623 lines
21 KiB
C++
623 lines
21 KiB
C++
#include "libslic3r/libslic3r.h"
|
|
#include "libslic3r/AppConfig.hpp"
|
|
|
|
#include "Camera.hpp"
|
|
#include "GUI_App.hpp"
|
|
#if ENABLE_CAMERA_STATISTICS
|
|
#include "Mouse3DController.hpp"
|
|
#include "Plater.hpp"
|
|
#endif // ENABLE_CAMERA_STATISTICS
|
|
|
|
#include <GL/glew.h>
|
|
|
|
namespace Slic3r {
|
|
namespace GUI {
|
|
|
|
const double Camera::DefaultDistance = 1000.0;
|
|
const double Camera::DefaultZoomToBoxMarginFactor = 1.025;
|
|
const double Camera::DefaultZoomToVolumesMarginFactor = 1.025;
|
|
double Camera::FrustrumMinZRange = 50.0;
|
|
double Camera::FrustrumMinNearZ = 100.0;
|
|
double Camera::FrustrumZMargin = 10.0;
|
|
double Camera::MaxFovDeg = 60.0;
|
|
double Camera::ZoomUnit = 0.1;
|
|
|
|
std::string Camera::get_type_as_string() const
|
|
{
|
|
switch (m_type)
|
|
{
|
|
case EType::Unknown: return "unknown";
|
|
case EType::Perspective: return "perspective";
|
|
default:
|
|
case EType::Ortho: return "orthographic";
|
|
};
|
|
}
|
|
|
|
void Camera::set_type(EType type)
|
|
{
|
|
if (m_type != type && (type == EType::Ortho || type == EType::Perspective)) {
|
|
m_type = type;
|
|
if (m_update_config_on_type_change_enabled) {
|
|
wxGetApp().app_config->set_bool("use_perspective_camera", m_type == EType::Perspective);
|
|
wxGetApp().app_config->save();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Camera::select_next_type()
|
|
{
|
|
unsigned char next = (unsigned char)m_type + 1;
|
|
if (next == (unsigned char)EType::Num_types)
|
|
next = 1;
|
|
|
|
set_type((EType)next);
|
|
}
|
|
|
|
void Camera::translate(const Vec3d& displacement) {
|
|
if (!displacement.isApprox(Vec3d::Zero())) {
|
|
m_view_matrix.translate(-displacement);
|
|
update_target();
|
|
}
|
|
}
|
|
|
|
void Camera::set_target(const Vec3d& target)
|
|
{
|
|
//BBS do not check validation
|
|
//const Vec3d new_target = validate_target(target);
|
|
update_target();
|
|
const Vec3d new_target = target;
|
|
const Vec3d new_displacement = new_target - m_target;
|
|
if (!new_displacement.isApprox(Vec3d::Zero())) {
|
|
m_target = new_target;
|
|
m_view_matrix.translate(-new_displacement);
|
|
}
|
|
}
|
|
|
|
void Camera::set_zoom(double zoom)
|
|
{
|
|
// Don't allow to zoom too far outside the scene.
|
|
const double zoom_min = min_zoom();
|
|
if (zoom_min > 0.0)
|
|
zoom = std::max(zoom, zoom_min);
|
|
|
|
// Don't allow to zoom too close to the scene.
