BambuStudio/libslic3r/ExtrusionEntity.hpp

650 lines
30 KiB
C++

#ifndef slic3r_ExtrusionEntity_hpp_
#define slic3r_ExtrusionEntity_hpp_
#include "libslic3r.h"
#include "Polygon.hpp"
#include "Polyline.hpp"
#include <assert.h>
#include <string_view>
#include <numeric>
namespace Slic3r {
class ExPolygon;
using ExPolygons = std::vector<ExPolygon>;
class ExtrusionEntityCollection;
class Extruder;
// Each ExtrusionRole value identifies a distinct set of { extruder, speed }
enum ExtrusionRole : uint8_t {
erNone,
erPerimeter,
erExternalPerimeter,
erOverhangPerimeter,
erInternalInfill,
erSolidInfill,
erTopSolidInfill,
erBottomSurface,
erIroning,
erBridgeInfill,
erGapFill,
erSkirt,
erBrim,
erSupportMaterial,
erSupportMaterialInterface,
erSupportTransition,
erWipeTower,
erCustom,
// Extrusion role for a collection with multiple extrusion roles.
erMixed,
erCount
};
// Special flags describing loop
enum ExtrusionLoopRole {
elrDefault,
elrContourInternalPerimeter,
elrSkirt,
elrPerimeterHole,
};
inline bool is_perimeter(ExtrusionRole role)
{
return role == erPerimeter
|| role == erExternalPerimeter
|| role == erOverhangPerimeter;
}
inline bool is_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erInternalInfill
|| role == erSolidInfill
|| role == erTopSolidInfill
|| role == erBottomSurface
|| role == erIroning;
}
inline bool is_top_surface(ExtrusionRole role)
{
return role == erTopSolidInfill;
}
inline bool is_solid_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erSolidInfill
|| role == erTopSolidInfill
|| role == erBottomSurface
|| role == erIroning;
}
inline bool is_bridge(ExtrusionRole role) {
return role == erBridgeInfill
|| role == erOverhangPerimeter;
}
class ExtrusionEntity
{
public:
virtual ExtrusionRole role() const = 0;
virtual bool is_collection() const { return false; }
virtual bool is_loop() const { return false; }
virtual bool can_reverse() const { return true; }
virtual bool can_sort() const { return true; }//BBS: only used in ExtrusionEntityCollection
virtual void set_reverse() {}
virtual ExtrusionEntity* clone() const = 0;
// Create a new object, initialize it with this object using the move semantics.
virtual ExtrusionEntity* clone_move() = 0;
virtual ~ExtrusionEntity() {}
virtual void reverse() = 0;
virtual const Point& first_point() const = 0;
virtual const Point& last_point() const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
virtual double min_mm3_per_mm() const = 0;
virtual Polyline as_polyline() const = 0;
virtual void collect_polylines(Polylines &dst) const = 0;
virtual void collect_points(Points &dst) const = 0;
virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
virtual double length() const = 0;
virtual double total_volume() const = 0;
static std::string role_to_string(ExtrusionRole role);
static ExtrusionRole string_to_role(const std::string_view role);
};
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
class ExtrusionPath : public ExtrusionEntity
{
public:
Polyline polyline;
double overhang_degree = 0;
int curve_degree = 0;
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
double mm3_per_mm;
// Width of the extrusion, used for visualization purposes.
float width;
// Height of the extrusion, used for visualization purposes.
