BambuStudio/slic3r/GUI/3DScene.cpp

2396 lines
98 KiB
C++

#include <GL/glew.h>
#if ENABLE_SMOOTH_NORMALS
#include <igl/per_face_normals.h>
#include <igl/per_corner_normals.h>
#include <igl/per_vertex_normals.h>
#endif // ENABLE_SMOOTH_NORMALS
#include "3DScene.hpp"
#include "GLShader.hpp"
#include "GUI_App.hpp"
#include "GUI_Colors.hpp"
#include "Plater.hpp"
#include "BitmapCache.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/ExtrusionEntityCollection.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/Slicing.hpp"
#include "libslic3r/Format/STL.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/AppConfig.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <Eigen/Dense>
#ifdef HAS_GLSAFE
void glAssertRecentCallImpl(const char* file_name, unsigned int line, const char* function_name)
{
#if defined(NDEBUG)
// In release mode, only show OpenGL errors if sufficiently high loglevel.
if (Slic3r::get_logging_level() < 5)
return;
#endif // NDEBUG
GLenum err = glGetError();
if (err == GL_NO_ERROR)
return;
const char* sErr = 0;
switch (err) {
case GL_INVALID_ENUM: sErr = "Invalid Enum"; break;
case GL_INVALID_VALUE: sErr = "Invalid Value"; break;
// be aware that GL_INVALID_OPERATION is generated if glGetError is executed between the execution of glBegin and the corresponding execution of glEnd
case GL_INVALID_OPERATION: sErr = "Invalid Operation"; break;
case GL_STACK_OVERFLOW: sErr = "Stack Overflow"; break;
case GL_STACK_UNDERFLOW: sErr = "Stack Underflow"; break;
case GL_OUT_OF_MEMORY: sErr = "Out Of Memory"; break;
default: sErr = "Unknown"; break;
}
BOOST_LOG_TRIVIAL(error) << "OpenGL error in " << file_name << ":" << line << ", function " << function_name << "() : " << (int)err << " - " << sErr;
assert(false);
}
#endif // HAS_GLSAFE
// BBS
std::vector<std::array<float, 4>> get_extruders_colors()
{
unsigned char rgba_color[4] = {};
std::vector<std::string> colors = Slic3r::GUI::wxGetApp().plater()->get_extruder_colors_from_plater_config();
std::vector<std::array<float, 4>> colors_out(colors.size());
for (const std::string &color : colors) {
Slic3r::GUI::BitmapCache::parse_color4(color, rgba_color);
size_t color_idx = &color - &colors.front();
colors_out[color_idx] = {
float(rgba_color[0]) / 255.f,
float(rgba_color[1]) / 255.f,
float(rgba_color[2]) / 255.f,
float(rgba_color[3]) / 255.f,
};
}
return colors_out;
}
float FullyTransparentMaterialThreshold = 0.1f;
float FullTransparentModdifiedToFixAlpha = 0.3f;
const float BlackThreshold = 0.2f;
std::array<float, 4> adjust_color_for_rendering(const std::array<float, 4> &colors)
{
if (colors[3] < FullyTransparentMaterialThreshold) { // completely transparent
std::array<float, 4> new_color;
new_color[0] = 1;
new_color[1] = 1;
new_color[2] = 1;
new_color[3] = FullTransparentModdifiedToFixAlpha;
return new_color;
}
else if ((colors[0] < BlackThreshold) && (colors[1] < BlackThreshold) && (colors[2] < BlackThreshold)) { // black filament deal
std::array<float, 4> new_color;
new_color[0] = BlackThreshold;
new_color[1] = BlackThreshold;
new_color[2] = BlackThreshold;
new_color[3] = colors[3];
return new_color;
}
return colors;
}
namespace Slic3r {
static std::map<const TriangleMesh*, std::set<GLVolume*>> g_mesh_volumes_map;
#if ENABLE_SMOOTH_NORMALS
static void smooth_normals_corner(TriangleMesh& mesh, std::vector<stl_normal>& normals)
{
using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
std::vector<Vec3f> face_normals = its_face_normals(mesh.its);
Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
Eigen::Index(mesh.its.vertices.size()), 3).cast<double>();
Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
Eigen::Index(mesh.its.indices.size()), 3);
Eigen::MatrixXd in_normals = MapMatrixXfUnaligned(face_normals.front().data(),
Eigen::Index(face_normals.size()), 3).cast<double>();
Eigen::MatrixXd out_normals;
igl::per_corner_normals(vertices, indices, in_normals, 1.0, out_normals);
normals = std::vector<stl_normal>(mesh.its.vertices.size());
for (size_t i = 0; i < mesh.its.indices.size(); ++i) {
for (size_t j = 0; j < 3; ++j) {
normals[mesh.its.indices[i][j]] = out_normals.row(i * 3 + j).cast<float>();
}
}
}
static void smooth_normals_vertex(TriangleMesh& mesh, std::vector<stl_normal>& normals)
{
using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
Eigen::Index(mesh.its.vertices.size()), 3).cast<double>();
Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
Eigen::Index(mesh.its.indices.size()), 3);
Eigen::MatrixXd out_normals;
// igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_UNIFORM, out_normals);
// igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_AREA, out_normals);
igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, out_normals);
// igl::per_vertex_normals(vertices, indices, igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_DEFAULT, out_normals);
normals = std::vector<stl_normal>(mesh.its.vertices.size());
for (size_t i = 0; i < static_cast<size_t>(out_normals.rows()); ++i) {
normals[i] = out_normals.row(i).cast<float>();
}
}
#endif // ENABLE_SMOOTH_NORMALS
#if ENABLE_SMOOTH_NORMALS
void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals)
#else
void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh& mesh)
#endif // ENABLE_SMOOTH_NORMALS
{
assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0);
assert(quad_indices.empty() && triangle_indices_size == 0);
assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size());
#if ENABLE_SMOOTH_NORMALS
if (smooth_normals) {
TriangleMesh new_mesh(mesh);
std::vector<stl_normal> normals;
smooth_normals_corner(new_mesh, normals);
// smooth_normals_vertex(new_mesh, normals);
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 2 * new_mesh.its.vertices.size());
for (size_t i = 0; i < new_mesh.its.vertices.size(); ++i) {
const stl_vertex& v = new_mesh.its.vertices[i];
const stl_normal& n = normals[i];
this->push_geometry(v(0), v(1), v(2), n(0), n(1), n(2));
}
for (size_t i = 0; i < new_mesh.its.indices.size(); ++i) {
const stl_triangle_vertex_indices& idx = new_mesh.its.indices[i];
this->push_triangle(idx(0), idx(1), idx(2));
}
}
else {
#endif // ENABLE_SMOOTH_NORMALS
this->load_its_flat_shading(mesh.its);
#if ENABLE_SMOOTH_NORMALS
}
#endif // ENABLE_SMOOTH_NORMALS
}
void GLIndexedVertexArray::load_its_flat_shading(const indexed_triangle_set &its)
{
this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * its.indices.size());
unsigned int vertices_count = 0;
for (int i = 0; i < int(its.indices.size()); ++ i) {
stl_triangle_vertex_indices face = its.indices[i];
stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
stl_vertex n = face_normal_normalized(vertex);
for (int j = 0; j < 3; ++j)
this->push_geometry(vertex[j](0), vertex[j](1), vertex[j](2), n(0), n(1), n(2));
this->push_triangle(vertices_count, vertices_count + 1, vertices_count + 2);
vertices_count += 3;
}
BOOST_LOG_TRIVIAL(debug) << __FUNCTION__<< boost::format(", this %1%, indices size %2%, vertices %3%, triangles %4% ")
%this %its.indices.size() %this->vertices_and_normals_interleaved.size() %this->triangle_indices.size() ;
}
void GLIndexedVertexArray::finalize_geometry(bool opengl_initialized)
{
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
assert(this->triangle_indices_VBO_id == 0);
assert(this->quad_indices_VBO_id == 0);
if (! opengl_initialized) {
// Shrink the data vectors to conserve memory in case the data cannot be transfered to the OpenGL driver yet.
this->shrink_to_fit();
return;
}
BOOST_LOG_TRIVIAL(debug) << __FUNCTION__<< boost::format(", this %1% ") %this;
if (! this->vertices_and_normals_interleaved.empty()) {
glsafe(::glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
glsafe(::glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
this->vertices_and_normals_interleaved.clear();
}
if (! this->triangle_indices.empty()) {
glsafe(::glGenBuffers(1, &this->triangle_indices_VBO_id));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
this->triangle_indices.clear();
}
if (! this->quad_indices.empty()) {
glsafe(::glGenBuffers(1, &this->quad_indices_VBO_id));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
this->quad_indices.clear();
}
}
void GLIndexedVertexArray::release_geometry()
{
if (this->vertices_and_normals_interleaved_VBO_id) {
glsafe(::glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id));
this->vertices_and_normals_interleaved_VBO_id = 0;
}
if (this->triangle_indices_VBO_id) {
glsafe(::glDeleteBuffers(1, &this->triangle_indices_VBO_id));
this->triangle_indices_VBO_id = 0;
}
if (this->quad_indices_VBO_id) {
glsafe(::glDeleteBuffers(1, &this->quad_indices_VBO_id));
this->quad_indices_VBO_id = 0;
}
this->clear();
}
void GLIndexedVertexArray::render() const
{
assert(this->vertices_and_normals_interleaved_VBO_id != 0);
assert(this->triangle_indices_VBO_id != 0 || this->quad_indices_VBO_id != 0);
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))));
glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
// Render using the Vertex Buffer Objects.
if (this->triangle_indices_size > 0) {
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
glsafe(::glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr));
glsafe(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
if (this->quad_indices_size > 0) {
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
glsafe(::glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr));
glsafe(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
void GLIndexedVertexArray::render(
const std::pair<size_t, size_t>& tverts_range,
const std::pair<size_t, size_t>& qverts_range) const
{
// this method has been called before calling finalize() ?
if (this->vertices_and_normals_interleaved_VBO_id == 0 && !this->vertices_and_normals_interleaved.empty())
return;
assert(this->vertices_and_normals_interleaved_VBO_id != 0);
assert(this->triangle_indices_VBO_id != 0 || this->quad_indices_VBO_id != 0);
// Render using the Vertex Buffer Objects.
