618 lines
26 KiB
C++
618 lines
26 KiB
C++
#include "MeshUtils.hpp"
|
|
|
|
#include "libslic3r/Tesselate.hpp"
|
|
#include "libslic3r/TriangleMesh.hpp"
|
|
#include "libslic3r/TriangleMeshSlicer.hpp"
|
|
#include "libslic3r/ClipperUtils.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
|
|
#include "slic3r/GUI/GUI_App.hpp"
|
|
#include "slic3r/GUI/Plater.hpp"
|
|
#include "slic3r/GUI/Camera.hpp"
|
|
#include "slic3r/GUI/CameraUtils.hpp"
|
|
|
|
#include <GL/glew.h>
|
|
|
|
#include <igl/unproject.h>
|
|
#include "CameraUtils.hpp"
|
|
|
|
|
|
namespace Slic3r { namespace GUI {
|
|
MeshClipper::~MeshClipper() {
|
|
reset();
|
|
}
|
|
|
|
void MeshClipper::set_behaviour(bool fill_cut, double contour_width)
|
|
{
|
|
if (fill_cut != m_fill_cut || !is_approx(contour_width, m_contour_width))
|
|
reset();
|
|
m_fill_cut = fill_cut;
|
|
m_contour_width = contour_width;
|
|
}
|
|
|
|
void MeshClipper::set_plane(const ClippingPlane &plane)
|
|
{
|
|
if (m_plane != plane) {
|
|
m_plane = plane;
|
|
reset();
|
|
}
|
|
}
|
|
|
|
void MeshClipper::set_limiting_plane(const ClippingPlane& plane)
|
|
{
|
|
if (m_limiting_plane != plane) {
|
|
m_limiting_plane = plane;
|
|
reset();
|
|
}
|
|
}
|
|
|
|
void MeshClipper::set_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_mesh != &mesh) {
|
|
m_mesh = &mesh;
|
|
reset();
|
|
}
|
|
}
|
|
|
|
void MeshClipper::set_negative_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_negative_mesh != &mesh) {
|
|
m_negative_mesh = &mesh;
|
|
reset();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
|
|
{
|
|
if (! m_trafo.get_matrix().isApprox(trafo.get_matrix())) {
|
|
m_trafo = trafo;
|
|
reset();
|
|
}
|
|
}
|
|
|
|
void MeshClipper::render_cut(const ColorRGBA &color, const std::vector<size_t> *ignore_idxs)
|
|
{
|
|
if (!m_result) recalculate_triangles();
|
|
GLShaderProgram *curr_shader = wxGetApp().get_current_shader();
|
|
if (curr_shader != nullptr) curr_shader->stop_using();
|
|
|
|
GLShaderProgram *shader = wxGetApp().get_shader("flat");
|
|
if (shader != nullptr) {
|
|
shader->start_using();
|
|
const Camera &camera = wxGetApp().plater()->get_camera();
|
|
shader->set_uniform("view_model_matrix", camera.get_view_matrix());
|
|
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
|
|
for (size_t i = 0; i < m_result->cut_islands.size(); ++i) {
|
|
if (ignore_idxs && std::binary_search(ignore_idxs->begin(), ignore_idxs->end(), i)) continue;
|
|
auto isl = m_result->cut_islands[i];
|
|
ColorRGBA gray{0.5f, 0.5f, 0.5f, 1.f};
|
|
isl->model.set_color(-1, isl->disabled ? gray.get_data() : color.get_data());
|
|
isl->model.render();
|
|
}
|
|
shader->stop_using();
|
|
}
|
|
|
|
if (curr_shader != nullptr) curr_shader->start_using();
|
|
}
|
|
|
|
void MeshClipper::render_contour(const ColorRGBA &color, const std::vector<size_t> *ignore_idxs)
|
|
{
|
|
if (!m_result) recalculate_triangles();
|
|
|
|
GLShaderProgram *curr_shader = wxGetApp().get_current_shader();