float height;
double smooth_speed = 0;
ExtrusionPath() : mm3_per_mm(-1), width(-1), height(-1), m_role(erNone), m_no_extrusion(false) {}
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role), m_no_extrusion(false) {}
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height, bool no_extrusion = false) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role), m_no_extrusion(no_extrusion) {}
ExtrusionPath(double overhang_degree, int curve_degree, ExtrusionRole role, double mm3_per_mm, float width, float height) : overhang_degree(overhang_degree), curve_degree(curve_degree), mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {}
ExtrusionPath(const ExtrusionPath &rhs)
: polyline(rhs.polyline)
, overhang_degree(rhs.overhang_degree)
, curve_degree(rhs.curve_degree)
, mm3_per_mm(rhs.mm3_per_mm)
, width(rhs.width)
, height(rhs.height)
, smooth_speed(rhs.smooth_speed)
, m_can_reverse(rhs.m_can_reverse)
, m_role(rhs.m_role)
, m_no_extrusion(rhs.m_no_extrusion)
{}
ExtrusionPath(ExtrusionPath &&rhs)
: polyline(std::move(rhs.polyline))
, overhang_degree(rhs.overhang_degree)
, curve_degree(rhs.curve_degree)
, mm3_per_mm(rhs.mm3_per_mm)
, width(rhs.width)
, height(rhs.height)
, smooth_speed(rhs.smooth_speed)
, m_can_reverse(rhs.m_can_reverse)
, m_role(rhs.m_role)
, m_no_extrusion(rhs.m_no_extrusion)
{}
ExtrusionPath(const Polyline &polyline, const ExtrusionPath &rhs)
: polyline(polyline)
, overhang_degree(rhs.overhang_degree)
, curve_degree(rhs.curve_degree)
, mm3_per_mm(rhs.mm3_per_mm)
, width(rhs.width)
, height(rhs.height)
, smooth_speed(rhs.smooth_speed)
, m_can_reverse(rhs.m_can_reverse)
, m_role(rhs.m_role)
, m_no_extrusion(rhs.m_no_extrusion)
{}
ExtrusionPath(Polyline &&polyline, const ExtrusionPath &rhs)
: polyline(std::move(polyline))
, overhang_degree(rhs.overhang_degree)
, curve_degree(rhs.curve_degree)
, mm3_per_mm(rhs.mm3_per_mm)
, width(rhs.width)
, height(rhs.height)
, smooth_speed(rhs.smooth_speed)
, m_can_reverse(rhs.m_can_reverse)
, m_role(rhs.m_role)
, m_no_extrusion(rhs.m_no_extrusion)
{}
ExtrusionPath& operator=(const ExtrusionPath& rhs) {
m_can_reverse = rhs.m_can_reverse;
m_role = rhs.m_role;
m_no_extrusion = rhs.m_no_extrusion;
this->mm3_per_mm = rhs.mm3_per_mm;
this->width = rhs.width;
this->height = rhs.height;
this->smooth_speed = rhs.smooth_speed;
this->overhang_degree = rhs.overhang_degree;
this->curve_degree = rhs.curve_degree;
this->polyline = rhs.polyline;
return *this;
}
ExtrusionPath& operator=(ExtrusionPath&& rhs) {
m_can_reverse = rhs.m_can_reverse;
m_role = rhs.m_role;
m_no_extrusion = rhs.m_no_extrusion;
this->mm3_per_mm = rhs.mm3_per_mm;
this->width = rhs.width;
this->height = rhs.height;
this->smooth_speed = rhs.smooth_speed;
this->overhang_degree = rhs.overhang_degree;
this->curve_degree = rhs.curve_degree;
this->polyline = std::move(rhs.polyline);
return *this;
}
ExtrusionEntity* clone() const override { return new ExtrusionPath(*this); }
// Create a new object, initialize it with this object using the move semantics.
ExtrusionEntity* clone_move() override { return new ExtrusionPath(std::move(*this)); }
void reverse() override { this->polyline.reverse(); }
const Point& first_point() const override { return this->polyline.points.front(); }
const Point& last_point() const override { return this->polyline.points.back(); }
size_t size() const { return this->polyline.size(); }
bool empty() const { return this->polyline.empty(); }
bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
// Produce a list of extrusion paths into retval by clipping this path by ExPolygons.
// Currently not used.
void intersect_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const;
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygons.
// Currently not used.
void subtract_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const;
void clip_end(double distance);
void simplify(double tolerance);
double length() const override;
ExtrusionRole role() const override { return m_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const override { return this->mm3_per_mm; }
Polyline as_polyline() const override { return this->polyline; }
void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
void collect_points(Points &dst) const override { append(dst, this->polyline.points); }
double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
void set_overhang_degree(int overhang) {
if (is_perimeter(m_role))
overhang_degree = (overhang < 0)?0:(overhang > 10 ? 10 : overhang);
};
int get_overhang_degree() const {
// only perimeter has overhang degree. Other return 0;
if (is_perimeter(m_role))
return (int)overhang_degree;
return 0;
};
void set_curve_degree(int curve) {
curve_degree = (curve < 0)?0:(curve > 10 ? 10 : curve);
};
int get_curve_degree() const {
return curve_degree;
};
//BBS: add new simplifing method by fitting arc
void simplify_by_fitting_arc(double tolerance);
//BBS:
bool is_force_no_extrusion() const { return m_no_extrusion; }
void set_force_no_extrusion(bool no_extrusion) { m_no_extrusion = no_extrusion; }
void set_extrusion_role(ExtrusionRole extrusion_role) { m_role = extrusion_role; }
void set_reverse() override { m_can_reverse = false; }
bool can_reverse() const override { return m_can_reverse; }
bool can_merge(const ExtrusionPath& other);
private:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
bool m_can_reverse = true;
ExtrusionRole m_role;
//BBS