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id));
glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))));
glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
if (this->triangle_indices_size > 0) {
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id));
glsafe(::glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
if (this->quad_indices_size > 0) {
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id));
glsafe(::glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4)));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
}
const float GLVolume::SinkingContours::HalfWidth = 0.25f;
void GLVolume::SinkingContours::render()
{
update();
glsafe(::glPushMatrix());
glsafe(::glTranslated(m_shift.x(), m_shift.y(), m_shift.z()));
m_model.render();
glsafe(::glPopMatrix());
}
void GLVolume::SinkingContours::update()
{
int object_idx = m_parent.object_idx();
Model& model = GUI::wxGetApp().plater()->model();
if (0 <= object_idx && object_idx < (int)model.objects.size() && m_parent.is_sinking() && !m_parent.is_below_printbed()) {
const BoundingBoxf3& box = m_parent.transformed_convex_hull_bounding_box();
if (!m_old_box.size().isApprox(box.size()) || m_old_box.min.z() != box.min.z()) {
m_old_box = box;
m_shift = Vec3d::Zero();
const TriangleMesh& mesh = model.objects[object_idx]->volumes[m_parent.volume_idx()]->mesh();
m_model.reset();
GUI::GLModel::InitializationData init_data;
MeshSlicingParams slicing_params;
slicing_params.trafo = m_parent.world_matrix();
Polygons polygons = union_(slice_mesh(mesh.its, 0.0f, slicing_params));
for (ExPolygon &expoly : diff_ex(expand(polygons, float(scale_(HalfWidth))), shrink(polygons, float(scale_(HalfWidth))))) {
GUI::GLModel::InitializationData::Entity entity;
entity.type = GUI::GLModel::PrimitiveType::Triangles;
const std::vector<Vec3d> triangulation = triangulate_expolygon_3d(expoly);
for (const Vec3d& v : triangulation) {
entity.positions.emplace_back(v.cast<float>() + Vec3f(0.0f, 0.0f, 0.015f)); // add a small positive z to avoid z-fighting
entity.normals.emplace_back(Vec3f::UnitZ());
const size_t positions_count = entity.positions.size();
if (positions_count % 3 == 0) {
entity.indices.emplace_back(positions_count - 3);
entity.indices.emplace_back(positions_count - 2);
entity.indices.emplace_back(positions_count - 1);
}
}
init_data.entities.emplace_back(entity);
}
m_model.init_from(init_data);
}
else
m_shift = box.center() - m_old_box.center();
}
else
m_model.reset();
}
std::array<float, 4> GLVolume::DISABLED_COLOR = { 0.25f, 0.25f, 0.25f, 1.0f };
std::array<float, 4> GLVolume::SLA_SUPPORT_COLOR = { 0.75f, 0.75f, 0.75f, 1.0f };
std::array<float, 4> GLVolume::SLA_PAD_COLOR = { 0.0f, 0.2f, 0.0f, 1.0f };
// BBS
std::array<float, 4> GLVolume::NEUTRAL_COLOR = { 0.8f, 0.8f, 0.8f, 1.0f };
std::array<float, 4> GLVolume::UNPRINTABLE_COLOR = { 0.0f, 0.0f, 0.0f, 0.5f };
std::array<float, 4> GLVolume::MODEL_MIDIFIER_COL = {1.0f, 1.0f, 0.0f, 0.6f};
std::array<float, 4> GLVolume::MODEL_NEGTIVE_COL = {0.3f, 0.3f, 0.3f, 0.4f};
std::array<float, 4> GLVolume::SUPPORT_ENFORCER_COL = {0.3f, 0.3f, 1.0f, 0.4f};
std::array<float, 4> GLVolume::SUPPORT_BLOCKER_COL = {1.0f, 0.3f, 0.3f, 0.4f};
std::array<float, 4> GLVolume::MODEL_HIDDEN_COL = {0.f, 0.f, 0.f, 0.3f};
std::array<std::array<float, 4>, 5> GLVolume::MODEL_COLOR = { {
{ 1.0f, 1.0f, 0.0f, 1.f },
{ 1.0f, 0.5f, 0.5f, 1.f },
{ 0.5f, 1.0f, 0.5f, 1.f },
{ 0.5f, 0.5f, 1.0f, 1.f },
{ 1.0f, 1.0f, 0.0f, 1.f }
} };
void GLVolume::update_render_colors()
{
GLVolume::DISABLED_COLOR = GLColor(RenderColor::colors[RenderCol_Model_Disable]);
GLVolume::NEUTRAL_COLOR = GLColor(RenderColor::colors[RenderCol_Model_Neutral]);
GLVolume::MODEL_COLOR[0] = GLColor(RenderColor::colors[RenderCol_Modifier]);
GLVolume::MODEL_COLOR[1] = GLColor(RenderColor::colors[RenderCol_Negtive_Volume]);
GLVolume::MODEL_COLOR[2] = GLColor(RenderColor::colors[RenderCol_Support_Enforcer]);
GLVolume::MODEL_COLOR[3] = GLColor(RenderColor::colors[RenderCol_Support_Blocker]);
GLVolume::UNPRINTABLE_COLOR = GLColor(RenderColor::colors[RenderCol_Model_Unprintable]);
}
void GLVolume::load_render_colors()
{
RenderColor::colors[RenderCol_Model_Disable] = IMColor(GLVolume::DISABLED_COLOR);
RenderColor::colors[RenderCol_Model_Neutral] = IMColor(GLVolume::NEUTRAL_COLOR);
RenderColor::colors[RenderCol_Modifier] = IMColor(GLVolume::MODEL_COLOR[0]);
RenderColor::colors[RenderCol_Negtive_Volume] = IMColor(GLVolume::MODEL_COLOR[1]);
RenderColor::colors[RenderCol_Support_Enforcer] = IMColor(GLVolume::MODEL_COLOR[2]);
RenderColor::colors[RenderCol_Support_Blocker] = IMColor(GLVolume::MODEL_COLOR[3]);
RenderColor::colors[RenderCol_Model_Unprintable]= IMColor(GLVolume::UNPRINTABLE_COLOR);
}
GLVolume::GLVolume(float r, float g, float b, float a, bool create_index_data)
: m_sla_shift_z(0.0)
, m_sinking_contours(*this)
// geometry_id == 0 -> invalid
, geometry_id(std::pair<size_t, size_t>(0, 0))
, extruder_id(0)
, selected(false)
, disabled(false)
, printable(true)
, visible(true)
, is_active(true)
, zoom_to_volumes(true)
, shader_outside_printer_detection_enabled(false)
, is_outside(false)
, partly_inside(false)
, hover(HS_None)
, is_modifier(false)
, is_wipe_tower(false)
, is_extrusion_path(false)
, force_transparent(false)
, force_native_color(false)
, force_neutral_color(false)
, force_sinking_contours(false)
, tverts_range(0, size_t(-1))
, qverts_range(0, size_t(-1))
{
color = { r, g, b, a };
set_render_color(color);
mmuseg_ts = 0;
if (create_index_data)
indexed_vertex_array = std::make_shared<GLIndexedVertexArray>();
}
void GLVolume::set_color(const std::array<float, 4>& rgba)
{
color = rgba;
}
// BBS
float GLVolume::explosion_ratio = 1.0;
float GLVolume::last_explosion_ratio = 1.0;
void GLVolume::set_render_color(float r, float g, float b, float a)
{
render_color = { r, g, b, a };
}
void GLVolume::set_render_color(const std::array<float, 4>& rgba)
{
render_color = rgba;
}
void GLVolume::set_render_color()
{
bool outside = is_outside || is_below_printbed();
if (force_native_color || force_neutral_color) {
#ifdef ENABBLE_OUTSIDE_COLOR
if (outside && shader_outside_printer_detection_enabled)
set_render_color(OUTSIDE_COLOR);
else {
#endif
if (force_native_color)
set_render_color(color);
else
set_render_color(NEUTRAL_COLOR);
#ifdef ENABLE_OUTSIDE_COLOR
}
#endif
}
else {
/* BBS
if (hover == HS_Select)
set_render_color(HOVER_SELECT_COLOR);
else if (hover == HS_Deselect)
set_render_color(HOVER_DESELECT_COLOR);
else if (selected)
set_render_color(outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR);
else if (disabled)
*/
if (disabled)
set_render_color(DISABLED_COLOR);
#ifdef ENABLE_OUTSIDE_COLOR
else if (is_outside && shader_outside_printer_detection_enabled)
set_render_color(OUTSIDE_COLOR);
#endif
else {
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(color);
set_render_color(new_color);
}
}
if (force_transparent) {
if (color[3] < FullyTransparentMaterialThreshold) {
render_color[3] = FullTransparentModdifiedToFixAlpha;
} else {
render_color[3] = color[3];
}
}
//BBS set unprintable color
if (!printable) {
render_color[0] = UNPRINTABLE_COLOR[0];
render_color[1] = UNPRINTABLE_COLOR[1];
render_color[2] = UNPRINTABLE_COLOR[2];
render_color[3] = UNPRINTABLE_COLOR[3];
}
//BBS set invisible color
if (!visible) {
render_color[0] = MODEL_HIDDEN_COL[0];
render_color[1] = MODEL_HIDDEN_COL[1];
render_color[2] = MODEL_HIDDEN_COL[2];
render_color[3] = MODEL_HIDDEN_COL[3];
}
}
std::array<float, 4> color_from_model_volume(const ModelVolume& model_volume)
{
std::array<float, 4> color = {0.0f, 0.0f, 0.0f, 1.0f};
if (model_volume.is_negative_volume()) {
return GLVolume::MODEL_NEGTIVE_COL;
}
else if (model_volume.is_modifier()) {
#if ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
return GLVolume::MODEL_MIDIFIER_COL;
#else
color[0] = 0.2f;
color[1] = 1.0f;
color[2] = 0.2f;
#endif // ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
}
else if (model_volume.is_support_blocker()) {
return GLVolume::SUPPORT_BLOCKER_COL;
}
else if (model_volume.is_support_enforcer()) {
return GLVolume::SUPPORT_ENFORCER_COL;
}
return color;
}
Transform3d GLVolume::world_matrix() const
{
Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix();
Vec3d ofs2ass = m_offset_to_assembly * (GLVolume::explosion_ratio - 1.0);
Vec3d volofs2obj = m_volume_transformation.get_offset() * (GLVolume::explosion_ratio - 1.0);
m.translation()(2) += m_sla_shift_z;
m.translate(ofs2ass + volofs2obj);
return m;
}
bool GLVolume::is_left_handed() const
{
const Vec3d &m1 = m_instance_transformation.get_mirror();
const Vec3d &m2 = m_volume_transformation.get_mirror();