|
|
if (curr_shader != nullptr) curr_shader->stop_using();
|
|
|
|
GLShaderProgram *shader = wxGetApp().get_shader("flat");
|
|
if (shader != nullptr) {
|
|
shader->start_using();
|
|
const Camera &camera = wxGetApp().plater()->get_camera();
|
|
shader->set_uniform("view_model_matrix", camera.get_view_matrix());
|
|
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
|
|
for (size_t i = 0; i < m_result->cut_islands.size(); ++i) {
|
|
if (ignore_idxs && std::binary_search(ignore_idxs->begin(), ignore_idxs->end(), i)) continue;
|
|
auto isl = m_result->cut_islands[i];
|
|
ColorRGBA red{1.0f, 0.f, 0.f, 1.f};
|
|
isl->model_expanded.set_color(-1, isl->disabled ? red.get_data() : color.get_data());
|
|
isl->model_expanded.render();
|
|
}
|
|
shader->stop_using();
|
|
}
|
|
|
|
if (curr_shader != nullptr)
|
|
curr_shader->start_using();
|
|
}
|
|
|
|
int MeshClipper::is_projection_inside_cut(const Vec3d &point_in) const
|
|
{
|
|
if (!m_result || m_result->cut_islands.empty())
|
|
return -1;
|
|
Vec3d point = m_result->trafo.inverse() * point_in;
|
|
Point pt_2d = Point::new_scale(Vec2d(point.x(), point.y()));
|
|
|
|
for (int i = 0; i < int(m_result->cut_islands.size()); ++i) {
|
|
auto isl = m_result->cut_islands[i];
|
|
if (isl->expoly_bb.contains(pt_2d) && isl->expoly.contains(pt_2d))
|
|
return i; // TODO: handle intersecting contours
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool MeshClipper::has_valid_contour() const
|
|
{
|
|
return m_result && std::any_of(m_result->cut_islands.begin(), m_result->cut_islands.end(), [](CutIsland *isl) { return isl &&!isl->expoly.empty(); });
|
|
}
|
|
|
|
std::vector<Vec3d> MeshClipper::point_per_contour() const {
|
|
std::vector<Vec3d> out;
|
|
if (m_result == std::nullopt) {
|
|
return out;
|
|
}
|
|
assert(m_result);
|
|
for (auto isl : m_result->cut_islands) {
|
|
assert(isl->expoly.contour.size() > 2);
|
|
// Now return a point lying inside the contour but not in a hole.
|
|
// We do this by taking a point lying close to the edge, repeating
|
|
// this several times for different edges and distances from them.
|
|
// (We prefer point not extremely close to the border.
|
|
bool done = false;
|
|
Vec2d p;
|
|
size_t i = 1;
|
|
while (i < isl->expoly.contour.size()) {
|
|
const Vec2d &a = unscale(isl->expoly.contour.points[i - 1]);
|
|
const Vec2d &b = unscale(isl->expoly.contour.points[i]);
|
|
Vec2d n = (b - a).normalized();
|
|
std::swap(n.x(), n.y());
|
|
n.x() = -1 * n.x();
|
|
double f = 10.;
|
|
while (f > 0.05) {
|
|
p = (0.5 * (b + a)) + f * n;
|
|
if (isl->expoly.contains(Point::new_scale(p))) {
|
|
done = true;
|
|
break;
|
|
}
|
|
f = f / 10.;
|
|
}
|
|
if (done) break;
|
|
i += std::max(size_t(2), isl->expoly.contour.size() / 5);
|
|
}
|
|
// If the above failed, just return the centroid, regardless of whether
|
|
// it is inside the contour or in a hole (we must return something).