|
|
m_zoom = std::min(zoom, max_zoom());
|
|
}
|
|
|
|
void Camera::select_view(const std::string& direction)
|
|
{
|
|
if (direction == "iso")
|
|
set_iso_orientation();
|
|
else if (direction == "left")
|
|
look_at(m_target - m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
|
|
else if (direction == "right")
|
|
look_at(m_target + m_distance * Vec3d::UnitX(), m_target, Vec3d::UnitZ());
|
|
else if (direction == "top")
|
|
look_at(m_target + m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY());
|
|
else if (direction == "bottom")
|
|
look_at(m_target - m_distance * Vec3d::UnitZ(), m_target, -Vec3d::UnitY());
|
|
else if (direction == "front")
|
|
look_at(m_target - m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
|
|
else if (direction == "rear")
|
|
look_at(m_target + m_distance * Vec3d::UnitY(), m_target, Vec3d::UnitZ());
|
|
else if (direction == "topfront")
|
|
look_at(m_target - 0.707 * m_distance * Vec3d::UnitY() + 0.707 * m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY() + Vec3d::UnitZ());
|
|
else if (direction == "plate") {
|
|
look_at(m_target - 0.707 * m_distance * Vec3d::UnitY() + 0.707 * m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY() + Vec3d::UnitZ());
|
|
}
|
|
}
|
|
|
|
double Camera::get_fov() const
|
|
{
|
|
switch (m_type)
|
|
{
|
|
case EType::Perspective:
|
|
return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1)));
|
|
default:
|
|
case EType::Ortho:
|
|
return 0.0;
|
|
};
|
|
}
|
|
|
|
void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h)
|
|
{
|
|
glsafe(::glViewport(0, 0, w, h));
|
|
glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data()));
|
|
}
|
|
|
|
void Camera::apply_view_matrix()
|
|
{
|
|
glsafe(::glMatrixMode(GL_MODELVIEW));
|
|
glsafe(::glLoadIdentity());
|
|
glsafe(::glMultMatrixd(m_view_matrix.data()));
|
|
}
|
|
|
|
void Camera::apply_projection(const BoundingBoxf3& box, double near_z, double far_z)
|
|
{
|
|
double w = 0.0;
|
|
double h = 0.0;
|
|
|
|
const double old_distance = m_distance;
|
|
m_frustrum_zs = calc_tight_frustrum_zs_around(box);
|
|
if (m_distance != old_distance)
|
|
// the camera has been moved re-apply view matrix
|
|
apply_view_matrix();
|
|
|
|
if (near_z > 0.0)
|
|
m_frustrum_zs.first = std::max(std::min(m_frustrum_zs.first, near_z), FrustrumMinNearZ);
|
|
|
|
if (far_z > 0.0)
|
|
m_frustrum_zs.second = std::max(m_frustrum_zs.second, far_z);
|
|
|
|
w = 0.5 * (double)m_viewport[2];
|
|
h = 0.5 * (double)m_viewport[3];
|
|
|
|
const double inv_zoom = get_inv_zoom();
|
|
w *= inv_zoom;
|
|
h *= inv_zoom;
|
|
|
|
switch (m_type)
|
|
{
|
|
default:
|
|
case EType::Ortho:
|
|
{
|
|
m_gui_scale = 1.0;
|
|
break;
|
|
}
|
|
case EType::Perspective:
|
|
{
|
|
// scale near plane to keep w and h constant on the plane at z = m_distance
|
|
const double scale = m_frustrum_zs.first / m_distance;
|
|
w *= scale;
|
|
h *= scale;
|
|
m_gui_scale = scale;
|
|
break;
|
|
}
|
|
}
|
|
|
|
glsafe(::glMatrixMode(GL_PROJECTION));
|
|
glsafe(::glLoadIdentity());
|
|
|
|
switch (m_type)
|
|
{
|
|
default:
|
|
case EType::Ortho:
|
|
{
|
|
glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
|
|
break;
|
|
}
|
|
case EType::Perspective:
|
|
{
|
|
glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
|
|
break;
|
|
}
|
|
}
|
|
|
|
glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data()));
|
|
glsafe(::glMatrixMode(GL_MODELVIEW));
|
|
}
|
|
|
|
void Camera::zoom_to_box(const BoundingBoxf3& box, double margin_factor)
|
|
{
|
|
// Calculate the zoom factor needed to adjust the view around the given box.
