BambuStudio/slic3r/GUI/PresetHints.cpp

317 lines
18 KiB
C++

#include <cassert>
#include "libslic3r/Flow.hpp"
#include "libslic3r/Slicing.hpp"
#include "libslic3r/libslic3r.h"
#include "PresetHints.hpp"
#include <wx/intl.h>
#include "GUI.hpp"
#include "format.hpp"
#include "I18N.hpp"
namespace Slic3r {
#define MIN_BUF_LENGTH 4096
std::string PresetHints::cooling_description(const Preset &preset)
{
std::string out;
//BBS: don't show cooling_description now
/*
bool cooling = preset.config.opt_bool("cooling", 0);
int fan_cooling_layer_time = preset.config.opt_int("fan_cooling_layer_time", 0);
int full_fan_speed_layer = preset.config.opt_int("full_fan_speed_layer", 0);
if (cooling) {
int slow_down_layer_time = preset.config.opt_int("slow_down_layer_time", 0);
int fan_min_speed = preset.config.opt_int("fan_min_speed", 0);
int fan_max_speed = preset.config.opt_int("fan_max_speed", 0);
int slow_down_min_speed = int(preset.config.opt_float("slow_down_min_speed", 0) + 0.5);
out += GUI::format(_L("If estimated layer time is below ~%1%s, "
"fan will run at %2%%% and print speed will be reduced "
"so that no less than %3%s are spent on that layer "
"(however, speed will never be reduced below %4%mm/s)."),
slow_down_layer_time, fan_max_speed, slow_down_layer_time, slow_down_min_speed);
if (fan_cooling_layer_time > slow_down_layer_time) {
out += "\n";
if (fan_min_speed != fan_max_speed)
out += GUI::format(_L("If estimated layer time is greater, but still below ~%1%s, "
"fan will run at a proportionally decreasing speed between %2%%% and %3%%%."),
fan_cooling_layer_time, fan_max_speed, fan_min_speed);
else
out += GUI::format(_L("If estimated layer time is greater, but still below ~%1%s, "
"fan will run at %2%%%"),
fan_cooling_layer_time, fan_min_speed);
}
out += "\n";
}
if (preset.config.opt_bool("reduce_fan_stop_start_freq", 0)) {
int close_fan_the_first_x_layers = preset.config.opt_int("close_fan_the_first_x_layers", 0);
int fan_min_speed = preset.config.opt_int("fan_min_speed", 0);
if (full_fan_speed_layer > close_fan_the_first_x_layers + 1)
out += GUI::format(_L("Fan speed will be ramped from zero at layer %1% to %2%%% at layer %3%."), close_fan_the_first_x_layers, fan_min_speed, full_fan_speed_layer);
else {
out += GUI::format(cooling ? _L("During the other layers, fan will always run at %1%%%") : _L("Fan will always run at %1%%%"), fan_min_speed) + " ";
if (close_fan_the_first_x_layers > 1)
out += GUI::format(_L("except for the first %1% layers."), close_fan_the_first_x_layers);
else if (close_fan_the_first_x_layers == 1)
out += GUI::format(_L("except for the first layer."));
}
} else
out += cooling ? _u8L("During the other layers, fan will be turned off.") : _u8L("Fan will be turned off.");
*/
return out;
}
static const ConfigOptionFloatOrPercent& first_positive(const ConfigOptionFloatOrPercent *v1, const ConfigOptionFloatOrPercent &v2, const ConfigOptionFloatOrPercent &v3)
{
return (v1 != nullptr && v1->value > 0) ? *v1 : ((v2.value > 0) ? v2 : v3);
}
std::string PresetHints::maximum_volumetric_flow_description(const PresetBundle &preset_bundle)
{
std::string out;
//BBS: don't show maximum_volumetric_flow_description now
/*
// Find out, to which nozzle index is the current filament profile assigned.
int idx_extruder = 0;
int num_extruders = (int)preset_bundle.filament_presets.size();
for (; idx_extruder < num_extruders; ++ idx_extruder)
if (preset_bundle.filament_presets[idx_extruder] == preset_bundle.filaments.get_selected_preset_name())
break;
if (idx_extruder == num_extruders)
// The current filament preset is not active for any extruder.
