::InitializationData::Entity entity; entity.type = GUI::GLModel::PrimitiveType::LineLoop; // contour entity.positions.reserve(polygon.size() + 1); entity.indices.reserve(polygon.size() + 1); unsigned int id = 0; for (const Point& p : polygon) { Vec3f position = unscale(p.x(), p.y(), 0.0).cast(); position.z() = z; entity.positions.emplace_back(position); entity.indices.emplace_back(id++); } data.entities.emplace_back(entity); } }; InitializationData init_data; for (const Polygon& polygon : polygons) { append_polygon(polygon, z, init_data); } init_from(init_data); } bool GLModel::init_from_file(const std::string& filename) { if (!boost::filesystem::exists(filename)) return false; if (!boost::algorithm::iends_with(filename, ".stl")) return false; Model model; try { model = Model::read_from_file(filename); } catch (std::exception&) { return false; } TriangleMesh mesh = model.mesh(); init_from(mesh.its, mesh.bounding_box()); m_filename = filename; return true; } void GLModel::set_color(int entity_id, const std::array& color) { for (size_t i = 0; i < m_render_data.size(); ++i) { if (entity_id == -1 || static_cast(i) == entity_id) m_render_data[i].color = color; } } void GLModel::reset() { for (RenderData& data : m_render_data) { // release gpu memory if (data.ibo_id > 0) glsafe(::glDeleteBuffers(1, &data.ibo_id)); if (data.vbo_id > 0) glsafe(::glDeleteBuffers(1, &data.vbo_id)); } m_render_data.clear(); m_bounding_box = BoundingBoxf3(); m_filename = std::string(); } void GLModel::render() const { GLShaderProgram* shader = wxGetApp().get_current_shader(); for (const RenderData& data : m_render_data) { // sends data to gpu if not done yet if (data.vbo_id == 0 || data.ibo_id == 0) { auto origin_data = const_cast(&data); if (data.geometry.vertices_count() > 0 && data.geometry.indices_count() > 0 && !send_to_gpu(*origin_data, data.geometry.vertices, data.geometry.indices)) continue; } bool has_normal = true; if (data.geometry.vertices_count() > 0) { has_normal = Geometry::has_normal(data.geometry.format); } GLenum mode; switch (data.type) { default: case PrimitiveType::Triangles: { mode = GL_TRIANGLES; break; } case PrimitiveType::Lines: { mode = GL_LINES; break; } case PrimitiveType::LineStrip: { mode = GL_LINE_STRIP; break; } case PrimitiveType::LineLoop: { mode = GL_LINE_LOOP; break; } } glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id)); if (has_normal) { glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void *) 0)); glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), (const void *) (3 * sizeof(float)))); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); glsafe(::glEnableClientState(GL_NORMAL_ARRAY)); } else { glsafe(::glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), (const void *) 0)); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); } if (shader != nullptr) shader->set_uniform("uniform_color", data.color); else glsafe(::glColor4fv(data.color.data())); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id)); glsafe(::glDrawElements(mode, static_cast(data.indices_count), GL_UNSIGNED_INT, (const void*)0)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); glsafe(::glDisableClientState(GL_NORMAL_ARRAY)); glsafe(::glDisableClientState(GL_VERTEX_ARRAY)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } } void GLModel::render_instanced(unsigned int instances_vbo, unsigned int instances_count) const { if (instances_vbo == 0) return; GLShaderProgram* shader = wxGetApp().get_current_shader(); assert(shader == nullptr || boost::algorithm::iends_with(shader->get_name(), "_instanced")); // vertex attributes GLint position_id = (shader != nullptr) ? shader->get_attrib_location("v_position") : -1; GLint normal_id = (shader != nullptr) ? shader->get_attrib_location("v_normal") : -1; assert(position_id != -1 && normal_id != -1); // instance attributes GLint offset_id = (shader != nullptr) ? shader->get_attrib_location("i_offset") : -1; GLint scales_id = (shader != nullptr) ? shader->get_attrib_location("i_scales") : -1; assert(offset_id != -1 && scales_id != -1); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, instances_vbo)); if (offset_id != -1) { glsafe(::glVertexAttribPointer(offset_id, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)0)); glsafe(::glEnableVertexAttribArray(offset_id)); glsafe(::glVertexAttribDivisor(offset_id, 