|
|
const double zoom = calc_zoom_to_bounding_box_factor(box, margin_factor);
|
|
if (zoom > 0.0) {
|
|
m_zoom = zoom;
|
|
// center view around box center
|
|
set_target(box.center());
|
|
}
|
|
}
|
|
|
|
void Camera::zoom_to_volumes(const GLVolumePtrs& volumes, double margin_factor)
|
|
{
|
|
Vec3d center;
|
|
const double zoom = calc_zoom_to_volumes_factor(volumes, center, margin_factor);
|
|
if (zoom > 0.0) {
|
|
m_zoom = zoom;
|
|
// center view around the calculated center
|
|
set_target(center);
|
|
}
|
|
}
|
|
|
|
#if ENABLE_CAMERA_STATISTICS
|
|
void Camera::debug_render() const
|
|
{
|
|
ImGuiWrapper& imgui = *wxGetApp().imgui();
|
|
imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
|
|
|
|
std::string type = get_type_as_string();
|
|
if (wxGetApp().plater()->get_mouse3d_controller().connected()
|
|
#ifdef SUPPORT_FREE_CAMERA
|
|
|| (wxGetApp().app_config->get("use_free_camera") == "1")
|
|
#endif
|
|
)
|
|
type += "/free";
|
|
else
|
|
type += "/constrained";
|
|
|
|
Vec3f position = get_position().cast<float>();
|
|
Vec3f target = m_target.cast<float>();
|
|
float distance = (float)get_distance();
|
|
float zenit = (float)m_zenit;
|
|
Vec3f forward = get_dir_forward().cast<float>();
|
|
Vec3f right = get_dir_right().cast<float>();
|
|
Vec3f up = get_dir_up().cast<float>();
|
|
float nearZ = (float)m_frustrum_zs.first;
|
|
float farZ = (float)m_frustrum_zs.second;
|
|
float deltaZ = farZ - nearZ;
|
|
float zoom = (float)m_zoom;
|
|
float fov = (float)get_fov();
|
|
std::array<int, 4>viewport = get_viewport();
|
|
float gui_scale = (float)get_gui_scale();
|
|
|
|
ImGui::InputText("Type", type.data(), type.length(), ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat("Zenit", &zenit, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputInt4("Viewport", viewport.data(), ImGuiInputTextFlags_ReadOnly);
|
|
ImGui::Separator();
|
|
ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
|
|
imgui.end();
|
|
}
|
|
#endif // ENABLE_CAMERA_STATISTICS
|
|
|
|
void Camera::rotate_on_sphere_with_target(double delta_azimut_rad, double delta_zenit_rad, bool apply_limits, Vec3d target)
|
|
{
|
|
m_zenit += Geometry::rad2deg(delta_zenit_rad);
|
|
if (apply_limits) {
|
|
if (m_zenit > 90.0f) {
|
|
delta_zenit_rad -= Geometry::deg2rad(m_zenit - 90.0f);
|
|
m_zenit = 90.0f;
|
|
}
|
|
else if (m_zenit < -90.0f) {
|
|
delta_zenit_rad -= Geometry::deg2rad(m_zenit + 90.0f);
|
|
m_zenit = -90.0f;
|
|
}
|
|
}
|
|
|
|
Vec3d translation = m_view_matrix.translation() + m_view_rotation * target;
|
|
auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ());
|
|
m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right());
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
|
|
}
|
|
|
|
|
|
void Camera::rotate_on_sphere(double delta_azimut_rad, double delta_zenit_rad, bool apply_limits)
|
|
{
|
|
m_zenit += Geometry::rad2deg(delta_zenit_rad);
|
|
if (apply_limits) {
|
|
if (m_zenit > 90.0f) {
|
|
delta_zenit_rad -= Geometry::deg2rad(m_zenit - 90.0f);
|
|
m_zenit = 90.0f;
|
|
}
|
|
else if (m_zenit < -90.0f) {
|
|
delta_zenit_rad -= Geometry::deg2rad(m_zenit + 90.0f);
|
|
m_zenit = -90.0f;
|
|
}
|
|
}
|
|
|
|
const Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
|
|
const auto rot_z = Eigen::AngleAxisd(delta_azimut_rad, Vec3d::UnitZ());
|
|
m_view_rotation *= rot_z * Eigen::AngleAxisd(delta_zenit_rad, rot_z.inverse() * get_dir_right());
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (- m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
|
|
}
|
|
|
|
//BBS rotate with target
|
|
void Camera::rotate_local_with_target(const Vec3d& rotation_rad, Vec3d target)
|
|
{
|
|
double angle = rotation_rad.norm();
|
|
if (std::abs(angle) > EPSILON) {
|
|
Vec3d translation = m_view_matrix.translation() + m_view_rotation * target;
|
|
Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized();
|
|
m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis));
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
|
|
update_zenit();
|
|
}
|
|
}
|
|
|
|
// Virtual trackball, rotate around an axis, where the eucledian norm of the axis gives the rotation angle in radians.