return m1.x() * m1.y() * m1.z() * m2.x() * m2.y() * m2.z() < 0.;
}
const BoundingBoxf3& GLVolume::transformed_bounding_box() const
{
if (!m_transformed_bounding_box.has_value() || last_explosion_ratio != explosion_ratio) {
const BoundingBoxf3& box = bounding_box();
assert(box.defined || box.min.x() >= box.max.x() || box.min.y() >= box.max.y() || box.min.z() >= box.max.z());
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_bounding_box);
*trans_box = box.transformed(world_matrix());
last_explosion_ratio = explosion_ratio;
}
return *m_transformed_bounding_box;
}
const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const
{
if (!m_transformed_convex_hull_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_convex_hull_bounding_box);
*trans_box = transformed_convex_hull_bounding_box(world_matrix());
}
return *m_transformed_convex_hull_bounding_box;
}
BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box(const Transform3d &trafo) const
{
return (m_convex_hull && ! m_convex_hull->empty()) ?
m_convex_hull->transformed_bounding_box(trafo) :
bounding_box().transformed(trafo);
}
BoundingBoxf3 GLVolume::transformed_non_sinking_bounding_box(const Transform3d& trafo) const
{
return GUI::wxGetApp().plater()->model().objects[object_idx()]->volumes[volume_idx()]->mesh().transformed_bounding_box(trafo, 0.0);
}
const BoundingBoxf3& GLVolume::transformed_non_sinking_bounding_box() const
{
if (!m_transformed_non_sinking_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_non_sinking_bounding_box);
const Transform3d& trafo = world_matrix();
*trans_box = transformed_non_sinking_bounding_box(trafo);
}
return *m_transformed_non_sinking_bounding_box;
}
void GLVolume::set_range(double min_z, double max_z)
{
this->qverts_range.first = 0;
this->qverts_range.second = this->indexed_vertex_array->quad_indices_size;
this->tverts_range.first = 0;
this->tverts_range.second = this->indexed_vertex_array->triangle_indices_size;
if (! this->print_zs.empty()) {
// The Z layer range is specified.
// First test whether the Z span of this object is not out of (min_z, max_z) completely.
if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) {
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Then find the lowest layer to be displayed.
size_t i = 0;
for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i);
if (i == this->print_zs.size()) {
// This shall not happen.
this->qverts_range.second = 0;
this->tverts_range.second = 0;
} else {
// Remember start of the layer.
this->qverts_range.first = this->offsets[i * 2];
this->tverts_range.first = this->offsets[i * 2 + 1];
// Some layers are above $min_z. Which?
for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i);
if (i < this->print_zs.size()) {
this->qverts_range.second = this->offsets[i * 2];
this->tverts_range.second = this->offsets[i * 2 + 1];
}
}
}
}
}
//BBS: add outline related logic
//static unsigned char stencil_data[1284][2944];
void GLVolume::render(bool with_outline, const std::array<float, 4>& body_color) const
{
if (!is_active)
return;
if (this->is_left_handed())
glFrontFace(GL_CW);
glsafe(::glCullFace(GL_BACK));
glsafe(::glPushMatrix());
// BBS: add logic for mmu segmentation rendering
auto render_body = [&]() {
bool color_volume = false;
ModelObjectPtrs& model_objects = GUI::wxGetApp().model().objects;
do {
if ((!printable) || object_idx() >= model_objects.size())
break;
ModelObject* mo = model_objects[object_idx()];
if (volume_idx() >= mo->volumes.size())
break;
ModelVolume* mv = mo->volumes[volume_idx()];
if (mv->mmu_segmentation_facets.empty())
break;
color_volume = true;
if (mv->mmu_segmentation_facets.timestamp() != mmuseg_ts) {
BOOST_LOG_TRIVIAL(debug) << __FUNCTION__<< boost::format(", this %1%, name %2%, current mmuseg_ts %3%, current color size %4%")
%this %this->name %mmuseg_ts %mmuseg_ivas.size() ;
mmuseg_ivas.clear();
std::vector<indexed_triangle_set> its_per_color;
mv->mmu_segmentation_facets.get_facets(*mv, its_per_color);
mmuseg_ivas.resize(its_per_color.size());
for (int idx = 0; idx < its_per_color.size(); idx++) {
mmuseg_ivas[idx].load_its_flat_shading(its_per_color[idx]);
mmuseg_ivas[idx].finalize_geometry(true);
}
mmuseg_ts = mv->mmu_segmentation_facets.timestamp();
BOOST_LOG_TRIVIAL(debug) << __FUNCTION__<< boost::format(", this %1%, name %2%, new mmuseg_ts %3%, new color size %4%")
%this %this->name %mmuseg_ts %mmuseg_ivas.size();
}
} while (0);
if (color_volume) {
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
std::vector<std::array<float, 4>> colors = get_extruders_colors();
//when force_transparent, we need to keep the alpha
if (force_native_color && (render_color[3] < 1.0)) {
for (int index = 0; index < colors.size(); index ++)
colors[index][3] = render_color[3];
}
glsafe(::glMultMatrixd(world_matrix().data()));
for (int idx = 0; idx < mmuseg_ivas.size(); idx++) {
GLIndexedVertexArray& iva = mmuseg_ivas[idx];
if (iva.triangle_indices_size == 0 && iva.quad_indices_size == 0)
continue;
if (shader) {
if (idx == 0) {
ModelObject* mo = model_objects[object_idx()];
ModelVolume* mv = mo->volumes[volume_idx()];
int extruder_id = mv->extruder_id();
//shader->set_uniform("uniform_color", colors[extruder_id - 1]);
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(colors[extruder_id - 1]);
shader->set_uniform("uniform_color", new_color);
}
else {
if (idx <= colors.size()) {
//shader->set_uniform("uniform_color", colors[idx - 1]);
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(colors[idx - 1]);
shader->set_uniform("uniform_color", new_color);
}
else {
//shader->set_uniform("uniform_color", colors[0]);
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(colors[0]);
shader->set_uniform("uniform_color", new_color);
}
}
}
iva.render(this->tverts_range, this->qverts_range);
/*if (force_native_color && (render_color[3] < 1.0)) {
BOOST_LOG_TRIVIAL(debug) << __FUNCTION__<< boost::format(", this %1%, name %2%, tverts_range {%3,%4}, qverts_range{%5%, %6%}")
%this %this->name %this->tverts_range.first %this->tverts_range.second
% this->qverts_range.first % this->qverts_range.second;
}*/
}
}
else {
glsafe(::glMultMatrixd(world_matrix().data()));
this->indexed_vertex_array->render(this->tverts_range, this->qverts_range);
}
};
//BBS: add logic of outline rendering
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
//BOOST_LOG_TRIVIAL(info) << boost::format(": %1%, with_outline %2%, shader %3%.")%__LINE__ %with_outline %shader;
if (with_outline && shader != nullptr)
{
do
{
glEnable(GL_STENCIL_TEST);
glStencilMask(0xFF);
glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0xff, 0xFF);
//another way use depth buffer
//glsafe(::glEnable(GL_DEPTH_TEST));
//glsafe(::glDepthFunc(GL_ALWAYS));
//glsafe(::glDepthMask(GL_FALSE));
//glsafe(::glEnable(GL_BLEND));
//glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
/*GLShaderProgram* outline_shader = GUI::wxGetApp().get_shader("outline");
if (outline_shader == nullptr)
{
glDisable(GL_STENCIL_TEST);
this->indexed_vertex_array->render(this->tverts_range, this->qverts_range);
break;
}
shader->stop_using();
outline_shader->start_using();
//float scale_ratio = 1.02f;
std::array<float, 4> outline_color = { 0.0f, 1.0f, 0.0f, 1.0f };
outline_shader->set_uniform("uniform_color", outline_color);*/
#if 0 //dump stencil buffer
int i = 100, j = 100;
std::string file_name;
FILE* file = NULL;
memset(stencil_data, 0, sizeof(stencil_data));
glReadPixels(0, 0, 2936, 1083, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, stencil_data);
for (i = 100; i < 1083; i++)
{
for (j = 100; j < 2936; j++)
{
if (stencil_data[i][j] != 0)
{
file_name = "before_stencil_index_" + std::to_string(i) + "x" + std::to_string(j) + ".a8";
break;
}
}
if (stencil_data[i][j] != 0)
break;
}
file = fopen(file_name.c_str(), "w");
if (file)
{
fwrite(stencil_data, 2936 * 1083, 1, file);
fclose(file);
}
#endif
render_body();
//BOOST_LOG_TRIVIAL(info) << boost::format(": %1%, outline render body, shader name %2%")%__LINE__ %shader->get_name();
#if 0 //dump stencil buffer after first rendering
memset(stencil_data, 0, sizeof(stencil_data));
glReadPixels(0, 0, 2936, 1083, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, stencil_data);
for (i = 100; i < 1083; i++)
{
for (j = 100; j < 2936; j++)
if (stencil_data[i][j] != 0)
{
file_name = "after_stencil_index_" + std::to_string(i) + "x" + std::to_string(j) + ".a8";
break;
}
if (stencil_data[i][j] != 0)
break;
}
file = fopen(file_name.c_str(), "w");
if (file)
{
fwrite(stencil_data, 2936 * 1083, 1, file);
fclose(file);
}
#endif
// 2nd. render pass: now draw slightly scaled versions of the objects, this time disabling stencil writing.
