BambuStudio/libigl/igl/copyleft/cgal/minkowski_sum.cpp

396 lines
12 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "minkowski_sum.h"
#include "mesh_boolean.h"
#include "../../slice.h"
#include "../../slice_mask.h"
#include "../../LinSpaced.h"
#include "../../unique_rows.h"
#include "../../get_seconds.h"
#include "../../edges.h"
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <cassert>
#include <vector>
#include <iostream>
template <
typename DerivedVA,
typename DerivedFA,
typename DerivedVB,
typename DerivedFB,
typename DerivedW,
typename DerivedG,
typename DerivedJ>
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
const Eigen::MatrixBase<DerivedVA> & VA,
const Eigen::MatrixBase<DerivedFA> & FA,
const Eigen::MatrixBase<DerivedVB> & VB,
const Eigen::MatrixBase<DerivedFB> & FB,
const bool resolve_overlaps,
Eigen::PlainObjectBase<DerivedW> & W,
Eigen::PlainObjectBase<DerivedG> & G,
Eigen::PlainObjectBase<DerivedJ> & J)
{
using namespace std;
using namespace Eigen;
assert(FA.cols() == 3 && "FA must contain a closed triangle mesh");
assert(FB.cols() <= FA.cols() &&
"FB must contain lower diemnsional simplices than FA");
const auto tictoc = []()->double
{
static double t_start;
double now = igl::get_seconds();
double interval = now-t_start;
t_start = now;
return interval;
};
tictoc();
Matrix<typename DerivedFB::Scalar,Dynamic,2> EB;
edges(FB,EB);
Matrix<typename DerivedFA::Scalar,Dynamic,2> EA(0,2);
if(FB.cols() == 3)
{
edges(FA,EA);
}
// number of copies of A along edges of B
const int n_ab = EB.rows();
// number of copies of B along edges of A
const int n_ba = EA.rows();
vector<DerivedW> vW(n_ab + n_ba);
vector<DerivedG> vG(n_ab + n_ba);
vector<DerivedJ> vJ(n_ab + n_ba);
vector<int> offsets(n_ab + n_ba + 1);
offsets[0] = 0;
// sweep A along edges of B
for(int e = 0;e<n_ab;e++)
{
Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
minkowski_sum(
VA,
FA,
VB.row(EB(e,0)).eval(),
VB.row(EB(e,1)).eval(),
false,
vW[e],
vG[e],
eJ);
assert(vG[e].rows() == eJ.rows());
assert(eJ.cols() == 1);
vJ[e].resize(vG[e].rows(),2);
vJ[e].col(0) = eJ;
vJ[e].col(1).setConstant(e);
offsets[e+1] = offsets[e] + vW[e].rows();
}
// sweep B along edges of A
for(int e = 0;e<n_ba;e++)
{
Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
const int ee = n_ab+e;
minkowski_sum(
VB,
FB,
VA.row(EA(e,0)).eval(),
VA.row(EA(e,1)).eval(),
false,
vW[ee],
vG[ee],
eJ);
vJ[ee].resize(vG[ee].rows(),2);
vJ[ee].col(0) = eJ.array() + (FA.rows()+1);
vJ[ee].col(1).setConstant(ee);
offsets[ee+1] = offsets[ee] + vW[ee].rows();
}
// Combine meshes
int n=0,m=0;
for_each(vW.begin(),vW.end(),[&n](const DerivedW & w){n+=w.rows();});
for_each(vG.begin(),vG.end(),[&m](const DerivedG & g){m+=g.rows();});
assert(n == offsets.back());
W.resize(n,3);
G.resize(m,3);
J.resize(m,2);
{
int m_off = 0,n_off = 0;
for(int i = 0;i<vG.size();i++)
{
W.block(n_off,0,vW[i].rows(),3) = vW[i];
G.block(m_off,0,vG[i].rows(),3) = vG[i].array()+offsets[i];
J.block(m_off,0,vJ[i].rows(),2) = vJ[i];
n_off += vW[i].rows();
m_off += vG[i].rows();
}
assert(n == n_off);
assert(m == m_off);
}
if(resolve_overlaps)
{
Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
mesh_boolean(