1)); } if (scales_id != -1) { glsafe(::glVertexAttribPointer(scales_id, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (GLvoid*)(3 * sizeof(float)))); glsafe(::glEnableVertexAttribArray(scales_id)); glsafe(::glVertexAttribDivisor(scales_id, 1)); } for (const RenderData& data : m_render_data) { if (data.vbo_id == 0 || data.ibo_id == 0) continue; GLenum mode; switch (data.type) { default: case PrimitiveType::Triangles: { mode = GL_TRIANGLES; break; } case PrimitiveType::Lines: { mode = GL_LINES; break; } case PrimitiveType::LineStrip: { mode = GL_LINE_STRIP; break; } case PrimitiveType::LineLoop: { mode = GL_LINE_LOOP; break; } } if (shader != nullptr) shader->set_uniform("uniform_color", data.color); else glsafe(::glColor4fv(data.color.data())); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id)); if (position_id != -1) { glsafe(::glVertexAttribPointer(position_id, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (GLvoid*)0)); glsafe(::glEnableVertexAttribArray(position_id)); } if (normal_id != -1) { glsafe(::glVertexAttribPointer(normal_id, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (GLvoid*)(3 * sizeof(float)))); glsafe(::glEnableVertexAttribArray(normal_id)); } glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id)); glsafe(::glDrawElementsInstanced(mode, static_cast(data.indices_count), GL_UNSIGNED_INT, (const void*)0, instances_count)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); if (normal_id != -1) glsafe(::glDisableVertexAttribArray(normal_id)); if (position_id != -1) glsafe(::glDisableVertexAttribArray(position_id)); } if (scales_id != -1) glsafe(::glDisableVertexAttribArray(scales_id)); if (offset_id != -1) glsafe(::glDisableVertexAttribArray(offset_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } bool GLModel::send_to_gpu(RenderData& data, const std::vector& vertices, const std::vector& indices) const { if (data.vbo_id > 0 || data.ibo_id > 0) { assert(false); return false; } if (vertices.empty() || indices.empty()) { assert(false); return false; } // vertex data -> send to gpu glsafe(::glGenBuffers(1, &data.vbo_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, data.vbo_id)); glsafe(::glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), vertices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); // indices data -> send to gpu glsafe(::glGenBuffers(1, &data.ibo_id)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ibo_id)); glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), indices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); return true; } GLModel::InitializationData stilized_arrow(int resolution, float tip_radius, float tip_height, float stem_radius, float stem_height) { auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) { entity.positions.emplace_back(position); entity.normals.emplace_back(normal); }; auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) { entity.indices.emplace_back(v1); entity.indices.emplace_back(v2); entity.indices.emplace_back(v3); }; resolution = std::max(4, resolution); GLModel::InitializationData data; GLModel::InitializationData::Entity entity; entity.type = GLModel::PrimitiveType::Triangles; const float angle_step = 2.0f * M_PI / static_cast(resolution); std::vector cosines(resolution); std::vector sines(resolution); for (int i = 0; i < resolution; ++i) { const float angle = angle_step * static_cast(i); cosines[i] = ::cos(angle); sines[i] = -::sin(angle); } const float total_height = tip_height + stem_height; // tip vertices/normals append_vertex(entity, { 0.0f, 0.0f, total_height }, Vec3f::UnitZ()); for (int i = 0; i < resolution; ++i) { append_vertex(entity, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f }); } // tip triangles for (int i = 0; i < resolution; ++i) { const int v3 = (i < resolution - 1) ? i + 2 : 1; append_indices(entity, 0, i + 1, v3); } // tip cap outer perimeter vertices for (int i = 0; i < resolution; ++i) { append_vertex(entity, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, -Vec3f::UnitZ()); } // tip cap inner perimeter vertices for (int i = 0; i < resolution; ++i) { append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, -Vec3f::UnitZ()); } // tip cap triangles for (int i = 0; i < resolution; ++i) { const int v2 = (i < resolution - 1) ? i + resolution + 2 : resolution + 1; const int v3 = (i < resolution - 1) ? i + 2 * resolution + 2 : 2 * resolution + 1; append_indices(entity, i + resolution + 1, v3, v2); append_indices(entity, i + resolution + 1, i + 2 * resolution + 1, v3); } // stem bottom vertices for (int i = 0; i < resolution; ++i) { append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f }); } // stem top vertices for (int i = 0; i < resolution; ++i) { append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, { sines[i], cosines[i], 0.0f }); } // stem triangles for (int i = 0; i < resolution; ++i) { const int v2 = (i < resolution - 1) ? i + 3 * resolution + 2 : 3 * resolution + 1; const int v3 = (i < resolution - 1) ? i + 4 * resolution + 2 : 4 * resolution + 1; append_indices(entity, i + 3 * resolution + 1, v3, v2); append_indices(entity, i + 3 * resolution + 1, i + 4 * resolution + 1, v3); } // stem cap vertices append_vertex(entity, Vec3f::Zero(), -Vec3f::UnitZ()); for (int i = 0; i < resolution; ++i) { append_vertex(entity, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, -Vec3f::UnitZ()); } // stem cap triangles for (int i = 0; i < resolution; ++i) { const int v3 = (i < resolution - 1) ? i + 5 * resolution + 3 : 5 * resolution + 2; append_indices(entity, 5 * resolution + 1, v3, i + 5 * resolution + 2); } data.entities.emplace_back(entity); return data; } GLModel::InitializationData circular_arrow(int resolution, float radius, float tip_height, float tip_width, float stem_width, float thickness) { auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) { entity.positions.emplace_back(position); entity.normals.emplace_back(normal); }; auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) { entity.indices.emplace_back(v1); entity.indices.emplace_back(v2); entity.indices.emplace_back(v3); }; resolution = std::max(2, resolution); GLModel::InitializationData data; GLModel::InitializationData::Entity entity; entity.type = GLModel::PrimitiveType::Triangles; const float half_thickness = 0.5f * thickness; const float half_stem_width = 0.5f * stem_width; const float half_tip_width = 0.5f * tip_width; const float outer_radius = radius + half_stem_width; const float inner_radius = radius - half_stem_width; const float step_angle = 0.5f * PI / static_cast(resolution); // tip // top face vertices append_vertex(entity, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { -tip_height, radius, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitZ()); // top face triangles append_indices(entity, 0, 1, 2); append_indices(entity, 0, 2, 4); append_indices(entity, 4, 2, 3); // bottom face vertices append_vertex(entity, { 0.0f, outer_radius, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { -tip_height, radius, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { 0.0f, inner_radius, -half_thickness }, -Vec3f::UnitZ()); // bottom face triangles append_indices(entity, 5, 7, 6); append_indices(entity, 5, 9, 7); append_indices(entity, 9, 8, 7); // side faces vertices append_vertex(entity, { 0.0f, outer_radius, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitX()); Vec3f normal(-half_tip_width, tip_height, 0.0f); normal.normalize(); append_vertex(entity, { 0.0f, radius + half_tip_width, -half_thickness }, normal); append_vertex(entity, { -tip_height, radius, -half_thickness }, normal); append_vertex(entity, { 0.0f, radius + half_tip_width, half_thickness }, normal); append_vertex(entity, { -tip_height, radius, half_thickness }, normal); normal = Vec3f(-half_tip_width, -tip_height, 0.0f); normal.normalize(); append_vertex(entity, { -tip_height, radius, -half_thickness }, normal); append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, normal); append_vertex(entity, { -tip_height, radius, half_thickness }, normal); append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, normal); append_vertex(entity, { 0.0f, radius - half_tip_width, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, inner_radius, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitX()); append_vertex(entity, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitX()); // side face triangles for (int i = 0; i < 4; ++i) { const int ii = i * 4; append_indices(entity, 10 + ii, 11 + ii, 13 + ii); append_indices(entity, 10 + ii, 13 + ii, 12 + ii); } // stem // top face vertices