207 lines
5.9 KiB
C++
207 lines
5.9 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "snap_rounding.h"
|
|
#include "resolve_intersections.h"
|
|
#include "subdivide_segments.h"
|
|
#include "../../remove_unreferenced.h"
|
|
#include "../../unique.h"
|
|
#include <CGAL/Segment_2.h>
|
|
#include <CGAL/Point_2.h>
|
|
#include <CGAL/Vector_2.h>
|
|
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
|
#include <algorithm>
|
|
|
|
template <
|
|
typename DerivedV,
|
|
typename DerivedE,
|
|
typename DerivedVI,
|
|
typename DerivedEI,
|
|
typename DerivedJ>
|
|
IGL_INLINE void igl::copyleft::cgal::snap_rounding(
|
|
const Eigen::PlainObjectBase<DerivedV> & V,
|
|
const Eigen::PlainObjectBase<DerivedE> & E,
|
|
Eigen::PlainObjectBase<DerivedVI> & VI,
|
|
Eigen::PlainObjectBase<DerivedEI> & EI,
|
|
Eigen::PlainObjectBase<DerivedJ> & J)
|
|
{
|
|
using namespace Eigen;
|
|
using namespace igl;
|
|
using namespace igl::copyleft::cgal;
|
|
using namespace std;
|
|
// Exact scalar type
|
|
typedef CGAL::Epeck Kernel;
|
|
typedef Kernel::FT EScalar;
|
|
typedef CGAL::Segment_2<Kernel> Segment_2;
|
|
typedef CGAL::Point_2<Kernel> Point_2;
|
|
typedef CGAL::Vector_2<Kernel> Vector_2;
|
|
typedef Matrix<EScalar,Dynamic,Dynamic> MatrixXE;
|
|
// Convert vertex positions to exact kernel
|
|
|
|
MatrixXE VE;
|
|
{
|
|
VectorXi IM;
|
|
resolve_intersections(V,E,VE,EI,J,IM);
|
|
for_each(
|
|
EI.data(),
|
|
EI.data()+EI.size(),
|
|
[&IM](typename DerivedEI::Scalar& i){i=IM(i);});
|
|
VectorXi _;
|
|
remove_unreferenced( MatrixXE(VE), DerivedEI(EI), VE,EI,_);
|
|
}
|
|
|
|
// find all hot pixels
|
|
//// southwest and north east corners
|
|
//const RowVector2i SW(
|
|
// round(VE.col(0).minCoeff()),
|
|
// round(VE.col(1).minCoeff()));
|
|
//const RowVector2i NE(
|
|
// round(VE.col(0).maxCoeff()),
|
|
// round(VE.col(1).maxCoeff()));
|
|
|
|
// https://github.com/CGAL/cgal/issues/548
|
|
// Round an exact scalar to the nearest integer. A priori can't just round
|
|
// double. Suppose e=0.5+ε but double(e)<0.5
|
|
//
|
|
// Inputs:
|
|
// e exact number
|
|
// Outputs:
|
|
// i closest integer
|
|
const auto & round = [](const EScalar & e)->int
|
|
{
|
|
const double d = CGAL::to_double(e);
|
|
// get an integer that's near the closest int
|
|
int i = std::round(d);
|
|
EScalar di_sqr = CGAL::square((e-EScalar(i)));
|
|
const auto & search = [&i,&di_sqr,&e](const int dir)
|
|
{
|
|
while(true)
|
|
{
|
|
const int j = i+dir;
|
|
const EScalar dj_sqr = CGAL::square((e-EScalar(j)));
|
|
if(dj_sqr < di_sqr)
|
|
{
|
|
i = j;
|
|
di_sqr = dj_sqr;
|
|
}else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
// Try to increase/decrease int
|
|
search(1);
|
|
search(-1);
|
|
return i;
|
|
};
|
|
vector<Point_2> hot;
|
|
for(int i = 0;i<VE.rows();i++)
|
|
{
|
|
hot.emplace_back(round(VE(i,0)),round(VE(i,1)));
|
|
}
|
|
{
|
|