|
|
void Camera::rotate_local_around_target(const Vec3d& rotation_rad)
|
|
{
|
|
const double angle = rotation_rad.norm();
|
|
if (std::abs(angle) > EPSILON) {
|
|
const Vec3d translation = m_view_matrix.translation() + m_view_rotation * m_target;
|
|
const Vec3d axis = m_view_rotation.conjugate() * rotation_rad.normalized();
|
|
m_view_rotation *= Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis));
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-m_target) + translation, m_view_rotation, Vec3d(1., 1., 1.));
|
|
update_zenit();
|
|
}
|
|
}
|
|
|
|
std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box)
|
|
{
|
|
std::pair<double, double> ret;
|
|
auto& [near_z, far_z] = ret;
|
|
|
|
// box in eye space
|
|
const BoundingBoxf3 eye_box = box.transformed(m_view_matrix);
|
|
near_z = -eye_box.max(2);
|
|
far_z = -eye_box.min(2);
|
|
|
|
// apply margin
|
|
near_z -= FrustrumZMargin;
|
|
far_z += FrustrumZMargin;
|
|
|
|
// ensure min size
|
|
if (far_z - near_z < FrustrumMinZRange) {
|
|
const double mid_z = 0.5 * (near_z + far_z);
|
|
const double half_size = 0.5 * FrustrumMinZRange;
|
|
near_z = mid_z - half_size;
|
|
far_z = mid_z + half_size;
|
|
}
|
|
|
|
if (near_z < FrustrumMinNearZ) {
|
|
const double delta = FrustrumMinNearZ - near_z;
|
|
set_distance(m_distance + delta);
|
|
near_z += delta;
|
|
far_z += delta;
|
|
}
|
|
// The following is commented out because it causes flickering of the 3D scene GUI
|
|
// when the bounding box of the scene gets large enough
|
|
// We need to introduce some smarter code to move the camera back and forth in such case
|
|
// else if (near_z > 2.0 * FrustrumMinNearZ && m_distance > DefaultDistance) {
|
|
// float delta = m_distance - DefaultDistance;
|
|
// set_distance(DefaultDistance);
|
|
// near_z -= delta;
|
|
// far_z -= delta;
|
|
// }
|
|
|
|
return ret;
|
|
}
|
|
|
|
double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, double margin_factor) const
|
|
{
|
|
const double max_bb_size = box.max_size();
|
|
if (max_bb_size == 0.0)
|
|
return -1.0;
|
|
|
|
// project the box vertices on a plane perpendicular to the camera forward axis
|
|
// then calculates the vertices coordinate on this plane along the camera xy axes
|
|
|
|
const Vec3d right = get_dir_right();
|
|
const Vec3d up = get_dir_up();
|
|
const Vec3d forward = get_dir_forward();
|
|
const Vec3d bb_center = box.center();
|
|
|
|
// box vertices in world space
|
|
const std::vector<Vec3d> vertices = {
|
|
box.min,
|
|
{ box.max(0), box.min(1), box.min(2) },
|
|
{ box.max(0), box.max(1), box.min(2) },
|
|
{ box.min(0), box.max(1), box.min(2) },
|
|
{ box.min(0), box.min(1), box.max(2) },
|
|
{ box.max(0), box.min(1), box.max(2) },
|
|
box.max,
|
|
{ box.min(0), box.max(1), box.max(2) }
|
|
};
|
|
|
|
double min_x = DBL_MAX;
|
|
double min_y = DBL_MAX;
|
|
double max_x = -DBL_MAX;
|
|
double max_y = -DBL_MAX;
|
|
|
|
for (const Vec3d& v : vertices) {
|
|
// project vertex on the plane perpendicular to camera forward axis
|
|
const Vec3d pos = v - bb_center;
|
|
const Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
|
|
|
|
// calculates vertex coordinate along camera xy axes
|
|
const double x_on_plane = proj_on_plane.dot(right);
|
|
const double y_on_plane = proj_on_plane.dot(up);
|
|
|
|
min_x = std::min(min_x, x_on_plane);
|
|
min_y = std::min(min_y, y_on_plane);
|
|
max_x = std::max(max_x, x_on_plane);
|
|
max_y = std::max(max_y, y_on_plane);
|
|
}
|
|
|
|
double dx = max_x - min_x;
|
|
double dy = max_y - min_y;
|
|
if (dx <= 0.0 || dy <= 0.0)
|
|
return -1.0f;
|
|
|
|
dx *= margin_factor;
|
|
dy *= margin_factor;
|
|
|
|
return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
|
|
}
|
|