// Because the stencil buffer is now filled with several 1s. The parts of the buffer that are 1 are not drawn, thus only drawing
// the objects' size differences, making it look like borders.
// -----------------------------------------------------------------------------------------------------------------------------
/*GLShaderProgram* outline_shader = GUI::wxGetApp().get_shader("outline");
if (outline_shader == nullptr)
{
glDisable(GL_STENCIL_TEST);
break;
}
shader->stop_using();
outline_shader->start_using();*/
//outline_shader->stop_using();
//shader->start_using();
glStencilFunc(GL_NOTEQUAL, 0xff, 0xFF);
glStencilMask(0x00);
float scale = 1.02f;
shader->set_uniform("uniform_color", body_color);
shader->set_uniform("is_outline", true);
glsafe(::glPopMatrix());
glsafe(::glPushMatrix());
Transform3d matrix = world_matrix();
matrix.scale(scale);
glsafe(::glMultMatrixd(matrix.data()));
this->indexed_vertex_array->render(this->tverts_range, this->qverts_range);
//BOOST_LOG_TRIVIAL(info) << boost::format(": %1%, outline render for body, shader name %2%")%__LINE__ %shader->get_name();
shader->set_uniform("is_outline", false);
//glStencilMask(0xFF);
//glStencilFunc(GL_ALWAYS, 0, 0xFF);
glDisable(GL_STENCIL_TEST);
//glEnable(GL_DEPTH_TEST);
//outline_shader->stop_using();
//shader->start_using();
} while (0);
}
else {
render_body();
//BOOST_LOG_TRIVIAL(info) << boost::format(": %1%, normal render.")%__LINE__;
}
glsafe(::glPopMatrix());
if (this->is_left_handed())
glFrontFace(GL_CCW);
}
//BBS add render for simple case
void GLVolume::simple_render(GLShaderProgram *shader, ModelObjectPtrs &model_objects, std::vector<std::array<float, 4>> &extruder_colors, bool ban_light) const
{
if (this->is_left_handed())
glFrontFace(GL_CW);
glsafe(::glCullFace(GL_BACK));
glsafe(::glPushMatrix());
bool color_volume = false;
ModelObject* model_object = nullptr;
ModelVolume* model_volume = nullptr;
do {
if ((!printable) || object_idx() >= model_objects.size())
break;
model_object = model_objects[object_idx()];
if (volume_idx() >= model_object->volumes.size())
break;
model_volume = model_object->volumes[volume_idx()];
if (model_volume->mmu_segmentation_facets.empty())
break;
color_volume = true;
if (model_volume->mmu_segmentation_facets.timestamp() != mmuseg_ts) {
mmuseg_ivas.clear();
std::vector<indexed_triangle_set> its_per_color;
model_volume->mmu_segmentation_facets.get_facets(*model_volume, its_per_color);
mmuseg_ivas.resize(its_per_color.size());
for (int idx = 0; idx < its_per_color.size(); idx++) {
mmuseg_ivas[idx].load_its_flat_shading(its_per_color[idx]);
mmuseg_ivas[idx].finalize_geometry(true);
}
mmuseg_ts = model_volume->mmu_segmentation_facets.timestamp();
}
} while (0);
if (color_volume) {
glsafe(::glMultMatrixd(world_matrix().data()));
for (int idx = 0; idx < mmuseg_ivas.size(); idx++) {
GLIndexedVertexArray& iva = mmuseg_ivas[idx];
if (iva.triangle_indices_size == 0 && iva.quad_indices_size == 0)
continue;
if (shader) {
if (idx == 0) {
int extruder_id = model_volume->extruder_id();
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(extruder_colors[extruder_id - 1]);
if (ban_light) {
new_color[3] = (255 - (extruder_id - 1))/255.0f;
}
shader->set_uniform("uniform_color", new_color);
}
else {
if (idx <= extruder_colors.size()) {
//shader->set_uniform("uniform_color", extruder_colors[idx - 1]);
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(extruder_colors[idx - 1]);
if (ban_light) {
new_color[3] = (255 - (idx - 1))/255.0f;
}
shader->set_uniform("uniform_color", new_color);
}
else {
//shader->set_uniform("uniform_color", extruder_colors[0]);
//to make black not too hard too see
std::array<float, 4> new_color = adjust_color_for_rendering(extruder_colors[0]);
if (ban_light) {
new_color[3] = (255 - 0) / 255.0f;
}
shader->set_uniform("uniform_color", new_color);
}
}
}
iva.render(this->tverts_range, this->qverts_range);
}
}
else {
glsafe(::glMultMatrixd(world_matrix().data()));
this->indexed_vertex_array->render(this->tverts_range, this->qverts_range);
}
glsafe(::glPopMatrix());
if (this->is_left_handed())
glFrontFace(GL_CCW);
}
bool GLVolume::is_sla_support() const { return this->composite_id.volume_id == -int(slaposSupportTree); }
bool GLVolume::is_sla_pad() const { return this->composite_id.volume_id == -int(slaposPad); }
bool GLVolume::is_sinking() const
{
if (is_modifier || GUI::wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptSLA)
return false;
const BoundingBoxf3& box = transformed_convex_hull_bounding_box();
return box.min.z() < SINKING_Z_THRESHOLD && box.max.z() >= SINKING_Z_THRESHOLD;
}
bool GLVolume::is_below_printbed() const
{
return transformed_convex_hull_bounding_box().max.z() < 0.0;
}
void GLVolume::render_sinking_contours()
{
m_sinking_contours.render();
}
GLWipeTowerVolume::GLWipeTowerVolume(const std::vector<std::array<float, 4>>& colors)
: GLVolume()
{
m_colors = colors;
}
void GLWipeTowerVolume::render(bool with_outline,const std::array<float, 4> &body_color) const
{
if (!is_active)
return;
if (m_colors.size() == 0 || m_colors.size() != iva_per_colors.size())
return;
if (this->is_left_handed())
glFrontFace(GL_CW);
glsafe(::glCullFace(GL_BACK));
glsafe(::glPushMatrix());
glsafe(::glMultMatrixd(world_matrix().data()));
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
for (int i = 0; i < m_colors.size(); i++) {
if (shader) {
std::array<float, 4> new_color = adjust_color_for_rendering(m_colors[i]);
shader->set_uniform("uniform_color", new_color);
}
this->iva_per_colors[i].render();
}
glsafe(::glPopMatrix());
if (this->is_left_handed())
glFrontFace(GL_CCW);
}
bool GLWipeTowerVolume::IsTransparent() {
for (size_t i = 0; i < m_colors.size(); i++) {
if (m_colors[i][3] < 1.0f) {
return true;
}
}
return false;
}
std::vector<int> GLVolumeCollection::load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
bool opengl_initialized)
{
std::vector<int> volumes_idx;
for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++volume_idx)
for (int instance_idx : instance_idxs)
volumes_idx.emplace_back(this->GLVolumeCollection::load_object_volume(model_object, obj_idx, volume_idx, instance_idx, color_by, opengl_initialized));
return volumes_idx;
}
int GLVolumeCollection::load_object_volume(
const ModelObject *model_object,
int obj_idx,
int volume_idx,
int instance_idx,
const std::string &color_by,
bool opengl_initialized,
bool in_assemble_view,
bool use_loaded_id)
{
const ModelVolume *model_volume = model_object->volumes[volume_idx];
const int extruder_id = model_volume->extruder_id();
const ModelInstance *instance = model_object->instances[instance_idx];
const TriangleMesh &mesh = model_volume->mesh();
std::array<float, 4> color = GLVolume::MODEL_COLOR[((color_by == "volume") ? volume_idx : obj_idx) % 4];
color[3] = model_volume->is_model_part() ? 0.7f : 0.4f;
GLVolume* new_volume = new GLVolume(color[0], color[1], color[2], color[3], false);
this->volumes.emplace_back(new_volume);
GLVolume& v = *new_volume;
v.set_color(color_from_model_volume(*model_volume));
v.name = model_volume->name;
v.is_text_shape = model_volume->get_text_info().m_text.empty();
const TriangleMesh* mesh_ptr = model_volume->mesh_ptr();
new_volume->ori_mesh = mesh_ptr;
std::map<const TriangleMesh*, std::set<GLVolume*>>::iterator iter = g_mesh_volumes_map.find(mesh_ptr);
bool need_create_mesh = true;
if (iter != g_mesh_volumes_map.end()) {
std::set<GLVolume*> & volume_set = iter->second;
if (volume_set.empty()) {
new_volume->indexed_vertex_array = std::make_shared<GLIndexedVertexArray>();
}
else {
GLVolume* first_volume = *(volume_set.begin());
new_volume->indexed_vertex_array = first_volume->indexed_vertex_array;
need_create_mesh = false;
}
volume_set.emplace(new_volume);
}
else {
new_volume->indexed_vertex_array = std::make_shared<GLIndexedVertexArray>();
std::set<GLVolume*> volume_set;
volume_set.emplace(new_volume);
g_mesh_volumes_map.emplace(mesh_ptr, std::move(volume_set));
}
if (need_create_mesh) {
#if ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array->load_mesh(mesh, true);
#else
v.indexed_vertex_array->load_mesh(mesh);
#endif // ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array->finalize_geometry(opengl_initialized);
}
v.composite_id = GLVolume::CompositeID(obj_idx, volume_idx, instance_idx);
if (model_volume->is_model_part())
{
// GLVolume will reference a convex hull from model_volume!