|
|
Vec2d c = done ? p : unscale(isl->expoly.contour.centroid());
|
|
out.emplace_back(m_result->trafo * Vec3d(c.x(), c.y(), 0.));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void MeshClipper::recalculate_triangles()
|
|
{
|
|
m_result = ClipResult();
|
|
|
|
auto plane_mesh = Eigen::Hyperplane<double, 3>(m_plane.get_normal(), -m_plane.distance(Vec3d::Zero())).transform(m_trafo.get_matrix().inverse());
|
|
const Vec3d up = plane_mesh.normal();
|
|
const float height_mesh = -plane_mesh.offset();
|
|
|
|
// Now do the cutting
|
|
MeshSlicingParams slicing_params;
|
|
slicing_params.trafo.rotate(Eigen::Quaternion<double, Eigen::DontAlign>::FromTwoVectors(up, Vec3d::UnitZ()));
|
|
|
|
ExPolygons expolys;
|
|
|
|
// if (m_csgmesh.empty()) {
|
|
if (m_mesh) {
|
|
expolys = union_ex(slice_mesh(m_mesh->its, height_mesh, slicing_params));
|
|
}
|
|
if (m_negative_mesh && !m_negative_mesh->empty()) {
|
|
const ExPolygons neg_expolys = union_ex(slice_mesh(m_negative_mesh->its, height_mesh, slicing_params));
|
|
expolys = diff_ex(expolys, neg_expolys);
|
|
}
|
|
|
|
// Triangulate and rotate the cut into world coords:
|
|
Eigen::Quaterniond q;
|
|
q.setFromTwoVectors(Vec3d::UnitZ(), up);
|
|
Transform3d tr = Transform3d::Identity();
|
|
tr.rotate(q);
|
|
tr = m_trafo.get_matrix() * tr;
|
|
|
|
m_result->trafo = tr;
|
|
|
|
if (m_limiting_plane != ClippingPlane::ClipsNothing()) {
|
|
// Now remove whatever ended up below the limiting plane (e.g. sinking objects).
|
|
// First transform the limiting plane from world to mesh coords.
|
|
// Note that inverse of tr transforms the plane from world to horizontal.
|
|
const Vec3d normal_old = m_limiting_plane.get_normal().normalized();
|
|
const Vec3d normal_new = (tr.matrix().block<3, 3>(0, 0).transpose() * normal_old).normalized();
|
|
|
|
// normal_new should now be the plane normal in mesh coords. To find the offset,
|
|
// transform a point and set offset so it belongs to the transformed plane.
|
|
Vec3d pt = Vec3d::Zero();
|
|
const double plane_offset = m_limiting_plane.get_data()[3];
|
|
if (std::abs(normal_old.z()) > 0.5) // normal is normalized, at least one of the coords if larger than sqrt(3)/3 = 0.57
|
|
pt.z() = -plane_offset / normal_old.z();
|
|
else if (std::abs(normal_old.y()) > 0.5)
|
|
pt.y() = -plane_offset / normal_old.y();
|
|
else
|
|
pt.x() = -plane_offset / normal_old.x();
|
|
pt = tr.inverse() * pt;
|
|
const double offset = -(normal_new.dot(pt));
|
|
|
|
if (std::abs(normal_old.dot(m_plane.get_normal().normalized())) > 0.99) {
|
|
// The cuts are parallel, show all or nothing.
|
|
if (normal_old.dot(m_plane.get_normal().normalized()) < 0.0 && offset < height_mesh) expolys.clear();
|
|
} else {
|
|
// The cut is a horizontal plane defined by z=height_mesh.
|
|
// ax+by+e=0 is the line of intersection with the limiting plane.
|
|
// Normalized so a^2 + b^2 = 1.
|
|
const double len = std::hypot(normal_new.x(), normal_new.y());
|
|
if (len == 0.) return;
|
|
const double a = normal_new.x() / len;
|
|
const double b = normal_new.y() / len;
|
|
const double e = (normal_new.z() * height_mesh + offset) / len;
|
|
|
|
// We need a half-plane to limit the cut. Get angle of the intersecting line.
|
|
double angle = (b != 0.0) ? std::atan(-a / b) : ((a < 0.0) ? -0.5 * M_PI : 0.5 * M_PI);
|
|
if (b > 0) // select correct half-plane
|
|
angle += M_PI;
|
|
|
|
// We'll take a big rectangle above x-axis and rotate and translate
|
|
// it so it lies on our line. This will be the figure to subtract
|
|
// from the cut. The coordinates must not overflow after the transform,
|
|
// make the rectangle a bit smaller.