idx_extruder = -1;
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &filament_config = preset_bundle.filaments.get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
// Current printer values.
float nozzle_diameter = (float)printer_config.opt_float("nozzle_diameter", idx_extruder);
// Print config values
double layer_height = print_config.opt_float("layer_height");
double initial_layer_print_height = print_config.opt_float("initial_layer_print_height");
double support_speed = print_config.opt_float("support_speed");
double support_interface_speed = print_config.get_abs_value("support_interface_speed");
double bridge_speed = print_config.opt_float("bridge_speed");
double bridge_flow = print_config.opt_float("bridge_flow");
double inner_wall_speed = print_config.opt_float("inner_wall_speed");
double outer_wall_speed = print_config.get_abs_value("outer_wall_speed", inner_wall_speed);
// double gap_infill_speed = print_config.opt_bool("gap_fill_enabled") ? print_config.opt_float("gap_infill_speed") : 0.;
double sparse_infill_speed = print_config.opt_float("sparse_infill_speed");
double small_perimeter_speed = print_config.get_abs_value("small_perimeter_speed", inner_wall_speed);
double internal_solid_infill_speed = print_config.opt_float("internal_solid_infill_speed");
double top_surface_speed = print_config.opt_float("top_surface_speed");
// Maximum print speed when auto-speed is enabled by setting any of the above speed values to zero.
double max_print_speed = print_config.opt_float("max_print_speed");
// Maximum volumetric speed allowed for the print profile.
double max_volumetric_speed = print_config.opt_float("max_volumetric_speed");
const auto &extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("line_width");
const auto &outer_wall_line_width = *print_config.option<ConfigOptionFloatOrPercent>("outer_wall_line_width");
const auto &initial_layer_line_width = *print_config.option<ConfigOptionFloatOrPercent>("initial_layer_line_width");
const auto &sparse_infill_line_width = *print_config.option<ConfigOptionFloatOrPercent>("sparse_infill_line_width");
const auto &inner_wall_line_width = *print_config.option<ConfigOptionFloatOrPercent>("inner_wall_line_width");
const auto &internal_solid_infill_line_width = *print_config.option<ConfigOptionFloatOrPercent>("internal_solid_infill_line_width");
const auto& support_line_width = *print_config.option<ConfigOptionFloatOrPercent>("support_line_width");
const auto &top_surface_line_width = *print_config.option<ConfigOptionFloatOrPercent>("top_surface_line_width");
const auto &initial_layer_speed = *print_config.option<ConfigOptionFloatOrPercent>("initial_layer_speed");
// Index of an extruder assigned to a feature. If set to 0, an active extruder will be used for a multi-material print.
// If different from idx_extruder, it will not be taken into account for this hint.
auto feature_extruder_active = [idx_extruder, num_extruders](int i) {
return i <= 0 || i > num_extruders || idx_extruder == -1 || idx_extruder == i - 1;
};
bool perimeter_extruder_active = feature_extruder_active(print_config.opt_int("wall_filament"));
bool infill_extruder_active = feature_extruder_active(print_config.opt_int("sparse_infill_filament"));
bool solid_infill_extruder_active = feature_extruder_active(print_config.opt_int("solid_infill_filament"));
bool support_material_extruder_active = feature_extruder_active(print_config.opt_int("support_filament"));
bool support_material_interface_extruder_active = feature_extruder_active(print_config.opt_int("support_interface_filament"));
// Current filament values
double filament_diameter = filament_config.opt_float("filament_diameter", 0);
double filament_crossection = M_PI * 0.25 * filament_diameter * filament_diameter;
// double filament_flow_ratio = filament_config.opt_float("filament_flow_ratio", 0);
// The following value will be annotated by this hint, so it does not take part in the calculation.
// double filament_max_volumetric_speed = filament_config.opt_float("filament_max_volumetric_speed", 0);
for (size_t idx_type = (initial_layer_line_width.value == 0) ? 1 : 0; idx_type < 3; ++ idx_type) {
// First test the maximum volumetric extrusion speed for non-bridging extrusions.
bool first_layer = idx_type == 0;
bool bridging = idx_type == 2;
const ConfigOptionFloatOrPercent *first_layer_extrusion_width_ptr = (first_layer && initial_layer_line_width.value > 0) ?