DerivedW(W),
DerivedG(G),
Matrix<typename DerivedW::Scalar,Dynamic,Dynamic>(),
Matrix<typename DerivedG::Scalar,Dynamic,Dynamic>(),
MESH_BOOLEAN_TYPE_UNION,
W,
G,
SJ);
slice(DerivedJ(J),SJ,1,J);
}
}
template <
typename DerivedVA,
typename DerivedFA,
typename sType, int sCols, int sOptions,
typename dType, int dCols, int dOptions,
typename DerivedW,
typename DerivedG,
typename DerivedJ>
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
const Eigen::MatrixBase<DerivedVA> & VA,
const Eigen::MatrixBase<DerivedFA> & FA,
const Eigen::Matrix<sType,1,sCols,sOptions> & s,
const Eigen::Matrix<dType,1,dCols,dOptions> & d,
const bool resolve_overlaps,
Eigen::PlainObjectBase<DerivedW> & W,
Eigen::PlainObjectBase<DerivedG> & G,
Eigen::PlainObjectBase<DerivedJ> & J)
{
using namespace Eigen;
using namespace std;
assert(s.cols() == 3 && "s should be a 3d point");
assert(d.cols() == 3 && "d should be a 3d point");
// silly base case
if(FA.size() == 0)
{
W.resize(0,3);
G.resize(0,3);
return;
}
const int dim = VA.cols();
assert(dim == 3 && "dim must be 3D");
assert(s.size() == 3 && "s must be 3D point");
assert(d.size() == 3 && "d must be 3D point");
// segment vector
const CGAL::Vector_3<CGAL::Epeck> v(d(0)-s(0),d(1)-s(1),d(2)-s(2));
// number of vertices
const int n = VA.rows();
// duplicate vertices at s and d, we'll remove unreferernced later
W.resize(2*n,dim);
for(int i = 0;i<n;i++)
{
for(int j = 0;j<dim;j++)
{
W (i,j) = VA(i,j) + s(j);
W(i+n,j) = VA(i,j) + d(j);
}
}
// number of faces
const int m = FA.rows();
//// Mask whether positive dot product, or negative: because of exactly zero,
//// these are not necessarily complementary
// Nevermind, actually P = !N
Matrix<bool,Dynamic,1> P(m,1),N(m,1);
// loop over faces
int mp = 0,mn = 0;
for(int f = 0;f<m;f++)
{
const CGAL::Plane_3<CGAL::Epeck> plane(
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,0),0),VA(FA(f,0),1),VA(FA(f,0),2)),
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,1),0),VA(FA(f,1),1),VA(FA(f,1),2)),
CGAL::Point_3<CGAL::Epeck>(VA(FA(f,2),0),VA(FA(f,2),1),VA(FA(f,2),2)));
const auto normal = plane.orthogonal_vector();
const auto dt = normal * v;
if(dt > 0)
{
P(f) = true;
N(f) = false;
mp++;
}else
//}else if(dt < 0)
{
P(f) = false;
N(f) = true;
mn++;
//}else
//{
// P(f) = false;
// N(f) = false;
}
}
typedef Matrix<typename DerivedG::Scalar,Dynamic,Dynamic> MatrixXI;
typedef Matrix<typename DerivedG::Scalar,Dynamic,1> VectorXI;
MatrixXI GT(mp+mn,3);
GT<< slice_mask(FA,N,1), slice_mask((FA.array()+n).eval(),P,1);
// J indexes FA for parts at s and m+FA for parts at d
J.derived() = igl::LinSpaced<DerivedJ >(m,0,m-1);
DerivedJ JT(mp+mn);
JT << slice_mask(J,P,1), slice_mask(J,N,1);
JT.block(mp,0,mn,1).array()+=m;
// Original non-co-planar faces with positively oriented reversed
MatrixXI BA(mp+mn,3);
BA << slice_mask(FA,P,1).rowwise().reverse(), slice_mask(FA,N,1);
// Quads along **all** sides
MatrixXI GQ((mp+mn)*3,4);
GQ<<
BA.col(1), BA.col(0), BA.col(0).array()+n, BA.col(1).array()+n,
BA.col(2), BA.col(1), BA.col(1).array()+n, BA.col(2).array()+n,
BA.col(0), BA.col(2), BA.col(2).array()+n, BA.col(0).array()+n;
MatrixXI uGQ;
VectorXI S,sI,sJ;
// Inputs:
// F #F by d list of polygons
// Outputs:
// S #uF list of signed incidences for each unique face
// uF #uF by d list of unique faces
// I #uF index vector so that uF = sort(F,2)(I,:)
// J #F index vector so that sort(F,2) = uF(J,:)
[](
const MatrixXI & F,
VectorXI & S,
MatrixXI & uF,
VectorXI & I,
VectorXI & J)
{
const int m = F.rows();
const int d = F.cols();
MatrixXI sF = F;
const auto MN = sF.rowwise().minCoeff().eval();
// rotate until smallest index is first
for(int p = 0;p<d;p++)
{
for(int f = 0;f<m;f++)
{
if(sF(f,0) != MN(f))
{
for(int r = 0;r<d-1;r++)
{
std::swap(sF(f,r),sF(f,r+1));
}
}
}
}
// swap orienation so that last index is greater than first
for(int f = 0;f<m;f++)
{
if(sF(f,d-1) < sF(f,1))
{
sF.block(f,1,1,d-1) = sF.block(f,1,1,d-1).reverse().eval();
}
}
Matrix<bool,Dynamic,1> M = Matrix<bool,Dynamic,1>::Zero(m,1);
{
VectorXI P = igl::LinSpaced<VectorXI >(d,0,d-1);
for(int p = 0;p<d;p++)
{
for(int f = 0;f<m;f++)
{
bool all = true;
for(int r = 0;r<d;r++)
{
all = all && (sF(f,P(r)) == F(f,r));
}
M(f) = M(f) || all;
}
for(int r = 0;r<d-1;r++)
{
std::swap(P(r),P(r+1));
}
}
}
unique_rows(sF,uF,I,J);
S = VectorXI::Zero(uF.rows(),1);
assert(m == J.rows());
for(int f = 0;f<m;f++)
{
S(J(f)) += M(f) ? 1 : -1;
}
}(MatrixXI(GQ),S,uGQ,sI,sJ);
assert(S.rows() == uGQ.rows());
const int nq = (S.array().abs()==2).count();
GQ.resize(nq,4);
{
int k = 0;
for(int q = 0;q<uGQ.rows();q++)
{
switch(S(q))
{
case -2:
GQ.row(k++) = uGQ.row(q).reverse().eval();
break;
case 2:
GQ.row(k++) = uGQ.row(q);
break;
default:
// do not add
break;
}
}
assert(nq == k);
}
G.resize(GT.rows()+2*GQ.rows(),3);
G<<
GT,
GQ.col(0), GQ.col(1), GQ.col(2),
GQ.col(0), GQ.col(2), GQ.col(3);
J.resize(JT.rows()+2*GQ.rows(),1);
J<<JT,DerivedJ::Constant(2*GQ.rows(),1,2*m+1);
if(resolve_overlaps)
{
Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
mesh_boolean(
DerivedW(W),DerivedG(G),
Matrix<typename DerivedVA::Scalar,Dynamic,Dynamic>(),MatrixXI(),
MESH_BOOLEAN_TYPE_UNION,
W,G,SJ);
J.derived() = slice(DerivedJ(J),SJ,1);
}
}
template <
typename DerivedVA,
typename DerivedFA,
typename sType, int sCols, int sOptions,
typename dType, int dCols, int dOptions,
typename DerivedW,
typename DerivedG,
typename DerivedJ>
IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
const Eigen::MatrixBase<DerivedVA> & VA,
const Eigen::MatrixBase<DerivedFA> & FA,
const Eigen::Matrix<sType,1,sCols,sOptions> & s,
const Eigen::Matrix<dType,1,dCols,dOptions> & d,
Eigen::PlainObjectBase<DerivedW> & W,
Eigen::PlainObjectBase<DerivedG> & G,
Eigen::PlainObjectBase<DerivedJ> & J)
{
return minkowski_sum(VA,FA,s,d,true,W,G,J);
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::copyleft::cgal::minkowski_sum<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
// generated by autoexplicit.sh
template void igl::copyleft::cgal::minkowski_sum<
Eigen::Matrix<float, -1, 3, 1, -1, 3>,
Eigen::Matrix<int, -1, 3, 1, -1, 3>,
double, 3, 1,
float, 3, 1,
Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>,
Eigen::Matrix<int, -1, -1, 0, -1, -1>,
Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, Eigen::Matrix<float, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
#endif