|
|
const coord_t size = (std::numeric_limits<coord_t>::max() / 2 - scale_(std::max(std::abs(e * a), std::abs(e * b)))) / 4;
|
|
Polygons ep{Polygon({Point(-size, 0), Point(size, 0), Point(size, 2 * size), Point(-size, 2 * size)})};
|
|
ep.front().rotate(angle);
|
|
ep.front().translate(scale_(-e * a), scale_(-e * b));
|
|
expolys = diff_ex(expolys, ep);
|
|
}
|
|
}
|
|
|
|
tr.pretranslate(0.001 * m_plane.get_normal().normalized()); // to avoid z-fighting
|
|
Transform3d tr2 = tr;
|
|
tr2.pretranslate(0.002 * m_plane.get_normal().normalized());
|
|
|
|
std::vector<Vec2f> triangles2d;
|
|
|
|
m_result->cut_islands.resize(expolys.size());
|
|
int isl_index = 0;
|
|
for (const ExPolygon &exp : expolys) {
|
|
triangles2d.clear();
|
|
if (!m_result->cut_islands[isl_index]) {
|
|
m_result->cut_islands[isl_index] = new CutIsland();
|
|
}
|
|
CutIsland* isl = m_result->cut_islands[isl_index];
|
|
isl_index++;
|
|
if (m_fill_cut) {
|
|
triangles2d = triangulate_expolygon_2f(exp, m_trafo.get_matrix().matrix().determinant() < 0.);
|
|
GLModel::InitializationData init_data; // GLModel::Geometry init_data;
|
|
init_data.entities.push_back(GLModel::InitializationData::Entity());
|
|
init_data.entities.back().type = GLModel::PrimitiveType::Triangles;
|
|
init_data.entities.back().positions.reserve(triangles2d.size() * (init_data.entities.back().type == GLModel::PrimitiveType::Triangles ? 3 : 2));
|
|
init_data.entities.back().normals.reserve(triangles2d.size() * (init_data.entities.back().type == GLModel::PrimitiveType::Triangles ? 3 : 2));
|
|
init_data.entities.back().indices.reserve(triangles2d.size());
|
|
/*init_data.format = {GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
|
|
init_data.reserve_vertices(triangles2d.size());
|
|
init_data.reserve_indices(triangles2d.size());*/
|
|
|
|
// vertices + indices
|
|
for (auto it = triangles2d.cbegin(); it != triangles2d.cend(); it = it + 3) {
|
|
/*init_data.add_vertex((Vec3f) (tr * Vec3d((*(it + 0)).x(), (*(it + 0)).y(), height_mesh)).cast<float>(), (Vec3f) up.cast<float>());
|
|
init_data.add_vertex((Vec3f) (tr * Vec3d((*(it + 1)).x(), (*(it + 1)).y(), height_mesh)).cast<float>(), (Vec3f) up.cast<float>());
|
|
init_data.add_vertex((Vec3f) (tr * Vec3d((*(it + 2)).x(), (*(it + 2)).y(), height_mesh)).cast<float>(), (Vec3f) up.cast<float>());
|
|
const size_t idx = it - triangles2d.cbegin();
|
|
init_data.add_triangle((unsigned int) idx, (unsigned int) idx + 1, (unsigned int) idx + 2);*/
|
|
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 0)).x(), (*(it + 0)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 1)).x(), (*(it + 1)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 2)).x(), (*(it + 2)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
const size_t idx = it - triangles2d.cbegin();
|
|
init_data.entities.back().indices.push_back((unsigned int) idx);
|
|
init_data.entities.back().indices.push_back((unsigned int) idx + 1);
|
|
init_data.entities.back().indices.push_back((unsigned int) idx + 2);
|
|
}
|
|
|
|
if (init_data.entities.back().indices.size() != 0) {
|
|
isl->model.reset();
|
|
isl->model.init_from(std::move(init_data));
|
|
}
|
|
}
|
|
|
|
if (m_contour_width != 0. && !exp.contour.empty()) {
|
|
triangles2d.clear();
|
|
|
|
// The contours must not scale with the object. Check the scale factor
|
|
// in the respective directions, create a scaled copy of the ExPolygon
|
|
// offset it and then unscale the result again.