bool m_no_extrusion = false;
};
class ExtrusionPathSloped : public ExtrusionPath
{
public:
struct Slope
{
double z_ratio{1.};
double e_ratio{1.};
double speed_record{0.0};
};
Slope slope_begin;
Slope slope_end;
ExtrusionPathSloped(const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(rhs), slope_begin(begin), slope_end(end) {}
ExtrusionPathSloped(ExtrusionPath &&rhs, const Slope &begin, const Slope &end) : ExtrusionPath(std::move(rhs)), slope_begin(begin), slope_end(end) {}
ExtrusionPathSloped(const Polyline &polyline, const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(polyline, rhs), slope_begin(begin), slope_end(end)
{}
ExtrusionPathSloped(Polyline &&polyline, const ExtrusionPath &rhs, const Slope &begin, const Slope &end) : ExtrusionPath(std::move(polyline), rhs), slope_begin(begin), slope_end(end)
{}
Slope interpolate(const double ratio) const {
return {
lerp(slope_begin.z_ratio, slope_end.z_ratio, ratio),
lerp(slope_begin.e_ratio, slope_end.e_ratio, ratio),
lerp(slope_begin.speed_record, slope_end.speed_record, ratio),
};
}
bool is_flat() const { return is_approx(slope_begin.z_ratio, slope_end.z_ratio); }
};
class ExtrusionPathOriented : public ExtrusionPath
{
public:
ExtrusionPathOriented(ExtrusionRole role, double mm3_per_mm, float width, float height) : ExtrusionPath(role, mm3_per_mm, width, height) {}
ExtrusionEntity* clone() const override { return new ExtrusionPathOriented(*this); }
// Create a new object, initialize it with this object using the move semantics.
ExtrusionEntity* clone_move() override { return new ExtrusionPathOriented(std::move(*this)); }
virtual bool can_reverse() const override { return false; }
};
typedef std::vector<ExtrusionPath> ExtrusionPaths;
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionMultiPath() {}
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths), m_can_reverse(rhs.m_can_reverse) {}
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)), m_can_reverse(rhs.m_can_reverse) {}
ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {}
ExtrusionMultiPath(const ExtrusionPath &path) {this->paths.push_back(path); m_can_reverse = path.can_reverse(); }
ExtrusionMultiPath &operator=(const ExtrusionMultiPath &rhs)
{
this->paths = rhs.paths;
m_can_reverse = rhs.m_can_reverse;
return *this;
}
ExtrusionMultiPath &operator=(ExtrusionMultiPath &&rhs)
{
this->paths = std::move(rhs.paths);
m_can_reverse = rhs.m_can_reverse;
return *this;
}
bool is_loop() const override { return false; }
bool can_reverse() const override { return m_can_reverse; }
void set_reverse() override { m_can_reverse = false; }
ExtrusionEntity* clone() const override { return new ExtrusionMultiPath(*this); }
// Create a new object, initialize it with this object using the move semantics.
ExtrusionEntity* clone_move() override { return new ExtrusionMultiPath(std::move(*this)); }
void reverse() override;
const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
const Point& last_point() const override { return this->paths.back().polyline.points.back(); }
size_t size() const { return this->paths.size(); }
bool empty() const { return this->paths.empty(); }
double length() const override;
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const override;
Polyline as_polyline() const override;
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
void collect_points(Points &dst) const override {
size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
dst.reserve(dst.size() + n);
for (const ExtrusionPath &p : this->paths)
append(dst, p.polyline.points);
}
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
private:
bool m_can_reverse = true;
};
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionLoop : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {}
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {}
ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {}
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.push_back(path); }
ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.emplace_back(std::move(path)); }
bool is_loop() const override{ return true; }
bool can_reverse() const override { return false; }
ExtrusionEntity* clone() const override{ return new ExtrusionLoop (*this); }
// Create a new object, initialize it with this object using the move semantics.
ExtrusionEntity* clone_move() override { return new ExtrusionLoop(std::move(*this)); }
bool make_clockwise();
bool make_counter_clockwise();
bool is_clockwise() { return this->polygon().is_clockwise(); }
bool is_counter_clockwise() { return this->polygon().is_counter_clockwise(); }
void reverse() override;
const Point& first_point() const override { return this->paths.front().polyline.points.front(); }
const Point& last_point() const override { assert(this->first_point() == this->paths.back().polyline.points.back()); return this->first_point(); }
Polygon polygon() const;
double length() const override;
bool split_at_vertex(const Point &point, const double scaled_epsilon = scaled<double>(0.001));
void split_at(const Point &point, bool prefer_non_overhang, const double scaled_epsilon = scaled<double>(0.001));
struct ClosestPathPoint
{
size_t path_idx;
size_t segment_idx;
Point foot_pt;
};
ClosestPathPoint get_closest_path_and_point(const Point &point, bool prefer_non_overhang) const;
void clip_end(double distance, ExtrusionPaths* paths) const;
// Test, whether the point is extruded by a bridging flow.