|
|
double Camera::calc_zoom_to_volumes_factor(const GLVolumePtrs& volumes, Vec3d& center, double margin_factor) const
|
|
{
|
|
if (volumes.empty())
|
|
return -1.0;
|
|
|
|
// project the volumes vertices on a plane perpendicular to the camera forward axis
|
|
// then calculates the vertices coordinate on this plane along the camera xy axes
|
|
|
|
const Vec3d right = get_dir_right();
|
|
const Vec3d up = get_dir_up();
|
|
const Vec3d forward = get_dir_forward();
|
|
|
|
BoundingBoxf3 box;
|
|
for (const GLVolume* volume : volumes) {
|
|
box.merge(volume->transformed_bounding_box());
|
|
}
|
|
center = box.center();
|
|
|
|
double min_x = DBL_MAX;
|
|
double min_y = DBL_MAX;
|
|
double max_x = -DBL_MAX;
|
|
double max_y = -DBL_MAX;
|
|
|
|
for (const GLVolume* volume : volumes) {
|
|
const Transform3d& transform = volume->world_matrix();
|
|
const TriangleMesh* hull = volume->convex_hull();
|
|
if (hull == nullptr)
|
|
continue;
|
|
|
|
for (const Vec3f& vertex : hull->its.vertices) {
|
|
const Vec3d v = transform * vertex.cast<double>();
|
|
|
|
// project vertex on the plane perpendicular to camera forward axis
|
|
const Vec3d pos = v - center;
|
|
const Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
|
|
|
|
// calculates vertex coordinate along camera xy axes
|
|
const double x_on_plane = proj_on_plane.dot(right);
|
|
const double y_on_plane = proj_on_plane.dot(up);
|
|
|
|
min_x = std::min(min_x, x_on_plane);
|
|
min_y = std::min(min_y, y_on_plane);
|
|
max_x = std::max(max_x, x_on_plane);
|
|
max_y = std::max(max_y, y_on_plane);
|
|
}
|
|
}
|
|
|
|
center += 0.5 * (max_x + min_x) * right + 0.5 * (max_y + min_y) * up;
|
|
|
|
const double dx = margin_factor * (max_x - min_x);
|
|
const double dy = margin_factor * (max_y - min_y);
|
|
|
|
if (dx <= 0.0 || dy <= 0.0)
|
|
return -1.0f;
|
|
|
|
return std::min((double)m_viewport[2] / dx, (double)m_viewport[3] / dy);
|
|
}
|
|
|
|
void Camera::set_distance(double distance)
|
|
{
|
|
if (m_distance != distance) {
|
|
m_view_matrix.translate((distance - m_distance) * get_dir_forward());
|
|
m_distance = distance;
|
|
|
|
update_target();
|
|
}
|
|
}
|
|
|
|
void Camera::load_camera_view(Camera& cam)
|
|
{
|
|
m_target = cam.get_target();
|
|
m_zoom = cam.get_zoom();
|
|
m_scene_box = cam.get_scene_box();
|
|
m_viewport = cam.get_viewport();
|
|
m_view_matrix = cam.get_view_matrix();
|
|
m_projection_matrix = cam.get_projection_matrix();
|
|
m_view_rotation = cam.get_view_rotation();
|
|
m_frustrum_zs = cam.get_z_range();
|
|
m_zenit = cam.get_zenit();
|
|
}
|
|
|
|
void Camera::look_at(const Vec3d& position, const Vec3d& target, const Vec3d& up)
|
|
{
|
|
const Vec3d unit_z = (position - target).normalized();
|
|
const Vec3d unit_x = up.cross(unit_z).normalized();
|
|
const Vec3d unit_y = unit_z.cross(unit_x).normalized();
|
|
|
|
m_target = target;
|
|
m_distance = (position - target).norm();
|
|
const Vec3d new_position = m_target + m_distance * unit_z;
|
|
|
|
m_view_matrix(0, 0) = unit_x(0);
|
|
m_view_matrix(0, 1) = unit_x(1);
|
|
m_view_matrix(0, 2) = unit_x(2);
|
|
m_view_matrix(0, 3) = -unit_x.dot(new_position);
|
|
|
|
m_view_matrix(1, 0) = unit_y(0);
|
|
m_view_matrix(1, 1) = unit_y(1);
|
|
m_view_matrix(1, 2) = unit_y(2);
|
|
m_view_matrix(1, 3) = -unit_y.dot(new_position);
|
|
|
|
m_view_matrix(2, 0) = unit_z(0);
|
|
m_view_matrix(2, 1) = unit_z(1);
|
|
m_view_matrix(2, 2) = unit_z(2);
|
|
m_view_matrix(2, 3) = -unit_z.dot(new_position);
|
|
|
|
m_view_matrix(3, 0) = 0.0;
|
|
m_view_matrix(3, 1) = 0.0;
|
|
m_view_matrix(3, 2) = 0.0;
|
|
m_view_matrix(3, 3) = 1.0;
|
|
|
|
// Initialize the rotation quaternion from the rotation submatrix of of m_view_matrix.