v.set_convex_hull(model_volume->get_convex_hull_shared_ptr());
if (extruder_id != -1)
v.extruder_id = extruder_id;
}
v.is_modifier = !model_volume->is_model_part();
v.shader_outside_printer_detection_enabled = model_volume->is_model_part();
if (in_assemble_view) {
v.set_instance_transformation(instance->get_assemble_transformation());
v.set_offset_to_assembly(instance->get_offset_to_assembly());
}
else
v.set_instance_transformation(instance->get_transformation());
v.set_volume_transformation(model_volume->get_transformation());
//use object's instance id
if (use_loaded_id && (instance->loaded_id > 0))
v.model_object_ID = instance->loaded_id;
else
v.model_object_ID = instance->id().id;
return int(this->volumes.size() - 1);
}
void GLVolumeCollection::clear()
{
for (auto* v : volumes)
{
release_volume(v);
delete v;
}
volumes.clear();
}
void GLVolumeCollection::release_volume (GLVolume* volume)
{
if (volume->ori_mesh) {
std::map<const TriangleMesh*, std::set<GLVolume*>>::iterator iter = g_mesh_volumes_map.find(volume->ori_mesh);
if (iter != g_mesh_volumes_map.end()) {
std::set<GLVolume*> & volume_set = iter->second;
volume_set.erase(volume);
if (volume_set.empty())
g_mesh_volumes_map.erase(iter);
}
else {
//should not happen
}
}
}
// Load SLA auxiliary GLVolumes (for support trees or pad).
// This function produces volumes for multiple instances in a single shot,
// as some object specific mesh conversions may be expensive.
void GLVolumeCollection::load_object_auxiliary(
const SLAPrintObject *print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>>& instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp,
bool opengl_initialized)
{
assert(print_object->is_step_done(milestone));
Transform3d mesh_trafo_inv = print_object->trafo().inverse();
// Get the support mesh.
TriangleMesh mesh = print_object->get_mesh(milestone);
mesh.transform(mesh_trafo_inv);
// Convex hull is required for out of print bed detection.
TriangleMesh convex_hull = mesh.convex_hull_3d();
for (const std::pair<size_t, size_t>& instance_idx : instances) {
const ModelInstance& model_instance = *print_object->model_object()->instances[instance_idx.first];
this->volumes.emplace_back(new GLVolume((milestone == slaposPad) ? GLVolume::SLA_PAD_COLOR : GLVolume::SLA_SUPPORT_COLOR));
GLVolume& v = *this->volumes.back();
#if ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array->load_mesh(mesh, true);
#else
v.indexed_vertex_array->load_mesh(mesh);
#endif // ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array->finalize_geometry(opengl_initialized);
v.composite_id = GLVolume::CompositeID(obj_idx, -int(milestone), (int)instance_idx.first);
v.geometry_id = std::pair<size_t, size_t>(timestamp, model_instance.id().id);
// Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance.
if (&instance_idx == &instances.back())
v.set_convex_hull(std::move(convex_hull));
else
v.set_convex_hull(convex_hull);
v.is_modifier = false;
v.shader_outside_printer_detection_enabled = (milestone == slaposSupportTree);
v.set_instance_transformation(model_instance.get_transformation());
// Leave the volume transformation at identity.
// v.set_volume_transformation(model_volume->get_transformation());
}
}
int GLVolumeCollection::load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height,
float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized)
{
int plate_idx = obj_idx - 1000;
if (depth < 0.01f)
return int(this->volumes.size() - 1);
if (height == 0.0f)
height = 0.1f;
std::vector<std::array<float, 4>> extruder_colors = get_extruders_colors();
std::vector<std::array<float, 4>> colors;
GUI::PartPlateList& ppl = GUI::wxGetApp().plater()->get_partplate_list();
std::vector<int> plate_extruders = ppl.get_plate(plate_idx)->get_extruders(true);
TriangleMesh wipe_tower_shell = make_cube(width, depth, height);
for (int extruder_id : plate_extruders) {
if (extruder_id <= extruder_colors.size())
colors.push_back(extruder_colors[extruder_id - 1]);
else
colors.push_back(extruder_colors[0]);
}
#if 0
// We'll make another mesh to show the brim (fixed layer height):
TriangleMesh brim_mesh = make_cube(width + 2.f * brim_width, depth + 2.f * brim_width, 0.2f);
brim_mesh.translate(-brim_width, -brim_width, 0.f);
mesh.merge(brim_mesh);
#endif
volumes.emplace_back(new GLWipeTowerVolume(colors));
GLWipeTowerVolume& v = *dynamic_cast<GLWipeTowerVolume*>(volumes.back());
v.iva_per_colors.resize(colors.size());
for (int i = 0; i < colors.size(); i++) {
TriangleMesh color_part = make_cube(width, depth / colors.size(), height);
color_part.translate({ 0.f, depth * i / colors.size(), 0. });
v.iva_per_colors[i].load_mesh(color_part);
v.iva_per_colors[i].finalize_geometry(opengl_initialized);
}
v.indexed_vertex_array->load_mesh(wipe_tower_shell);
v.indexed_vertex_array->finalize_geometry(opengl_initialized);
v.set_convex_hull(wipe_tower_shell);
v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0));
v.set_volume_rotation(Vec3d(0., 0., (M_PI / 180.) * rotation_angle));
v.composite_id = GLVolume::CompositeID(obj_idx, 0, 0);
v.geometry_id.first = 0;
v.geometry_id.second = wipe_tower_instance_id().id + (obj_idx - 1000);
v.is_wipe_tower = true;
v.shader_outside_printer_detection_enabled = !size_unknown;
return int(volumes.size() - 1);
}
GLVolume* GLVolumeCollection::new_toolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats)
{
GLVolume *out = new_nontoolpath_volume(rgba, reserve_vbo_floats);
out->is_extrusion_path = true;
return out;
}
GLVolume* GLVolumeCollection::new_nontoolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats)
{
GLVolume *out = new GLVolume(rgba);
out->is_extrusion_path = false;
// Reserving number of vertices (3x position + 3x color)
out->indexed_vertex_array->reserve(reserve_vbo_floats / 6);
this->volumes.emplace_back(out);
return out;
}
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func)
{
GLVolumeWithIdAndZList list;
list.reserve(volumes.size());
for (unsigned int i = 0; i < (unsigned int)volumes.size(); ++i) {
GLVolume* volume = volumes[i];
bool is_transparent = (volume->render_color[3] < 1.0f);
auto tempGlwipeTowerVolume = dynamic_cast<GLWipeTowerVolume *>(volume);
if (tempGlwipeTowerVolume) {
is_transparent = tempGlwipeTowerVolume->IsTransparent();
}
if (((type == GLVolumeCollection::ERenderType::Opaque && !is_transparent) ||
(type == GLVolumeCollection::ERenderType::Transparent && is_transparent) ||
type == GLVolumeCollection::ERenderType::All) &&
(! filter_func || filter_func(*volume)))
list.emplace_back(std::make_pair(volume, std::make_pair(i, 0.0)));
}
if (type == GLVolumeCollection::ERenderType::Transparent && list.size() > 1) {
for (GLVolumeWithIdAndZ& volume : list) {
volume.second.second = volume.first->bounding_box().transformed(view_matrix * volume.first->world_matrix()).max(2);
}
std::sort(list.begin(), list.end(),
[](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.second.second < v2.second.second; }
);
}
else if (type == GLVolumeCollection::ERenderType::Opaque && list.size() > 1) {
std::sort(list.begin(), list.end(),
[](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.first->selected && !v2.first->selected; }
);
}
return list;
}
int GLVolumeCollection::get_selection_support_threshold_angle(bool &enable_support) const
{
const DynamicPrintConfig& glb_cfg = GUI::wxGetApp().preset_bundle->prints.get_edited_preset().config;
enable_support = glb_cfg.opt_bool("enable_support");
int support_threshold_angle = glb_cfg.opt_int("support_threshold_angle");
return support_threshold_angle ;
}