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
bool has_overhang_point(const Point &point) const;
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
ExtrusionLoopRole loop_role() const { return m_loop_role; }
void set_loop_role(ExtrusionLoopRole role) { m_loop_role = role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const override;
Polyline as_polyline() const override { return this->polygon().split_at_first_point(); }
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
void collect_points(Points &dst) const override {
size_t n = std::accumulate(paths.begin(), paths.end(), 0, [](const size_t n, const ExtrusionPath &p){ return n + p.polyline.size(); });
dst.reserve(dst.size() + n);
for (const ExtrusionPath &p : this->paths)
append(dst, p.polyline.points);
}
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
// check if the loop is smooth, angle_threshold is in radians, default is 10 degrees
bool check_seam_point_angle(double angle_threshold = 0.174, double min_arm_length = 0.025) const;
//static inline std::string role_to_string(ExtrusionLoopRole role);
#ifndef NDEBUG
bool validate() const {
assert(this->first_point() == this->paths.back().polyline.points.back());
for (size_t i = 1; i < paths.size(); ++ i)
assert(this->paths[i - 1].polyline.points.back() == this->paths[i].polyline.points.front());
return true;
}
#endif /* NDEBUG */
private:
ExtrusionLoopRole m_loop_role;
};
class ExtrusionLoopSloped : public ExtrusionLoop
{
public:
std::vector<ExtrusionPathSloped> starts;
std::vector<ExtrusionPathSloped> ends;
double target_speed{0.0};
ExtrusionLoopSloped(
ExtrusionPaths &original_paths, double seam_gap, double slope_min_length, double slope_max_segment_length, double start_slope_ratio, ExtrusionLoopRole role = elrDefault);
[[nodiscard]] std::vector<const ExtrusionPath *> get_all_paths() const;
void clip_slope(double distance, bool inter_perimeter = false );
void clip_end(const double distance);
void clip_front(const double distance);
double slope_path_length();
void slowdown_slope_speed();
};
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = polyline;
}
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
dst.back().polyline = polyline;
}
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = std::move(polyline);
}
polylines.clear();
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
dst.back().polyline = std::move(polyline);
}
polylines.clear();
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polyline &&polyline, double overhang_degree, int curva_degree, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + 1);
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(overhang_degree, curva_degree, role, mm3_per_mm, width, height));
dst.back().polyline = std::move(polyline);
}
polyline.clear();
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = polyline;
}
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height, bool can_reverse = true)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
ExtrusionPath *extrusion_path = can_reverse ? new ExtrusionPath(role, mm3_per_mm, width, height) : new ExtrusionPathOriented(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = std::move(polyline);
}
polylines.clear();
}
//BBS: a kind of special extrusion path has start and end wiping for half spacing
inline void extrusion_entities_append_paths_with_wipe(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
Point new_start, new_end, last_end_point;
bool last_end_point_valid = false;
Vec2d temp;
ExtrusionMultiPath* multi_path = new ExtrusionMultiPath();
for (Polyline& polyline : polylines) {
if (polyline.is_valid()) {
if (last_end_point_valid) {
Point temp = polyline.first_point() - last_end_point;
if (Vec2d(temp.x(), temp.y()).norm() <= 3 * scaled(width)) {
multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height, true));
multi_path->paths.back().polyline = std::move(Polyline(last_end_point, polyline.first_point()));
} else {
dst.push_back(multi_path);
multi_path = new ExtrusionMultiPath();
}
}
multi_path->paths.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
multi_path->paths.back().polyline = std::move(polyline);
last_end_point_valid = true;
last_end_point = multi_path->paths.back().polyline.last_point();
}
}
if (!multi_path->empty())
dst.push_back(multi_path);
polylines.clear();
dst.shrink_to_fit();
}
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + loops.size());
for (Polygon &poly : loops) {
if (poly.is_valid()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = std::move(poly.points);
path.polyline.points.push_back(path.polyline.points.front());
dst.emplace_back(new ExtrusionLoop(std::move(path)));
}
}
loops.clear();
}
inline void extrusion_entities_append_loops_and_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines) {
if (polyline.is_valid()) {
if (polyline.is_closed()) {
ExtrusionPath extrusion_path(role, mm3_per_mm, width, height);
extrusion_path.polyline = std::move(polyline);
dst.emplace_back(new ExtrusionLoop(std::move(extrusion_path)));
} else {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
extrusion_path->polyline = std::move(polyline);
dst.emplace_back(extrusion_path);
}
}
}
polylines.clear();
}
}
#endif