|
|
m_view_rotation = Eigen::Quaterniond(m_view_matrix.matrix().template block<3, 3>(0, 0));
|
|
m_view_rotation.normalize();
|
|
|
|
update_zenit();
|
|
}
|
|
|
|
void Camera::set_default_orientation()
|
|
{
|
|
// BBS modify default orientation
|
|
look_at(m_target - 0.707 * m_distance * Vec3d::UnitY() + 0.707 * m_distance * Vec3d::UnitZ(), m_target, Vec3d::UnitY() + Vec3d::UnitZ());
|
|
|
|
/*m_zenit = 45.0f;
|
|
const double theta_rad = Geometry::deg2rad(-(double)m_zenit);
|
|
const double phi_rad = Geometry::deg2rad(45.0);
|
|
const double sin_theta = ::sin(theta_rad);
|
|
const Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
|
|
m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ());
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-camera_pos), m_view_rotation, Vec3d::Ones());*/
|
|
}
|
|
|
|
void Camera::set_iso_orientation()
|
|
{
|
|
m_zenit = 45.0f;
|
|
const double theta_rad = Geometry::deg2rad(-(double)m_zenit);
|
|
const double phi_rad = Geometry::deg2rad(45.0);
|
|
const double sin_theta = ::sin(theta_rad);
|
|
const Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
|
|
m_view_rotation = Eigen::AngleAxisd(theta_rad, Vec3d::UnitX()) * Eigen::AngleAxisd(phi_rad, Vec3d::UnitZ());
|
|
m_view_rotation.normalize();
|
|
m_view_matrix.fromPositionOrientationScale(m_view_rotation * (-camera_pos), m_view_rotation, Vec3d::Ones());
|
|
}
|
|
|
|
|
|
Vec3d Camera::validate_target(const Vec3d& target) const
|
|
{
|
|
BoundingBoxf3 test_box = m_scene_box;
|
|
test_box.translate(-m_scene_box.center());
|
|
// We may let this factor be customizable
|
|
//BBS enlarge scene box factor
|
|
static const double ScaleFactor = 3.0;
|
|
test_box.scale(ScaleFactor);
|
|
test_box.translate(m_scene_box.center());
|
|
|
|
return { std::clamp(target(0), test_box.min(0), test_box.max(0)),
|
|
std::clamp(target(1), test_box.min(1), test_box.max(1)),
|
|
std::clamp(target(2), test_box.min(2), test_box.max(2)) };
|
|
}
|
|
|
|
void Camera::update_zenit()
|
|
{
|
|
m_zenit = Geometry::rad2deg(0.5 * M_PI - std::acos(std::clamp(-get_dir_forward().dot(Vec3d::UnitZ()), -1.0, 1.0))); }
|
|
|
|
void Camera::update_target() {
|
|
Vec3d temptarget = get_position() + m_distance * get_dir_forward();
|
|
if (!(temptarget-m_target).isApprox(Vec3d::Zero())){
|
|
m_target = temptarget;
|
|
}
|
|
}
|
|
|
|
} // GUI
|
|
} // Slic3r
|
|
|