&initial_layer_line_width : nullptr;
const float lh = float(first_layer ? initial_layer_print_height : layer_height);
double max_flow = 0.;
std::string max_flow_extrusion_type;
auto limit_by_first_layer_speed = [&initial_layer_speed, first_layer](double speed_normal, double speed_max) {
if (first_layer && initial_layer_speed.value > 0)
// Apply the first layer limit.
speed_normal = initial_layer_speed.get_abs_value(speed_normal);
return (speed_normal > 0.) ? speed_normal : speed_max;
};
auto test_flow =
[first_layer_extrusion_width_ptr, extrusion_width, nozzle_diameter, lh, bridging, bridge_speed, bridge_flow, limit_by_first_layer_speed, max_print_speed, &max_flow, &max_flow_extrusion_type]
(FlowRole flow_role, const ConfigOptionFloatOrPercent &this_extrusion_width, double speed, const char *err_msg) {
Flow flow = bridging ?
Flow::new_from_config_width(flow_role, first_positive(first_layer_extrusion_width_ptr, this_extrusion_width, extrusion_width), nozzle_diameter, lh) :
Flow::bridging_flow(nozzle_diameter * bridge_flow, nozzle_diameter);
double volumetric_flow = flow.mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(speed, max_print_speed));
if (max_flow < volumetric_flow) {
max_flow = volumetric_flow;
max_flow_extrusion_type = _utf8(err_msg);
}
};
if (perimeter_extruder_active) {
test_flow(frExternalPerimeter, outer_wall_line_width, std::max(outer_wall_speed, small_perimeter_speed), L("outer wall"));
test_flow(frPerimeter, inner_wall_line_width, std::max(inner_wall_speed, small_perimeter_speed), L("inner wall"));
}
if (! bridging && infill_extruder_active)
test_flow(frInfill, sparse_infill_line_width, sparse_infill_speed, L("sparse infill"));
if (solid_infill_extruder_active) {
test_flow(frInfill, internal_solid_infill_line_width, internal_solid_infill_speed, L("internal solid infill"));
if (! bridging)
test_flow(frInfill, top_surface_line_width, top_surface_speed, L("top surface"));
}
if (! bridging && support_material_extruder_active)
test_flow(frSupportMaterial, support_line_width, support_speed, L("support"));
if (support_material_interface_extruder_active)
test_flow(frSupportMaterialInterface, support_line_width, support_interface_speed, L("support interface"));
//FIXME handle gap_infill_speed
if (! out.empty())
out += "\n";
out += (first_layer ? _utf8(L("Initial layer volumetric")) : (bridging ? _utf8(L("Bridge volumetric")) : _utf8(L("Volumetric"))));
out += " " + _utf8(L("flow rate is maximized")) + " ";
bool limited_by_max_volumetric_speed = max_volumetric_speed > 0 && max_volumetric_speed < max_flow;
out += (limited_by_max_volumetric_speed ?