//BBS: add outline drawing logic
void GLVolumeCollection::render(GLVolumeCollection::ERenderType type,
bool disable_cullface,
const Transform3d & view_matrix,
std::function<bool(const GLVolume &)> filter_func,
bool with_outline,
const std::array<float, 4> & body_color,
bool partly_inside_enable) const
{
GLVolumeWithIdAndZList to_render = volumes_to_render(volumes, type, view_matrix, filter_func);
if (to_render.empty())
return;
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
if (shader == nullptr)
return;
if (type == ERenderType::Transparent) {
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
}
glsafe(::glCullFace(GL_BACK));
if (disable_cullface)
glsafe(::glDisable(GL_CULL_FACE));
for (GLVolumeWithIdAndZ& volume : to_render) {
#if ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
if (type == ERenderType::Transparent) {
volume.first->force_transparent = true;
//BOOST_LOG_TRIVIAL(info) << boost::format("transparent rendering...");
}
//else
// BOOST_LOG_TRIVIAL(info) << boost::format("opaque rendering...");
#endif // ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
volume.first->set_render_color();
#if ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
if (type == ERenderType::Transparent)
volume.first->force_transparent = false;
#endif // ENABLE_MODIFIERS_ALWAYS_TRANSPARENT
// render sinking contours of non-hovered volumes
if (m_show_sinking_contours)
if (volume.first->is_sinking() && !volume.first->is_below_printbed() &&
volume.first->hover == GLVolume::HS_None && !volume.first->force_sinking_contours) {
shader->stop_using();
volume.first->render_sinking_contours();
shader->start_using();
}
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
shader->set_uniform("is_text_shape", volume.first->is_text_shape);
shader->set_uniform("uniform_color", volume.first->render_color);
shader->set_uniform("z_range", m_z_range, 2);
shader->set_uniform("clipping_plane", m_clipping_plane, 4);
//BOOST_LOG_TRIVIAL(info) << boost::format("set uniform_color to {%1%, %2%, %3%, %4%}, with_outline=%5%, selected %6%")
// %volume.first->render_color[0]%volume.first->render_color[1]%volume.first->render_color[2]%volume.first->render_color[3]
// %with_outline%volume.first->selected;
//BBS set print_volume to render volume
//shader->set_uniform("print_volume.type", static_cast<int>(m_render_volume.type));
//shader->set_uniform("print_volume.xy_data", m_render_volume.data);
//shader->set_uniform("print_volume.z_data", m_render_volume.zs);
if (volume.first->partly_inside && partly_inside_enable) {
//only partly inside volume need to be painted with boundary check
shader->set_uniform("print_volume.type", static_cast<int>(m_print_volume.type));
shader->set_uniform("print_volume.xy_data", m_print_volume.data);
shader->set_uniform("print_volume.z_data", m_print_volume.zs);
}
else {
//use -1 ad a invalid type
shader->set_uniform("print_volume.type", -1);
}
bool enable_support;
int support_threshold_angle = get_selection_support_threshold_angle(enable_support);
float normal_z = -::cos(Geometry::deg2rad((float) support_threshold_angle));
shader->set_uniform("volume_world_matrix", volume.first->world_matrix());
shader->set_uniform("slope.actived", m_slope.isGlobalActive && !volume.first->is_modifier && !volume.first->is_wipe_tower);
shader->set_uniform("slope.volume_world_normal_matrix", static_cast<Matrix3f>(volume.first->world_matrix().matrix().block(0, 0, 3, 3).inverse().transpose().cast<float>()));
shader->set_uniform("slope.normal_z", normal_z);
#if ENABLE_ENVIRONMENT_MAP
unsigned int environment_texture_id = GUI::wxGetApp().plater()->get_environment_texture_id();
bool use_environment_texture = environment_texture_id > 0 && GUI::wxGetApp().app_config->get("use_environment_map") == "1";
shader->set_uniform("use_environment_tex", use_environment_texture);
if (use_environment_texture)
glsafe(::glBindTexture(GL_TEXTURE_2D, environment_texture_id));
#endif // ENABLE_ENVIRONMENT_MAP
glcheck();
//BBS: add outline related logic
volume.first->render(with_outline && volume.first->selected, body_color);
#if ENABLE_ENVIRONMENT_MAP
if (use_environment_texture)
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
#endif // ENABLE_ENVIRONMENT_MAP
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
}
if (m_show_sinking_contours) {
for (GLVolumeWithIdAndZ& volume : to_render) {
// render sinking contours of hovered/displaced volumes
if (volume.first->is_sinking() && !volume.first->is_below_printbed() &&
(volume.first->hover != GLVolume::HS_None || volume.first->force_sinking_contours)) {
shader->stop_using();
glsafe(::glDepthFunc(GL_ALWAYS));
volume.first->render_sinking_contours();
glsafe(::glDepthFunc(GL_LESS));
shader->start_using();
}
}
}
if (disable_cullface)
glsafe(::glEnable(GL_CULL_FACE));
if (type == ERenderType::Transparent)
glsafe(::glDisable(GL_BLEND));
}
bool GLVolumeCollection::check_outside_state(const BuildVolume &build_volume, ModelInstanceEPrintVolumeState *out_state) const
{
if (GUI::wxGetApp().plater() == NULL)
{
if (out_state != nullptr)
*out_state = ModelInstancePVS_Inside;
return false;
}
const Model& model = GUI::wxGetApp().plater()->model();
auto volume_below = [](GLVolume& volume) -> bool
{ return volume.object_idx() != -1 && volume.volume_idx() != -1 && volume.is_below_printbed(); };
// Volume is partially below the print bed, thus a pre-calculated convex hull cannot be used.
auto volume_sinking = [](GLVolume& volume) -> bool
{ return volume.object_idx() != -1 && volume.volume_idx() != -1 && volume.is_sinking(); };
// Cached bounding box of a volume above the print bed.
auto volume_bbox = [volume_sinking](GLVolume& volume) -> BoundingBoxf3
{ return volume_sinking(volume) ? volume.transformed_non_sinking_bounding_box() : volume.transformed_convex_hull_bounding_box(); };
// Cached 3D convex hull of a volume above the print bed.
auto volume_convex_mesh = [volume_sinking, &model](GLVolume& volume) -> const TriangleMesh&
{ return volume_sinking(volume) ? model.objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh() : *volume.convex_hull(); };
ModelInstanceEPrintVolumeState overall_state = ModelInstancePVS_Inside;
bool contained_min_one = false;
//BBS: add instance judge logic, besides to original volume judge logic
std::map<int64_t, ModelInstanceEPrintVolumeState> model_state;
GUI::PartPlate* curr_plate = GUI::wxGetApp().plater()->get_partplate_list().get_selected_plate();
const Pointfs& pp_bed_shape = curr_plate->get_shape();
BuildVolume plate_build_volume(pp_bed_shape, build_volume.printable_height());
const std::vector<BoundingBoxf3>& exclude_areas = curr_plate->get_exclude_areas();
for (GLVolume* volume : this->volumes)
{
if (! volume->is_modifier && (volume->shader_outside_printer_detection_enabled || (! volume->is_wipe_tower && volume->composite_id.volume_id >= 0))) {
BuildVolume::ObjectState state;
const BoundingBoxf3& bb = volume_bbox(*volume);
if (volume_below(*volume))
state = BuildVolume::ObjectState::Below;
else {
switch (plate_build_volume.type()) {
case BuildVolume::Type::Rectangle:
//FIXME this test does not evaluate collision of a build volume bounding box with non-convex objects.
state = plate_build_volume.volume_state_bbox(bb);
break;
case BuildVolume::Type::Circle:
case BuildVolume::Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case BuildVolume::Type::Custom:
state = plate_build_volume.object_state(volume_convex_mesh(*volume).its, volume->world_matrix().cast<float>(), volume_sinking(*volume));
break;
default:
// Ignore, don't produce any collision.