|
|
|
|
Transform3d t = tr;
|
|
t.translation() = Vec3d::Zero();
|
|
double scale_x = (t * Vec3d::UnitX()).norm();
|
|
double scale_y = (t * Vec3d::UnitY()).norm();
|
|
|
|
// To prevent overflow after scaling, downscale the input if needed:
|
|
double extra_scale = 1.;
|
|
int32_t limit = int32_t(
|
|
std::min(std::numeric_limits<coord_t>::max() / (2. * std::max(1., scale_x)), std::numeric_limits<coord_t>::max() / (2. * std::max(1., scale_y))));
|
|
int32_t max_coord = 0;
|
|
for (const Point &pt : exp.contour) max_coord = std::max(max_coord, std::max(std::abs(pt.x()), std::abs(pt.y())));
|
|
if (max_coord + m_contour_width >= limit) extra_scale = 0.9 * double(limit) / max_coord;
|
|
|
|
ExPolygon exp_copy = exp;
|
|
if (extra_scale != 1.) exp_copy.scale(extra_scale);
|
|
exp_copy.scale(scale_x, scale_y);
|
|
|
|
ExPolygons expolys_exp = offset_ex(exp_copy, scale_(m_contour_width));
|
|
expolys_exp = diff_ex(expolys_exp, ExPolygons({exp_copy}));
|
|
|
|
for (ExPolygon &e : expolys_exp) {
|
|
e.scale(1. / scale_x, 1. / scale_y);
|
|
if (extra_scale != 1.) e.scale(1. / extra_scale);
|
|
}
|
|
|
|
triangles2d = triangulate_expolygons_2f(expolys_exp, m_trafo.get_matrix().matrix().determinant() < 0.);
|
|
GLModel::InitializationData init_data; // GLModel::Geometry init_data;
|
|
init_data.entities.push_back(GLModel::InitializationData::Entity());
|
|
init_data.entities.back().type = GLModel::PrimitiveType::Triangles;
|
|
init_data.entities.back().positions.reserve(triangles2d.size() * (init_data.entities.back().type == GLModel::PrimitiveType::Triangles ? 3 : 2));
|
|
init_data.entities.back().normals.reserve(triangles2d.size() * (init_data.entities.back().type == GLModel::PrimitiveType::Triangles ? 3 : 2));
|
|
init_data.entities.back().indices.reserve(triangles2d.size());
|
|
/*GLModel::Geometry init_data = GLModel::Geometry();
|
|
init_data.format = {GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3};
|
|
init_data.reserve_vertices(triangles2d.size());
|
|
init_data.reserve_indices(triangles2d.size());*/
|
|
|
|
// vertices + indices
|
|
for (auto it = triangles2d.cbegin(); it != triangles2d.cend(); it = it + 3) {
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 0)).x(), (*(it + 0)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 1)).x(), (*(it + 1)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
init_data.entities.back().positions.push_back((Vec3f) (tr * Vec3d((*(it + 2)).x(), (*(it + 2)).y(), height_mesh)).cast<float>());
|
|
init_data.entities.back().normals.push_back((Vec3f) up.cast<float>());
|
|
|
|
const size_t idx = it - triangles2d.cbegin();
|
|
init_data.entities.back().indices.push_back((unsigned int) idx);
|
|
init_data.entities.back().indices.push_back((unsigned int) idx + 1);
|
|
init_data.entities.back().indices.push_back((unsigned int) idx + 2);
|
|
}
|
|
|
|
if (init_data.entities.back().indices.size() != 0) {
|
|
isl->model_expanded.reset();
|
|
isl->model_expanded.init_from(std::move(init_data));
|
|
}
|
|
}
|
|
|
|
isl->expoly = std::move(exp);
|
|
isl->expoly_bb = get_extents(isl->expoly);
|
|
|
|
Point centroid_scaled = isl->expoly.contour.centroid();
|
|
Vec3d centroid_world = m_result->trafo * Vec3d(unscale(centroid_scaled).x(), unscale(centroid_scaled).y(), 0.);
|
|
isl->hash = isl->expoly.contour.size() + size_t(std::abs(100. * centroid_world.x())) + size_t(std::abs(100. * centroid_world.y())) +
|
|
size_t(std::abs(100. * centroid_world.z()));
|
|
}
|
|
|
|
// Now sort the islands so they are in defined order. This is a hack needed by cut gizmo, which sometimes
|
|
// flips the normal of the cut, in which case the contours stay the same but their order may change.