_utf8(L("by the print profile maximum")) :
(_utf8(L("when printing"))+ " " + max_flow_extrusion_type))
+ " " + _utf8(L("with a volumetric rate"))+ " ";
if (limited_by_max_volumetric_speed)
max_flow = max_volumetric_speed;
out += (boost::format(_utf8(L("%3.2f mm³/s at filament speed %3.2f mm/s."))) % max_flow % (max_flow / filament_crossection)).str();
}
*/
return out;
}
std::string PresetHints::recommended_thin_wall_thickness(const PresetBundle &preset_bundle)
{
std::string out;
//BBS: don't show recommended_thin_wall_thickness description now
/*
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
float layer_height = float(print_config.opt_float("layer_height"));
int num_perimeters = print_config.opt_int("wall_loops");
bool thin_walls = print_config.opt_bool("detect_thin_wall");
float nozzle_diameter = float(printer_config.opt_float("nozzle_diameter", 0));
std::string out;
if (layer_height <= 0.f) {
out += _utf8(L("Recommended object thin wall thickness: Not available due to invalid layer height."));
return out;
}
if (num_perimeters > 0) {
int num_lines = std::min(num_perimeters * 2, 10);
out += (boost::format(_utf8(L("Recommended object thin wall thickness for layer height %.2f and"))) % layer_height).str() + " ";
// Start with the width of two closely spaced
try {
Flow external_perimeter_flow = Flow::new_from_config_width(
frExternalPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("outer_wall_line_width"),
nozzle_diameter, layer_height);
Flow perimeter_flow = Flow::new_from_config_width(
frPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("inner_wall_line_width"),
nozzle_diameter, layer_height);
double width = external_perimeter_flow.width() + external_perimeter_flow.spacing();
for (int i = 2; i <= num_lines; thin_walls ? ++ i : i += 2) {
if (i > 2)
out += ", ";
out += (boost::format(_utf8(L("%d lines: %.2f mm"))) % i % width).str() + " ";
width += perimeter_flow.spacing() * (thin_walls ? 1.f : 2.f);
}
} catch (const FlowErrorNegativeSpacing &) {
out = _utf8(L("Recommended object thin wall thickness: Not available due to excessively small extrusion width."));
}
}*/
return out;
}
// Produce a textual explanation of the combined effects of the top/bottom_shell_layers
// versus top/bottom_min_shell_thickness. Which of the two values wins depends
// on the active layer height.
std::string PresetHints::top_bottom_shell_thickness_explanation(const PresetBundle &preset_bundle)
{
std::string out;
//BBS: don't show top_bottom_shell_thickness_explanation now
/*
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
int top_shell_layers = print_config.opt_int("top_shell_layers");
int bottom_shell_layers = print_config.opt_int("bottom_shell_layers");
bool has_top_layers = top_shell_layers > 0;
bool has_bottom_layers = bottom_shell_layers > 0;
double top_shell_thickness = print_config.opt_float("top_shell_thickness");
double bottom_shell_thickness = print_config.opt_float("bottom_shell_thickness");
double layer_height = print_config.opt_float("layer_height");
//FIXME the following line takes into account the 1st extruder only.
double min_layer_height = Slicing::min_layer_height_from_nozzle(printer_config, 1);
if (layer_height <= 0.f) {
out += _utf8(L("Top / bottom shell thickness hint: Not available due to invalid layer height."));
return out;
}
if (has_top_layers) {
double top_shell_thickness = top_shell_layers * layer_height;
if (top_shell_thickness < top_shell_thickness) {
// top_solid_min_shell_thickness triggers even in case of normal layer height. Round the top_shell_thickness up
// to an integer multiply of layer_height.
double n = ceil(top_shell_thickness / layer_height);
top_shell_thickness = n * layer_height;
}
double top_shell_thickness_minimum = std::max(top_shell_thickness, top_shell_layers * min_layer_height);
out += (boost::format(_utf8(L("Top shell is %1% mm thick for layer height %2% mm."))) % top_shell_thickness % layer_height).str();
if (top_shell_thickness_minimum < top_shell_thickness) {
out += " ";
out += (boost::format(_utf8(L("Minimum top shell thickness is %1% mm."))) % top_shell_thickness_minimum).str();
}
} else
out += _utf8(L("Top is open."));
out += "\n";
if (has_bottom_layers) {
double bottom_shell_thickness = bottom_shell_layers * layer_height;
if (bottom_shell_thickness < bottom_shell_thickness) {
// bottom_solid_min_shell_thickness triggers even in case of normal layer height. Round the bottom_shell_thickness up
// to an integer multiply of layer_height.
double n = ceil(bottom_shell_thickness / layer_height);
bottom_shell_thickness = n * layer_height;
}
double bottom_shell_thickness_minimum = std::max(bottom_shell_thickness, bottom_shell_layers * min_layer_height);
out += (boost::format(_utf8(L("Bottom shell is %1% mm thick for layer height %2% mm."))) % bottom_shell_thickness % layer_height).str();
if (bottom_shell_thickness_minimum < bottom_shell_thickness) {
out += " ";
out += (boost::format(_utf8(L("Minimum bottom shell thickness is %1% mm."))) % bottom_shell_thickness_minimum).str();
}
} else
out += _utf8(L("Bottom is open."));
*/
return out;
}
}; // namespace Slic3r