182 lines
7.5 KiB
C++
182 lines
7.5 KiB
C++
#include "point_areas.h"
|
|
#include "delaunay_triangulation.h"
|
|
|
|
#include "../../colon.h"
|
|
#include "../../slice.h"
|
|
#include "../../slice_mask.h"
|
|
#include "../../parallel_for.h"
|
|
|
|
#include "CGAL/Exact_predicates_inexact_constructions_kernel.h"
|
|
#include "CGAL/Triangulation_vertex_base_with_info_2.h"
|
|
#include "CGAL/Triangulation_data_structure_2.h"
|
|
#include "CGAL/Delaunay_triangulation_2.h"
|
|
|
|
|
|
|
|
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
|
|
typedef CGAL::Triangulation_vertex_base_with_info_2<unsigned int, Kernel> Vb;
|
|
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
|
|
typedef CGAL::Delaunay_triangulation_2<Kernel, Tds> Delaunay;
|
|
typedef Kernel::Point_2 Point;
|
|
|
|
namespace igl {
|
|
namespace copyleft{
|
|
namespace cgal{
|
|
|
|
template <typename DerivedP, typename DerivedI, typename DerivedN,
|
|
typename DerivedA>
|
|
IGL_INLINE void point_areas(
|
|
const Eigen::MatrixBase<DerivedP>& P,
|
|
const Eigen::MatrixBase<DerivedI>& I,
|
|
const Eigen::MatrixBase<DerivedN>& N,
|
|
Eigen::PlainObjectBase<DerivedA> & A)
|
|
{
|
|
Eigen::MatrixXd T;
|
|
point_areas(P,I,N,A,T);
|
|
}
|
|
|
|
|
|
template <typename DerivedP, typename DerivedI, typename DerivedN,
|
|
typename DerivedA, typename DerivedT>
|
|
IGL_INLINE void point_areas(
|
|
const Eigen::MatrixBase<DerivedP>& P,
|
|
const Eigen::MatrixBase<DerivedI>& I,
|
|
const Eigen::MatrixBase<DerivedN>& N,
|
|
Eigen::PlainObjectBase<DerivedA> & A,
|
|
Eigen::PlainObjectBase<DerivedT> & T)
|
|
{
|
|
typedef typename DerivedP::Scalar real;
|
|
typedef typename DerivedN::Scalar scalarN;
|
|
typedef typename DerivedA::Scalar scalarA;
|
|
typedef Eigen::Matrix<real,1,3> RowVec3;
|
|
typedef Eigen::Matrix<real,1,2> RowVec2;
|
|
|
|
typedef Eigen::Matrix<real, Eigen::Dynamic, Eigen::Dynamic> MatrixP;
|
|
typedef Eigen::Matrix<scalarN, Eigen::Dynamic, Eigen::Dynamic> MatrixN;
|
|
typedef Eigen::Matrix<typename DerivedN::Scalar,
|
|
Eigen::Dynamic, Eigen::Dynamic> VecotorO;
|
|
typedef Eigen::Matrix<typename DerivedI::Scalar,
|
|
Eigen::Dynamic, Eigen::Dynamic> MatrixI;
|
|
|
|
|
|
|
|
const int n = P.rows();
|
|
|
|
assert(P.cols() == 3 && "P must have exactly 3 columns");
|
|
assert(P.rows() == N.rows()
|
|
&& "P and N must have the same number of rows");
|
|
assert(P.rows() == I.rows()
|
|
&& "P and I must have the same number of rows");
|
|
|
|
A.setZero(n,1);
|
|
T.setZero(n,3);
|
|
igl::parallel_for(P.rows(),[&](int i)
|
|
{
|
|
MatrixI neighbor_index = I.row(i);
|
|
MatrixP neighbors;
|
|
igl::slice(P,neighbor_index,1,neighbors);
|
|
if(N.rows() && neighbors.rows() > 1){
|
|
MatrixN neighbor_normals;
|
|
igl::slice(N,neighbor_index,1,neighbor_normals);
|
|
Eigen::Matrix<scalarN,1,3> poi_normal = neighbor_normals.row(0);
|
|
Eigen::Matrix<scalarN,Eigen::Dynamic,1> dotprod =
|
|
poi_normal(0)*neighbor_normals.col(0)
|
|
+ poi_normal(1)*neighbor_normals.col(1)
|
|
+ poi_normal(2)*neighbor_normals.col(2);
|
|
Eigen::Array<bool,Eigen::Dynamic,1> keep = dotprod.array() > 0;