|
|
std::sort(m_result->cut_islands.begin(), m_result->cut_islands.end(), [](CutIsland *a, CutIsland *b) { return a && b && a->hash < b->hash; });
|
|
}
|
|
|
|
void MeshClipper::reset()
|
|
{
|
|
if (m_result) {
|
|
for (auto it = m_result->cut_islands.begin(); it != m_result->cut_islands.end(); ++it) {
|
|
delete *it;
|
|
}
|
|
std::vector<CutIsland *>().swap(m_result->cut_islands);
|
|
}
|
|
m_result.reset();
|
|
}
|
|
|
|
Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const
|
|
{
|
|
return m_normals[facet_idx];
|
|
}
|
|
|
|
MeshRaycaster::MeshRaycaster(const TriangleMesh &mesh)
|
|
: m_emesh(mesh, true) // calculate epsilon for triangle-ray intersection from an average edge length
|
|
, m_normals(its_face_normals(mesh.its))
|
|
{
|
|
;
|
|
}
|
|
|
|
void MeshRaycaster::line_from_mouse_pos_static(const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3d &point, Vec3d &direction)
|
|
{
|
|
CameraUtils::ray_from_screen_pos(camera, mouse_pos, point, direction);
|
|
Transform3d inv = trafo.inverse();
|
|
point = inv * point;
|
|
direction = inv.linear() * direction;
|
|
}
|
|
|
|
void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3d& point, Vec3d& direction) const
|
|
{
|
|
Matrix4d modelview = camera.get_view_matrix().matrix();
|
|
Matrix4d projection= camera.get_projection_matrix().matrix();
|
|
Vec4i viewport(camera.get_viewport().data());
|
|
|
|
Vec3d pt1;
|
|
Vec3d pt2;
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 0.),
|
|
modelview, projection, viewport, pt1);
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 1.),
|
|
modelview, projection, viewport, pt2);
|
|
|
|
Transform3d inv = trafo.inverse();
|
|
pt1 = inv * pt1;
|
|
pt2 = inv * pt2;
|
|
|
|
point = pt1;
|
|
direction = (pt2-pt1).normalized();
|
|
}
|
|
|
|
|
|
bool MeshRaycaster::unproject_on_mesh(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3f& position, Vec3f& normal, const ClippingPlane* clipping_plane,
|
|
size_t* facet_idx, bool sinking_limit) const
|
|
{
|
|
Vec3d point;
|
|
Vec3d direction;
|
|
line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);
|
|
|
|
std::vector<sla::IndexedMesh::hit_result> hits = m_emesh.query_ray_hits(point, direction);
|
|
|
|
if (hits.empty())
|
|
return false; // no intersection found
|
|
|
|
unsigned i = 0;
|
|
|
|
// Remove points that are obscured or cut by the clipping plane.
|
|
// Also, remove anything below the bed (sinking objects).
|
|
for (i=0; i<hits.size(); ++i) {
|
|
Vec3d transformed_hit = trafo * hits[i].position();
|
|
if (transformed_hit.z() >= (sinking_limit ? SINKING_Z_THRESHOLD : -std::numeric_limits<double>::max()) &&
|
|
(!clipping_plane || !clipping_plane->is_point_clipped(transformed_hit)))
|
|
break;
|
|
}
|
|
|
|
if (i==hits.size() || (hits.size()-i) % 2 != 0) {
|
|
// All hits are either clipped, or there is an odd number of unclipped
|
|
// hits - meaning the nearest must be from inside the mesh.
|
|
return false;
|
|
}
|
|
|
|
// Now stuff the points in the provided vector and calculate normals if asked about them:
|
|
position = hits[i].position().cast<float>();
|
|
normal = hits[i].normal().cast<float>();
|
|
|
|
if (facet_idx)
|
|
*facet_idx = hits[i].face();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool MeshRaycaster::intersects_line(Vec3d point, Vec3d direction, const Transform3d &trafo) const
|
|
{
|
|
Transform3d trafo_inv = trafo.inverse();
|
|
Vec3d to = trafo_inv * (point + direction);
|
|
point = trafo_inv * point;
|
|
direction = (to - point).normalized();
|
|
|
|
std::vector<sla::IndexedMesh::hit_result> hits = m_emesh.query_ray_hits(point, direction);
|
|
std::vector<sla::IndexedMesh::hit_result> neg_hits = m_emesh.query_ray_hits(point, -direction);
|
|
|
|
return !hits.empty() || !neg_hits.empty();
|
|
}
|
|
|
|
std::vector<unsigned> MeshRaycaster::get_unobscured_idxs(const Geometry::Transformation &trafo,
|
|
const Camera & camera,
|
|
const std::vector<Vec3f> & points,
|
|
const ClippingPlane* clipping_plane) const
|
|
{
|
|
std::vector<unsigned> out;
|
|
|
|
const Transform3d& instance_matrix_no_translation_no_scaling = trafo.get_matrix(true,false,true);
|
|
Vec3d direction_to_camera = -camera.get_dir_forward();
|
|
Vec3d direction_to_camera_mesh = (instance_matrix_no_translation_no_scaling.inverse() * direction_to_camera).normalized().eval();
|
|
direction_to_camera_mesh = direction_to_camera_mesh.cwiseProduct(trafo.get_scaling_factor());
|
|
const Transform3d inverse_trafo = trafo.get_matrix().inverse();
|
|
|
|
for (size_t i=0; i<points.size(); ++i) {
|
|
const Vec3f& pt = points[i];
|
|
if (clipping_plane && clipping_plane->is_point_clipped(pt.cast<double>()))
|
|
continue;
|
|
|
|
bool is_obscured = false;
|
|
// Cast a ray in the direction of the camera and look for intersection with the mesh:
|
|
std::vector<sla::IndexedMesh::hit_result> hits;
|
|
// Offset the start of the ray by EPSILON to account for numerical inaccuracies.