state = BuildVolume::ObjectState::Inside;
break;
}
assert(state != BuildVolume::ObjectState::Below);
}
int64_t comp_id = ((int64_t)volume->composite_id.object_id << 32) | ((int64_t)volume->composite_id.instance_id);
volume->is_outside = state != BuildVolume::ObjectState::Inside;
//volume->partly_inside = (state == BuildVolume::ObjectState::Colliding);
if (volume->printable) {
if (overall_state == ModelInstancePVS_Inside && volume->is_outside) {
overall_state = ModelInstancePVS_Fully_Outside;
}
if (overall_state == ModelInstancePVS_Fully_Outside && volume->is_outside && (state == BuildVolume::ObjectState::Colliding))
{
overall_state = ModelInstancePVS_Partly_Outside;
}
contained_min_one |= !volume->is_outside;
}
ModelInstanceEPrintVolumeState volume_state;
//if (volume->is_outside && (plate_build_volume.bounding_volume().intersects(volume->bounding_box())))
if (volume->is_outside && (state == BuildVolume::ObjectState::Colliding))
volume_state = ModelInstancePVS_Partly_Outside;
else if (volume->is_outside)
volume_state = ModelInstancePVS_Fully_Outside;
else
volume_state = ModelInstancePVS_Inside;
if (model_state.find(comp_id) != model_state.end())
{
if (model_state[comp_id] != ModelInstancePVS_Partly_Outside)
{
if (volume_state == ModelInstancePVS_Partly_Outside)
model_state[comp_id] = ModelInstancePVS_Partly_Outside;
else if (model_state[comp_id] != volume_state)
{
model_state[comp_id] = ModelInstancePVS_Partly_Outside;
}
}
}
else
{
model_state[comp_id] = volume_state;
}
if (model_state[comp_id] == ModelInstancePVS_Partly_Outside) {
overall_state = ModelInstancePVS_Partly_Outside;
BOOST_LOG_TRIVIAL(debug) << "instance includes " << volume->name << " is partially outside of bed";
}
}
}
for (GLVolume* volume : this->volumes)
{
if (! volume->is_modifier && (volume->shader_outside_printer_detection_enabled || (! volume->is_wipe_tower && volume->composite_id.volume_id >= 0)))
{
int64_t comp_id = ((int64_t)volume->composite_id.object_id << 32) | ((int64_t)volume->composite_id.instance_id);
if (model_state.find(comp_id) != model_state.end())
{
if (model_state[comp_id] == ModelInstancePVS_Partly_Outside) {
volume->partly_inside = true;
}
else
volume->partly_inside = false;
}
}
}
if (out_state != nullptr)
*out_state = overall_state;
return contained_min_one;
}
void GLVolumeCollection::reset_outside_state()
{
for (GLVolume* volume : this->volumes)
{
if (volume != nullptr) {
volume->is_outside = false;
volume->partly_inside = false;
}
}
}
void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig *config, bool is_update_alpha)
{
static const float inv_255 = 1.0f / 255.0f;
struct Color
{
std::string text;
unsigned char rgba[4];
Color()
: text("")
{
rgba[0] = 255;
rgba[1] = 255;
rgba[2] = 255;
rgba[3] = 255;
}
void set(const std::string& text, unsigned char* rgba)
{
this->text = text;
::memcpy((void*)this->rgba, (const void*)rgba, 4 * sizeof(unsigned char));
}
};
if (config == nullptr)
return;
unsigned char rgba[4];
std::vector<Color> colors;
if (static_cast<PrinterTechnology>(config->opt_int("printer_technology")) == ptSLA)
{
const std::string& txt_color = config->opt_string("material_colour").empty() ?
print_config_def.get("material_colour")->get_default_value<ConfigOptionString>()->value :
config->opt_string("material_colour");
if (Slic3r::GUI::BitmapCache::parse_color4(txt_color, rgba)) {
colors.resize(1);
colors[0].set(txt_color, rgba);
}
}
else
{
const ConfigOptionStrings* filamemts_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("filament_colour"));
if (filamemts_opt == nullptr)
return;
unsigned int colors_count = (unsigned int)filamemts_opt->values.size();
if (colors_count == 0)
return;
colors.resize(colors_count);
for (unsigned int i = 0; i < colors_count; ++i) {
const std::string& txt_color = config->opt_string("filament_colour", i);
if (Slic3r::GUI::BitmapCache::parse_color4(txt_color, rgba))
colors[i].set(txt_color, rgba);
}
}
for (GLVolume* volume : volumes) {
if (volume == nullptr || volume->is_modifier || volume->is_wipe_tower || (volume->volume_idx() < 0))
continue;
int extruder_id = volume->extruder_id - 1;
if (extruder_id < 0 || (int)colors.size() <= extruder_id)
extruder_id = 0;
const Color& color = colors[extruder_id];
if (!color.text.empty()) {
for (int i = 0; i < 4; ++i) {
if (is_update_alpha == false) {
if (i < 3) {
volume->color[i] = (float) color.rgba[i] * inv_255;
}
continue;
}
volume->color[i] = (float) color.rgba[i] * inv_255;
}
}
}
}
std::vector<double> GLVolumeCollection::get_current_print_zs(bool active_only) const
{
// Collect layer top positions of all volumes.
std::vector<double> print_zs;
for (GLVolume *vol : this->volumes)
{
if (!active_only || vol->is_active)
append(print_zs, vol->print_zs);
}
std::sort(print_zs.begin(), print_zs.end());
// Replace intervals of layers with similar top positions with their average value.
int n = int(print_zs.size());
int k = 0;
for (int i = 0; i < n;) {
int j = i + 1;
coordf_t zmax = print_zs[i] + EPSILON;
for (; j < n && print_zs[j] <= zmax; ++ j) ;
print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i];
i = j;
}
if (k < n)
print_zs.erase(print_zs.begin() + k, print_zs.end());
return print_zs;
}
size_t GLVolumeCollection::cpu_memory_used() const
{
size_t memsize = sizeof(*this) + this->volumes.capacity() * sizeof(GLVolume);
for (const GLVolume *volume : this->volumes)
memsize += volume->cpu_memory_used();
return memsize;
}
size_t GLVolumeCollection::gpu_memory_used() const
{
size_t memsize = 0;
for (const GLVolume *volume : this->volumes)
memsize += volume->gpu_memory_used();
return memsize;
}
std::string GLVolumeCollection::log_memory_info() const
{
return " (GLVolumeCollection RAM: " + format_memsize_MB(this->cpu_memory_used()) + " GPU: " + format_memsize_MB(this->gpu_memory_used()) + " Both: " + format_memsize_MB(this->gpu_memory_used()) + ")";
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLIndexedVertexArray &volume)
{
assert(! lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// right, left, top, bottom
int idx_prev[4] = { -1, -1, -1, -1 };
double bottom_z_prev = 0.;
Vec2d b1_prev(Vec2d::Zero());
Vec2d v_prev(Vec2d::Zero());
int idx_initial[4] = { -1, -1, -1, -1 };
double width_initial = 0.;
double bottom_z_initial = 0.0;
double len_prev = 0.0;
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ ii) {
size_t i = (ii == lines.size()) ? 0 : ii;
const Line &line = lines[i];
double bottom_z = top_z - heights[i];
double middle_z = 0.5 * (top_z + bottom_z);
double width = widths[i];
bool is_first = (ii == 0);
bool is_last = (ii == lines_end - 1);
bool is_closing = closed && is_last;
Vec2d v = unscale(line.vector()).normalized();
double len = unscale<double>(line.length());
Vec2d a = unscale(line.a);
Vec2d b = unscale(line.b);
Vec2d a1 = a;
Vec2d a2 = a;
Vec2d b1 = b;
Vec2d b2 = b;
{
double dist = 0.5 * width; // scaled
double dx = dist * v(0);
double dy = dist * v(1);
a1 += Vec2d(+dy, -dx);
a2 += Vec2d(-dy, +dx);
b1 += Vec2d(+dy, -dx);
b2 += Vec2d(-dy, +dx);
}
// calculate new XY normals
Vec2d xy_right_normal = unscale(line.normal()).normalized();
int idx_a[4] = { 0, 0, 0, 0 }; // initialized to avoid warnings
int idx_b[4] = { 0, 0, 0, 0 }; // initialized to avoid warnings
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool bottom_z_different = bottom_z_prev != bottom_z;
bottom_z_prev = bottom_z;
if (!is_first && bottom_z_different)
{
// Found a change of the layer thickness -> Add a cap at the end of the previous segment.
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Share top / bottom vertices if possible.
if (is_first) {
idx_a[TOP] = idx_last++;
volume.push_geometry(a(0), a(1), top_z , 0., 0., 1.);
} else {
idx_a[TOP] = idx_prev[TOP];
}
if (is_first || bottom_z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last ++;
volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.);
idx_a[LEFT ] = idx_last ++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
idx_a[RIGHT] = idx_last ++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
}
else {
idx_a[BOTTOM] = idx_prev[BOTTOM];
}
if (is_first) {
// Start of the 1st line segment.
width_initial = width;
bottom_z_initial = bottom_z;
memcpy(idx_initial, idx_a, sizeof(int) * 4);
} else {
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = v_prev.dot(v);
// To reduce gpu memory usage, we try to reuse vertices
// To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges
// is longer than a fixed threshold.
// The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
double len_threshold = 2.5;
// Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
bool sharp = (v_dot < 0.707) || (len_prev > len_threshold) || (len > len_threshold);
if (sharp) {
if (!bottom_z_different)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
if (cross2(v_prev, v) > 0.) {
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
}
else {
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
}
}
}
else
{
if (!bottom_z_different)
{
// The two successive segments are nearly collinear.
idx_a[LEFT ] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
if (is_closing) {
if (!sharp) {
if (!bottom_z_different)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6);
memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) {
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (is_closing) {
idx_b[TOP] = idx_initial[TOP];
} else {
idx_b[TOP] = idx_last ++;
volume.push_geometry(b(0), b(1), top_z , 0., 0., 1.);
}
if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) {
idx_b[BOTTOM] = idx_initial[BOTTOM];
} else {
idx_b[BOTTOM] = idx_last ++;
volume.push_geometry(b(0), b(1), bottom_z, 0., 0., -1.);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT ] = idx_last ++;
volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
idx_b[RIGHT ] = idx_last ++;
volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
memcpy(idx_prev, idx_b, 4 * sizeof(int));
bottom_z_prev = bottom_z;
b1_prev = b1;
v_prev = v;
len_prev = len;
if (bottom_z_different && (closed || (!is_first && !is_last)))
{
// Found a change of the layer thickness -> Add a cap at the beginning of this segment.
