BambuStudio/libslic3r/Arachne/utils/linearAlg2D.hpp

123 lines
4.9 KiB
C++

//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef UTILS_LINEAR_ALG_2D_H
#define UTILS_LINEAR_ALG_2D_H
#include "../../Point.hpp"
namespace Slic3r::Arachne::LinearAlg2D
{
/*!
* Test whether a point is inside a corner.
* Whether point \p query_point is left of the corner abc.
* Whether the \p query_point is in the circle half left of ab and left of bc, rather than to the right.
*
* Test whether the \p query_point is inside of a polygon w.r.t a single corner.
*/
inline static bool isInsideCorner(const Point &a, const Point &b, const Point &c, const Vec2i64 &query_point)
{
// Visualisation for the algorithm below:
//
// query
// |
// |
// |
// perp-----------b
// / \ (note that the lines
// / \ AB and AC are normalized
// / \ to 10000 units length)
// a c
//
auto normal = [](const Point &p0, coord_t len) -> Point {
int64_t _len = p0.cast<int64_t>().norm();
if (_len < 1)
return {len, 0};
return (p0.cast<int64_t>() * int64_t(len) / _len).cast<coord_t>();
};
auto rotate_90_degree_ccw = [](const Vec2d &p) -> Vec2d {
return {-p.y(), p.x()};
};
constexpr coord_t normal_length = 10000; //Create a normal vector of reasonable length in order to reduce rounding error.
const Point ba = normal(a - b, normal_length);
const Point bc = normal(c - b, normal_length);
const Vec2d bq = query_point.cast<double>() - b.cast<double>();
const Vec2d perpendicular = rotate_90_degree_ccw(bq); //The query projects to this perpendicular to coordinate 0.
const double project_a_perpendicular = ba.cast<double>().dot(perpendicular); //Project vertex A on the perpendicular line.
const double project_c_perpendicular = bc.cast<double>().dot(perpendicular); //Project vertex C on the perpendicular line.
if ((project_a_perpendicular > 0.) != (project_c_perpendicular > 0.)) //Query is between A and C on the projection.
{
return project_a_perpendicular > 0.; //Due to the winding order of corner ABC, this means that the query is inside.
}
else //Beyond either A or C, but it could still be inside of the polygon.
{
const double project_a_parallel = ba.cast<double>().dot(bq); //Project not on the perpendicular, but on the original.
const double project_c_parallel = bc.cast<double>().dot(bq);
//Either:
// * A is to the right of B (project_a_perpendicular > 0) and C is below A (project_c_parallel < project_a_parallel), or
// * A is to the left of B (project_a_perpendicular < 0) and C is above A (project_c_parallel > project_a_parallel).
return (project_c_parallel < project_a_parallel) == (project_a_perpendicular > 0.);
}
}
/*!
* Returns the determinant of the 2D matrix defined by the the vectors ab and ap as rows.
*
* The returned value is zero for \p p lying (approximately) on the line going through \p a and \p b
* The value is positive for values lying to the left and negative for values lying to the right when looking from \p a to \p b.
*
* \param p the point to check
* \param a the from point of the line
* \param b the to point of the line
* \return a positive value when \p p lies to the left of the line from \p a to \p b
*/
static inline int64_t pointIsLeftOfLine(const Point &p, const Point &a, const Point &b)
{
return int64_t(b.x() - a.x()) * int64_t(p.y() - a.y()) - int64_t(b.y() - a.y()) * int64_t(p.x() - a.x());
}
/*!
* Compute the angle between two consecutive line segments.
*
* The angle is computed from the left side of b when looking from a.
*
* c
* \ .
* \ b
* angle|
* |
* a
*
* \param a start of first line segment
* \param b end of first segment and start of second line segment
* \param c end of second line segment
* \return the angle in radians between 0 and 2 * pi of the corner in \p b
*/
static inline float getAngleLeft(const Point &a, const Point &b, const Point &c)
{
const Vec2i64 ba = (a - b).cast<int64_t>();
const Vec2i64 bc = (c - b).cast<int64_t>();
const int64_t dott = ba.dot(bc); // dot product
const int64_t det = cross2(ba, bc); // determinant
if (det == 0) {
if ((ba.x() != 0 && (ba.x() > 0) == (bc.x() > 0)) || (ba.x() == 0 && (ba.y() > 0) == (bc.y() > 0)))
return 0; // pointy bit
else
return float(M_PI); // straight bit
}
const float angle = -atan2(double(det), double(dott)); // from -pi to pi
if (angle >= 0)
return angle;
else
return M_PI * 2 + angle;
}
}//namespace Slic3r::Arachne
#endif//UTILS_LINEAR_ALG_2D_H