for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; append_vertex(entity, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ()); } for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; append_vertex(entity, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ()); } // top face triangles for (int i = 0; i < resolution; ++i) { append_indices(entity, 26 + i, 27 + i, 27 + resolution + i); append_indices(entity, 27 + i, 28 + resolution + i, 27 + resolution + i); } // bottom face vertices for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; append_vertex(entity, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ()); } for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; append_vertex(entity, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ()); } // bottom face triangles for (int i = 0; i < resolution; ++i) { append_indices(entity, 28 + 2 * resolution + i, 29 + 3 * resolution + i, 29 + 2 * resolution + i); append_indices(entity, 29 + 2 * resolution + i, 29 + 3 * resolution + i, 30 + 3 * resolution + i); } // side faces vertices and triangles for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); append_vertex(entity, { inner_radius * s, inner_radius * c, -half_thickness }, { -s, -c, 0.0f }); } for (int i = 0; i <= resolution; ++i) { const float angle = static_cast(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); append_vertex(entity, { inner_radius * s, inner_radius * c, half_thickness }, { -s, -c, 0.0f }); } int first_id = 26 + 4 * (resolution + 1); for (int i = 0; i < resolution; ++i) { const int ii = first_id + i; append_indices(entity, ii, ii + 1, ii + resolution + 2); append_indices(entity, ii, ii + resolution + 2, ii + resolution + 1); } append_vertex(entity, { inner_radius, 0.0f, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { outer_radius, 0.0f, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { inner_radius, 0.0f, half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { outer_radius, 0.0f, half_thickness }, -Vec3f::UnitY()); first_id = 26 + 6 * (resolution + 1); append_indices(entity, first_id, first_id + 1, first_id + 3); append_indices(entity, first_id, first_id + 3, first_id + 2); for (int i = resolution; i >= 0; --i) { const float angle = static_cast(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); append_vertex(entity, { outer_radius * s, outer_radius * c, -half_thickness }, { s, c, 0.0f }); } for (int i = resolution; i >= 0; --i) { const float angle = static_cast(i) * step_angle; const float c = ::cos(angle); const float s = ::sin(angle); append_vertex(entity, { outer_radius * s, outer_radius * c, +half_thickness }, { s, c, 0.0f }); } first_id = 30 + 6 * (resolution + 1); for (int i = 0; i < resolution; ++i) { const int ii = first_id + i; append_indices(entity, ii, ii + 1, ii + resolution + 2); append_indices(entity, ii, ii + resolution + 2, ii + resolution + 1); } data.entities.emplace_back(entity); return data; } GLModel::InitializationData straight_arrow(float tip_width, float tip_height, float stem_width, float stem_height, float thickness) { auto append_vertex = [](GLModel::InitializationData::Entity& entity, const Vec3f& position, const Vec3f& normal) { entity.positions.emplace_back(position); entity.normals.emplace_back(normal); }; auto append_indices = [](GLModel::InitializationData::Entity& entity, unsigned int v1, unsigned int v2, unsigned int v3) { entity.indices.emplace_back(v1); entity.indices.emplace_back(v2); entity.indices.emplace_back(v3); }; GLModel::InitializationData data; GLModel::InitializationData::Entity entity; entity.type = GLModel::PrimitiveType::Triangles; const float half_thickness = 0.5f * thickness; const float half_stem_width = 0.5f * stem_width; const float half_tip_width = 0.5f * tip_width; const float total_height = tip_height + stem_height; // top face vertices append_vertex(entity, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { 0.0, total_height, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, Vec3f::UnitZ()); append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, Vec3f::UnitZ()); // top face triangles append_indices(entity, 0, 1, 6); append_indices(entity, 6, 1, 5); append_indices(entity, 4, 5, 3); append_indices(entity, 5, 1, 3); append_indices(entity, 1, 2, 3); // bottom face vertices append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { 0.0, total_height, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitZ()); append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitZ()); // bottom face triangles append_indices(entity, 7, 13, 8); append_indices(entity, 13, 12, 8); append_indices(entity, 12, 11, 10); append_indices(entity, 8, 12, 10); append_indices(entity, 9, 8, 10); // side faces vertices append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, Vec3f::UnitX()); append_vertex(entity, { half_stem_width, 0.0, half_thickness }, Vec3f::UnitX()); append_vertex(entity, { half_stem_width, stem_height, half_thickness }, Vec3f::UnitX()); append_vertex(entity, { half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY()); Vec3f normal(tip_height, half_tip_width, 0.0f); normal.normalize(); append_vertex(entity, { half_tip_width, stem_height, -half_thickness }, normal); append_vertex(entity, { 0.0, total_height, -half_thickness }, normal); append_vertex(entity, { half_tip_width, stem_height, half_thickness }, normal); append_vertex(entity, { 0.0, total_height, half_thickness }, normal); normal = Vec3f(-tip_height, half_tip_width, 0.0f); normal.normalize(); append_vertex(entity, { 0.0, total_height, -half_thickness }, normal); append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, normal); append_vertex(entity, { 0.0, total_height, half_thickness }, normal); append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, normal); append_vertex(entity, { -half_tip_width, stem_height, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { -half_tip_width, stem_height, half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { -half_stem_width, stem_height, -half_thickness }, -Vec3f::UnitX()); append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitX()); append_vertex(entity, { -half_stem_width, stem_height, half_thickness }, -Vec3f::UnitX()); append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitX()); append_vertex(entity, { -half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { half_stem_width, 0.0, -half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { -half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY()); append_vertex(entity, { half_stem_width, 0.0, half_thickness }, -Vec3f::UnitY()); // side face triangles for (int i = 0; i < 7; ++i) { const int ii = i * 4; append_indices(entity, 14 + ii, 15 + ii, 17 + ii); append_indices(entity, 14 + ii, 17 + ii, 16 + ii); } data.entities.emplace_back(entity); return data; } GLModel::InitializationData diamond(int resolution) { resolution = std::max(4, resolution); GLModel::InitializationData data; GLModel::InitializationData::Entity entity; entity.type = GLModel::PrimitiveType::Triangles; const float step = 2.0f * float(PI) / float(resolution); // positions for (int i = 0; i < resolution; ++i) { float ii = float(i) * step; entity.positions.emplace_back(0.5f * ::cos(ii), 0.5f * ::sin(ii), 0.0f); } entity.positions.emplace_back(0.0f, 0.0f, 0.5f); entity.positions.emplace_back(0.0f, 0.0f, -0.5f); // normals for (const Vec3f& v : entity.positions) { entity.normals.emplace_back(v.normalized()); } // triangles // top for (int i = 0; i < resolution; ++i) { entity.indices.push_back(i + 0); entity.indices.push_back(i + 1); entity.indices.push_back(resolution); } entity.indices.push_back(resolution - 1); entity.indices.push_back(0); entity.indices.push_back(resolution); // bottom for (int i = 0; i < resolution; ++i) { entity.indices.push_back(i + 0); entity.indices.push_back(resolution + 1); entity.indices.push_back(i + 1); } entity.indices.push_back(resolution - 1); entity.indices.push_back(resolution + 1); entity.indices.push_back(0); data.entities.emplace_back(entity); return data; } GLModel::Geometry smooth_sphere(unsigned int resolution, float radius) { resolution = std::max(4, resolution); const unsigned int sectorCount = resolution; const unsigned int stackCount = resolution; const float sectorStep = float(2.0 * M_PI / sectorCount); const float stackStep = float(M_PI / stackCount); GLModel::Geometry data; data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3}; data.reserve_vertices((stackCount - 1) * sectorCount + 2); data.reserve_indices((2 * (stackCount - 1) * sectorCount) * 3); // vertices for (unsigned int i = 0; i <= stackCount; ++i) { // from pi/2 to -pi/2 const