|
|
hits = m_emesh.query_ray_hits((inverse_trafo * pt.cast<double>() + direction_to_camera_mesh * EPSILON),
|
|
direction_to_camera_mesh);
|
|
|
|
if (! hits.empty()) {
|
|
// If the closest hit facet normal points in the same direction as the ray,
|
|
// we are looking through the mesh and should therefore discard the point:
|
|
if (hits.front().normal().dot(direction_to_camera_mesh.cast<double>()) > 0)
|
|
is_obscured = true;
|
|
|
|
// Eradicate all hits that the caller wants to ignore
|
|
for (unsigned j=0; j<hits.size(); ++j) {
|
|
if (clipping_plane && clipping_plane->is_point_clipped(trafo.get_matrix() * hits[j].position())) {
|
|
hits.erase(hits.begin()+j);
|
|
--j;
|
|
}
|
|
}
|
|
|
|
// FIXME: the intersection could in theory be behind the camera, but as of now we only have camera direction.
|
|
// Also, the threshold is in mesh coordinates, not in actual dimensions.
|
|
if (! hits.empty())
|
|
is_obscured = true;
|
|
}
|
|
if (! is_obscured)
|
|
out.push_back(i);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool MeshRaycaster::closest_hit(
|
|
const Vec2d &mouse_pos, const Transform3d &trafo, const Camera &camera, Vec3f &position, Vec3f &normal, const ClippingPlane *clipping_plane, size_t *facet_idx) const
|
|
{
|
|
Vec3d point;
|
|
Vec3d direction;
|
|
line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);
|
|
|
|
auto hits = m_emesh.query_ray_hits(point, direction.normalized());
|
|
|
|
if (hits.empty()) return false; // no intersection found
|
|
|
|
size_t hit_id = 0;
|
|
if (clipping_plane != nullptr) {
|
|
while (hit_id < hits.size() && clipping_plane->is_point_clipped(trafo * hits[hit_id].position())) {
|
|
++hit_id;
|
|
}
|
|
}
|
|
|
|
if (hit_id == hits.size())
|
|
return false; // all points are obscured or cut by the clipping plane.
|
|
|
|
auto &hit = hits[hit_id];
|
|
|
|
position = hit.position().cast<float>();
|
|
normal = hit.normal().cast<float>();
|
|
|
|
if (facet_idx != nullptr)
|
|
*facet_idx = hit.face();
|
|
|
|
return true;
|
|
}
|
|
|
|
Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const
|
|
{
|
|
int idx = 0;
|
|
Vec3d closest_point;
|
|
m_emesh.squared_distance(point.cast<double>(), idx, closest_point);
|
|
if (normal)
|
|
*normal = m_normals[idx];
|
|
|
|
return closest_point.cast<float>();
|
|
}
|
|
|
|
int MeshRaycaster::get_closest_facet(const Vec3f &point) const
|
|
{
|
|
int facet_idx = 0;
|
|
Vec3d closest_point;
|
|
m_emesh.squared_distance(point.cast<double>(), facet_idx, closest_point);
|
|
return facet_idx;
|
|
}
|
|
|
|
} // namespace GUI
|
|
} // namespace Slic3r
|