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
}
if (! closed) {
// Terminate open paths with caps.
if (is_first)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (is_last)
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLIndexedVertexArray& volume)
{
assert(!lines.empty());
if (lines.empty())
return;
#define LEFT 0
#define RIGHT 1
#define TOP 2
#define BOTTOM 3
// left, right, top, bottom
int idx_initial[4] = { -1, -1, -1, -1 };
int idx_prev[4] = { -1, -1, -1, -1 };
double z_prev = 0.0;
double len_prev = 0.0;
Vec3d n_right_prev = Vec3d::Zero();
Vec3d n_top_prev = Vec3d::Zero();
Vec3d unit_v_prev = Vec3d::Zero();
double width_initial = 0.0;
// new vertices around the line endpoints
// left, right, top, bottom
Vec3d a[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
Vec3d b[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
// loop once more in case of closed loops
size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ii)
{
size_t i = (ii == lines.size()) ? 0 : ii;
const Line3& line = lines[i];
double height = heights[i];
double width = widths[i];
Vec3d unit_v = unscale(line.vector()).normalized();
double len = unscale<double>(line.length());
Vec3d n_top = Vec3d::Zero();
Vec3d n_right = Vec3d::Zero();
if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1)))
{
// vertical segment
n_top = Vec3d::UnitY();
n_right = Vec3d::UnitX();
if (line.a(2) < line.b(2))
n_right = -n_right;
}
else
{
// horizontal segment
n_right = unit_v.cross(Vec3d::UnitZ()).normalized();
n_top = n_right.cross(unit_v).normalized();
}
Vec3d rl_displacement = 0.5 * width * n_right;
Vec3d tb_displacement = 0.5 * height * n_top;
Vec3d l_a = unscale(line.a);
Vec3d l_b = unscale(line.b);
a[RIGHT] = l_a + rl_displacement;
a[LEFT] = l_a - rl_displacement;
a[TOP] = l_a + tb_displacement;
a[BOTTOM] = l_a - tb_displacement;
b[RIGHT] = l_b + rl_displacement;
b[LEFT] = l_b - rl_displacement;
b[TOP] = l_b + tb_displacement;
b[BOTTOM] = l_b - tb_displacement;
Vec3d n_bottom = -n_top;
Vec3d n_left = -n_right;
int idx_a[4];
int idx_b[4];
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
bool z_different = (z_prev != l_a(2));
z_prev = l_b(2);
// Share top / bottom vertices if possible.
if (ii == 0)
{
idx_a[TOP] = idx_last++;
volume.push_geometry(a[TOP], n_top);
}
else
idx_a[TOP] = idx_prev[TOP];
if ((ii == 0) || z_different)
{
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[BOTTOM] = idx_last++;
volume.push_geometry(a[BOTTOM], n_bottom);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
}
else
idx_a[BOTTOM] = idx_prev[BOTTOM];
if (ii == 0)
{
// Start of the 1st line segment.
width_initial = width;
::memcpy(idx_initial, idx_a, sizeof(int) * 4);
}
else
{
// Continuing a previous segment.
// Share left / right vertices if possible.
double v_dot = unit_v_prev.dot(unit_v);
bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0;
// To reduce gpu memory usage, we try to reuse vertices
// To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges
// is longer than a fixed threshold.
// The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
double len_threshold = 2.5;
// Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
bool is_sharp = (v_dot < 0.707) || (len_prev > len_threshold) || (len > len_threshold);
if (is_sharp)
{
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++;
volume.push_geometry(a[RIGHT], n_right);
idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left);
if (is_right_turn)
{
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
}
else
{
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
}
}
else
{
// The two successive segments are nearly collinear.
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
if (ii == lines.size())
{
if (!is_sharp)
{
// Closing a loop with smooth transition. Unify the closing left / right vertices.
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6);
::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6);
volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end());
// Replace the left / right vertex indices to point to the start of the loop.
for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u)
{
if (volume.quad_indices[u] == idx_prev[LEFT])
volume.quad_indices[u] = idx_initial[LEFT];
else if (volume.quad_indices[u] == idx_prev[RIGHT])
volume.quad_indices[u] = idx_initial[RIGHT];
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (closed && (ii + 1 == lines.size()))
idx_b[TOP] = idx_initial[TOP];
else
{
idx_b[TOP] = idx_last++;
volume.push_geometry(b[TOP], n_top);
}
if (closed && (ii + 1 == lines.size()) && (width == width_initial))
idx_b[BOTTOM] = idx_initial[BOTTOM];
else
{
idx_b[BOTTOM] = idx_last++;
volume.push_geometry(b[BOTTOM], n_bottom);
}
// Generate new vertices for the end of this line segment.
idx_b[LEFT] = idx_last++;
volume.push_geometry(b[LEFT], n_left);
idx_b[RIGHT] = idx_last++;
volume.push_geometry(b[RIGHT], n_right);
::memcpy(idx_prev, idx_b, 4 * sizeof(int));
n_right_prev = n_right;
n_top_prev = n_top;
unit_v_prev = unit_v;
len_prev = len;
if (!closed)
{
// Terminate open paths with caps.
if (i == 0)
volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]);
// We don't use 'else' because both cases are true if we have only one line.
if (i + 1 == lines.size())
volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]);
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]);
// top-right face
volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]);
// top-left face
volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]);
// bottom-left face
volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]);
}
#undef LEFT
#undef RIGHT
#undef TOP
#undef BOTTOM
}
static void point_to_indexed_vertex_array(const Vec3crd& point,
double width,
double height,
GLIndexedVertexArray& volume)
{
// builds a double piramid, with vertices on the local axes, around the point
Vec3d center = unscale(point);
double scale_factor = 1.0;
double w = scale_factor * width;
double h = scale_factor * height;
// new vertices ids
int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6);
int idxs[6];
for (int i = 0; i < 6; ++i)
{
idxs[i] = idx_last + i;
}
Vec3d displacement_x(w, 0.0, 0.0);
Vec3d displacement_y(0.0, w, 0.0);
Vec3d displacement_z(0.0, 0.0, h);
Vec3d unit_x(1.0, 0.0, 0.0);
Vec3d unit_y(0.0, 1.0, 0.0);
Vec3d unit_z(0.0, 0.0, 1.0);
// vertices
volume.push_geometry(center - displacement_x, -unit_x); // idxs[0]
volume.push_geometry(center + displacement_x, unit_x); // idxs[1]
volume.push_geometry(center - displacement_y, -unit_y); // idxs[2]
volume.push_geometry(center + displacement_y, unit_y); // idxs[3]
volume.push_geometry(center - displacement_z, -unit_z); // idxs[4]
volume.push_geometry(center + displacement_z, unit_z); // idxs[5]
// top piramid faces
volume.push_triangle(idxs[0], idxs[2], idxs[5]);
volume.push_triangle(idxs[2], idxs[1], idxs[5]);
volume.push_triangle(idxs[1], idxs[3], idxs[5]);
volume.push_triangle(idxs[3], idxs[0], idxs[5]);
// bottom piramid faces
volume.push_triangle(idxs[2], idxs[0], idxs[4]);
volume.push_triangle(idxs[1], idxs[2], idxs[4]);
volume.push_triangle(idxs[3], idxs[1], idxs[4]);
volume.push_triangle(idxs[0], idxs[3], idxs[4]);
}
void _3DScene::thick_lines_to_verts(
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
double top_z,
GLVolume &volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, *(volume.indexed_vertex_array));
}
void _3DScene::thick_lines_to_verts(const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GLVolume& volume)
{
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, *(volume.indexed_vertex_array));
}
static void thick_point_to_verts(const Vec3crd& point,
double width,
double height,
GLVolume& volume)
{
point_to_indexed_vertex_array(point, width, height, *(volume.indexed_vertex_array));
}
void _3DScene::extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume)
{
if (polyline.size() >= 2) {
size_t num_segments = polyline.size() - 1;
thick_lines_to_verts(polyline.lines(), std::vector<double>(num_segments, width), std::vector<double>(num_segments, height), false, print_z, volume);
}
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume)
{
extrusionentity_to_verts(extrusion_path.polyline, extrusion_path.width, extrusion_path.height, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point &copy, GLVolume &volume)
{
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines = polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point &copy, GLVolume &volume)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, true, print_z, volume);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume)
{
for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities)
extrusionentity_to_verts(extrusion_entity, print_z, copy, volume);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
{
if (extrusion_entity != nullptr) {
auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
if (extrusion_path != nullptr)
extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
else {
auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
if (extrusion_loop != nullptr)
extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
else {
auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
if (extrusion_multi_path != nullptr)
extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
else {
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
else {
throw Slic3r::RuntimeError("Unexpected extrusion_entity type in to_verts()");
}
}
}
}
}
}
void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)
{
Lines3 lines = polyline.lines();
std::vector<double> widths(lines.size(), width);
std::vector<double> heights(lines.size(), height);
thick_lines_to_verts(lines, widths, heights, false, volume);
}
void _3DScene::point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume)
{
thick_point_to_verts(point, width, height, volume);
}
} // namespace Slic3r