double stackAngle = 0.5 * M_PI - stackStep * i; const double xy = double(radius) * ::cos(stackAngle); const double z = double(radius) * ::sin(stackAngle); if (i == 0 || i == stackCount) { const Vec3f v(float(xy), 0.0f, float(z)); data.add_vertex(v, (Vec3f) v.normalized()); } else { for (unsigned int j = 0; j < sectorCount; ++j) { // from 0 to 2pi const double sectorAngle = sectorStep * j; const Vec3f v(float(xy * std::cos(sectorAngle)), float(xy * std::sin(sectorAngle)), float(z)); data.add_vertex(v, (Vec3f) v.normalized()); } } } // triangles for (unsigned int i = 0; i < stackCount; ++i) { // Beginning of current stack. unsigned int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount); const unsigned int k1_first = k1; // Beginning of next stack. unsigned int k2 = (i == 0) ? 1 : (k1 + sectorCount); const unsigned int k2_first = k2; for (unsigned int j = 0; j < sectorCount; ++j) { // 2 triangles per sector excluding first and last stacks unsigned int k1_next = k1; unsigned int k2_next = k2; if (i != 0) { k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1); data.add_triangle(k1, k2, k1_next); } if (i + 1 != stackCount) { k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1); data.add_triangle(k1_next, k2, k2_next); } k1 = k1_next; k2 = k2_next; } } return data; } GLModel::Geometry smooth_cylinder(unsigned int resolution, float radius, float height) { resolution = std::max(4, resolution); const unsigned int sectorCount = resolution; const float sectorStep = 2.0f * float(M_PI) / float(sectorCount); GLModel::Geometry data; data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3}; data.reserve_vertices(sectorCount * 4 + 2); data.reserve_indices(sectorCount * 4 * 3); auto generate_vertices_on_circle = [sectorCount, sectorStep](float radius) { std::vector ret; ret.reserve(sectorCount); for (unsigned int i = 0; i < sectorCount; ++i) { // from 0 to 2pi const float sectorAngle = sectorStep * i; ret.emplace_back(radius * std::cos(sectorAngle), radius * std::sin(sectorAngle), 0.0f); } return ret; }; const std::vector base_vertices = generate_vertices_on_circle(radius); const Vec3f h = height * Vec3f::UnitZ(); // stem vertices for (unsigned int i = 0; i < sectorCount; ++i) { const Vec3f &v = base_vertices[i]; const Vec3f n = v.normalized(); data.add_vertex(v, n); data.add_vertex(v + h, n); } // stem triangles for (unsigned int i = 0; i < sectorCount; ++i) { unsigned int v1 = i * 2; unsigned int v2 = (i < sectorCount - 1) ? v1 + 2 : 0; unsigned int v3 = v2 + 1; unsigned int v4 = v1 + 1; data.add_triangle(v1, v2, v3); data.add_triangle(v1, v3, v4); } // bottom cap vertices Vec3f cap_center = Vec3f::Zero(); unsigned int cap_center_id = data.vertices_count(); Vec3f normal = -Vec3f::UnitZ(); data.add_vertex(cap_center, normal); for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i], normal); } // bottom cap triangles for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1, cap_center_id + i + 1); } // top cap vertices cap_center += h; cap_center_id = data.vertices_count(); normal = -normal; data.add_vertex(cap_center, normal); for (unsigned int i = 0; i < sectorCount; ++i) { data.add_vertex(base_vertices[i] + h, normal); } // top cap triangles for (unsigned int i = 0; i < sectorCount; ++i) { data.add_triangle(cap_center_id, cap_center_id + i + 1, (i < sectorCount - 1) ? cap_center_id + i + 2 : cap_center_id + 1); } return data; } GLModel::Geometry smooth_torus(unsigned int primary_resolution, unsigned int secondary_resolution, float radius, float thickness) { const unsigned int torus_sector_count = std::max(4, primary_resolution); const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count); const unsigned int section_sector_count = std::max(4, secondary_resolution); const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count); GLModel::Geometry data; data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3}; data.reserve_vertices(torus_sector_count * section_sector_count); data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3); // vertices for (unsigned int i = 0; i < torus_sector_count; ++i) { const float section_angle = torus_sector_step * i; const float csa = std::cos(section_angle); const float ssa = std::sin(section_angle); const Vec3f section_center(radius * csa, radius * ssa, 0.0f); for (unsigned int j = 0; j < section_sector_count; ++j) { const float circle_angle = section_sector_step * j; const float thickness_xy = thickness * std::cos(circle_angle); const float thickness_z = thickness * std::sin(circle_angle); const Vec3f v(thickness_xy * csa, thickness_xy * ssa, thickness_z); data.add_vertex(section_center + v, (Vec3f) v.normalized()); } } // triangles for (unsigned int i = 0; i < torus_sector_count; ++i) { const unsigned int ii = i * section_sector_count; const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count; for (unsigned int j = 0; j < section_sector_count; ++j) { const unsigned int j_next = (j + 1) % section_sector_count; const unsigned int i0 = ii + j; const unsigned int i1 = ii_next + j; const unsigned int i2 = ii_next + j_next; const unsigned int i3 = ii + j_next; data.add_triangle(i0, i1, i2); data.add_triangle(i0, i2, i3); } } return data; } std::shared_ptr init_plane_data(const indexed_triangle_set &its, const std::vector &triangle_indices, float normal_offset) { GLModel::Geometry init_data; init_data.format = {GUI::GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3}; init_data.reserve_indices(3 * triangle_indices.size()); init_data.reserve_vertices(3 * triangle_indices.size()); unsigned int i = 0; for (int idx : triangle_indices) { Vec3f v0 = its.vertices[its.indices[idx][0]]; Vec3f v1 = its.vertices[its.indices[idx][1]]; Vec3f v2 = its.vertices[its.indices[idx][2]]; const Vec3f n = (v1 - v0).cross(v2 - v0).normalized(); if (std::abs(normal_offset) > 0.0) { v0 = v0 + n * normal_offset; v1 = v1 + n * normal_offset; v2 = v2 + n * normal_offset; } init_data.add_vertex(v0, n); init_data.add_vertex(v1, n); init_data.add_vertex(v2, n); init_data.add_triangle(i, i + 1, i + 2); i += 3; } std::shared_ptr gl_data = std::make_shared(); gl_data->init_from(std::move(init_data), true); return gl_data; } std::shared_ptr init_torus_data(unsigned int primary_resolution, unsigned int secondary_resolution, const Vec3f & center, float radius, float thickness, const Vec3f & model_axis, const Transform3f &world_trafo) { const unsigned int torus_sector_count = std::max(4, primary_resolution); const unsigned int section_sector_count = std::max(4, secondary_resolution); const float torus_sector_step = 2.0f * float(M_PI) / float(torus_sector_count); const float section_sector_step = 2.0f * float(M_PI) / float(section_sector_count); GLModel::Geometry data; data.format = {GLModel::PrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3}; data.reserve_vertices(torus_sector_count * section_sector_count); data.reserve_indices(torus_sector_count * section_sector_count * 2 * 3); // vertices const Transform3f local_to_world_matrix = world_trafo * Geometry::translation_transform(center.cast()).cast() * Eigen::Quaternion::FromTwoVectors(Vec3f::UnitZ(), model_axis); for (unsigned int i = 0; i < torus_sector_count; ++i) { const float section_angle = torus_sector_step * i; const Vec3f radius_dir(std::cos(section_angle), std::sin(section_angle), 0.0f); const Vec3f local_section_center = radius * radius_dir; const Vec3f world_section_center = local_to_world_matrix * local_section_center; const Vec3f local_section_normal = local_section_center.normalized().cross(Vec3f::UnitZ()).normalized(); const Vec3f world_section_normal = (Vec3f) (local_to_world_matrix.matrix().block(0, 0, 3, 3) * local_section_normal).normalized(); const Vec3f base_v = thickness * radius_dir; for (unsigned int j = 0; j < section_sector_count; ++j) { const Vec3f v = Eigen::AngleAxisf(section_sector_step * j, world_section_normal) * base_v; data.add_vertex(world_section_center + v, (Vec3f) v.normalized()); } } // triangles for (unsigned int i = 0; i < torus_sector_count; ++i) { const unsigned int ii = i * section_sector_count; const unsigned int ii_next = ((i + 1) % torus_sector_count) * section_sector_count; for (unsigned int j = 0; j < section_sector_count; ++j) { const unsigned int j_next = (j + 1) % section_sector_count; const unsigned int i0 = ii + j; const unsigned int i1 = ii_next + j; const unsigned int i2 = ii_next + j_next; const unsigned int i3 = ii + j_next; data.add_triangle(i0, i1, i2); data.add_triangle(i0, i2, i3); } } std::shared_ptr gl_data = std::make_shared(); gl_data->init_from(std::move(data), true); return gl_data; } } // namespace GUI } // namespace Slic3r