|
|
igl::slice_mask(Eigen::MatrixXd(neighbors),keep,1,neighbors);
|
|
}
|
|
if(neighbors.rows() <= 2){
|
|
A(i) = 0;
|
|
} else {
|
|
//subtract the mean from neighbors, then take svd,
|
|
//the scores will be U*S. This is our pca plane fitting
|
|
RowVec3 mean = neighbors.colwise().mean();
|
|
MatrixP mean_centered = neighbors.rowwise() - mean;
|
|
Eigen::JacobiSVD<MatrixP> svd(mean_centered,
|
|
Eigen::ComputeThinU | Eigen::ComputeThinV);
|
|
MatrixP scores = svd.matrixU() * svd.singularValues().asDiagonal();
|
|
|
|
T.row(i) = svd.matrixV().col(2).transpose();
|
|
if(T.row(i).dot(N.row(i)) < 0){
|
|
T.row(i) *= -1;
|
|
}
|
|
|
|
MatrixP plane;
|
|
igl::slice(scores,igl::colon<int>(0,scores.rows()-1),
|
|
igl::colon<int>(0,1),plane);
|
|
|
|
std::vector< std::pair<Point,unsigned> > points;
|
|
//This is where we obtain a delaunay triangulation of the points
|
|
for(unsigned iter = 0; iter < plane.rows(); iter++){
|
|
points.push_back( std::make_pair(
|
|
Point(plane(iter,0),plane(iter,1)), iter ) );
|
|
}
|
|
Delaunay triangulation;
|
|
triangulation.insert(points.begin(),points.end());
|
|
Eigen::MatrixXi F(triangulation.number_of_faces(),3);
|
|
int f_row = 0;
|
|
for(Delaunay::Finite_faces_iterator fit =
|
|
triangulation.finite_faces_begin();
|
|
fit != triangulation.finite_faces_end(); ++fit) {
|
|
Delaunay::Face_handle face = fit;
|
|
F.row(f_row) = Eigen::RowVector3i((int)face->vertex(0)->info(),
|
|
(int)face->vertex(1)->info(),
|
|
(int)face->vertex(2)->info());
|
|
f_row++;
|
|
}
|
|
|
|
//Here we calculate the voronoi area of the point
|
|
scalarA area_accumulator = 0;
|
|
for(int f = 0; f < F.rows(); f++){
|
|
int X = -1;
|
|
for(int face_iter = 0; face_iter < 3; face_iter++){
|
|
if(F(f,face_iter) == 0){
|
|
X = face_iter;
|
|
}
|
|
}
|
|
if(X >= 0){
|
|
//Triangle XYZ with X being the point we want the area of
|
|
int Y = (X+1)%3;
|
|
int Z = (X+2)%3;
|
|
scalarA x = (plane.row(F(f,Y))-plane.row(F(f,Z))).norm();
|
|
scalarA y = (plane.row(F(f,X))-plane.row(F(f,Z))).norm();
|
|
scalarA z = (plane.row(F(f,Y))-plane.row(F(f,X))).norm();
|
|
scalarA cosX = (z*z + y*y - x*x)/(2*y*z);
|
|
scalarA cosY = (z*z + x*x - y*y)/(2*x*z);
|
|
scalarA cosZ = (x*x + y*y - z*z)/(2*y*x);
|
|
Eigen::Matrix<scalarA,1,3> barycentric;
|
|
barycentric << x*cosX, y*cosY, z*cosZ;
|
|
barycentric /= (barycentric(0)+barycentric(1)+barycentric(2));
|
|
|
|
//TODO: to make numerically stable, reorder so that x≥y≥z:
|
|
scalarA full_area = 0.25*std::sqrt(
|
|
(x+(y+z))*(z-(x-y))*(z+(x-y))*(x+(y-z)));
|
|
Eigen::Matrix<scalarA,1,3> partial_area =
|
|
barycentric * full_area;
|
|
if(cosX < 0){
|
|
area_accumulator += 0.5*full_area;
|
|
} else if (cosY < 0 || cosZ < 0){
|
|
area_accumulator += 0.25*full_area;
|
|
} else {
|
|
area_accumulator += (partial_area(1) + partial_area(2))/2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(std::isfinite(area_accumulator)){
|
|
A(i) = area_accumulator;
|
|
} else {
|
|
A(i) = 0;
|
|
}
|
|
}
|
|
},1000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|