std::vector<size_t> _1,_2;
|
|
igl::unique(vector<Point_2>(hot),hot,_1,_2);
|
|
}
|
|
|
|
// find all segments intersecting hot pixels
|
|
// split edge at closest point to hot pixel center
|
|
vector<vector<Point_2>> steiner(EI.rows());
|
|
// initialize each segment with endpoints
|
|
for(int i = 0;i<EI.rows();i++)
|
|
{
|
|
steiner[i].emplace_back(VE(EI(i,0),0),VE(EI(i,0),1));
|
|
steiner[i].emplace_back(VE(EI(i,1),0),VE(EI(i,1),1));
|
|
}
|
|
// silly O(n²) implementation
|
|
for(const Point_2 & h : hot)
|
|
{
|
|
// North, East, South, West
|
|
Segment_2 wall[4] =
|
|
{
|
|
{h+Vector_2(-0.5, 0.5),h+Vector_2( 0.5, 0.5)},
|
|
{h+Vector_2( 0.5, 0.5),h+Vector_2( 0.5,-0.5)},
|
|
{h+Vector_2( 0.5,-0.5),h+Vector_2(-0.5,-0.5)},
|
|
{h+Vector_2(-0.5,-0.5),h+Vector_2(-0.5, 0.5)}
|
|
};
|
|
// consider all segments
|
|
for(int i = 0;i<EI.rows();i++)
|
|
{
|
|
// endpoints
|
|
const Point_2 s(VE(EI(i,0),0),VE(EI(i,0),1));
|
|
const Point_2 d(VE(EI(i,1),0),VE(EI(i,1),1));
|
|
// if either end-point is in h's pixel then ignore
|
|
const Point_2 rs(round(s.x()),round(s.y()));
|
|
const Point_2 rd(round(d.x()),round(d.y()));
|
|
if(h == rs || h == rd)
|
|
{
|
|
continue;
|
|
}
|
|
// otherwise check for intersections with walls consider all walls
|
|
const Segment_2 si(s,d);
|
|
vector<Point_2> hits;
|
|
for(int j = 0;j<4;j++)
|
|
{
|
|
const Segment_2 & sj = wall[j];
|
|
if(CGAL::do_intersect(si,sj))
|
|
{
|
|
CGAL::Object result = CGAL::intersection(si,sj);
|
|
if(const Point_2 * p = CGAL::object_cast<Point_2 >(&result))
|
|
{
|
|
hits.push_back(*p);
|
|
}else if(const Segment_2 * s = CGAL::object_cast<Segment_2 >(&result))
|
|
{
|
|
// add both endpoints
|
|
hits.push_back(s->vertex(0));
|
|
hits.push_back(s->vertex(1));
|
|
}
|
|
}
|
|
}
|
|
if(hits.size() == 0)
|
|
{
|
|
continue;
|
|
}
|
|
// centroid of hits
|
|
Vector_2 cen(0,0);
|
|
for(const Point_2 & hit : hits)
|
|
{
|
|
cen = Vector_2(cen.x()+hit.x(), cen.y()+hit.y());
|
|
}
|
|
cen = Vector_2(cen.x()/EScalar(hits.size()),cen.y()/EScalar(hits.size()));
|
|
const Point_2 rcen(round(cen.x()),round(cen.y()));
|
|
// after all of that, don't add as a steiner unless it's going to round
|
|
// to h
|
|
if(rcen == h)
|
|
{
|
|
steiner[i].emplace_back(cen.x(),cen.y());
|
|
}
|
|
}
|
|
}
|
|
{
|
|
DerivedJ prevJ = J;
|
|
VectorXi IM;
|
|
subdivide_segments(MatrixXE(VE),MatrixXi(EI),steiner,VE,EI,J,IM);
|
|
for_each(J.data(),J.data()+J.size(),[&prevJ](typename DerivedJ::Scalar & j){j=prevJ(j);});
|
|
for_each(
|
|
EI.data(),
|
|
EI.data()+EI.size(),
|
|
[&IM](typename DerivedEI::Scalar& i){i=IM(i);});
|
|
VectorXi _;
|
|
remove_unreferenced( MatrixXE(VE), DerivedEI(EI), VE,EI,_);
|
|
}
|
|
|
|
|
|
VI.resizeLike(VE);
|
|
for(int i = 0;i<VE.rows();i++)
|
|
{
|
|
for(int j = 0;j<VE.cols();j++)
|
|
{
|
|
VI(i,j) = round(CGAL::to_double(VE(i,j)));
|
|
}
|
|
}
|
|
}
|