944 lines
26 KiB
C++
944 lines
26 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#ifndef IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H
|
|
#define IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H
|
|
|
|
#include "CGAL_includes.hpp"
|
|
#include "RemeshSelfIntersectionsParam.h"
|
|
#include "../../unique.h"
|
|
|
|
#include <Eigen/Dense>
|
|
#include <list>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <mutex>
|
|
|
|
//#define IGL_SELFINTERSECTMESH_DEBUG
|
|
#ifndef IGL_FIRST_HIT_EXCEPTION
|
|
#define IGL_FIRST_HIT_EXCEPTION 10
|
|
#endif
|
|
|
|
// The easiest way to keep track of everything is to use a class
|
|
|
|
namespace igl
|
|
{
|
|
namespace copyleft
|
|
{
|
|
namespace cgal
|
|
{
|
|
// Kernel is a CGAL kernel like:
|
|
// CGAL::Exact_predicates_inexact_constructions_kernel
|
|
// or
|
|
// CGAL::Exact_predicates_exact_constructions_kernel
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
class SelfIntersectMesh
|
|
{
|
|
typedef
|
|
SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM> Self;
|
|
public:
|
|
// 3D Primitives
|
|
typedef CGAL::Point_3<Kernel> Point_3;
|
|
typedef CGAL::Segment_3<Kernel> Segment_3;
|
|
typedef CGAL::Triangle_3<Kernel> Triangle_3;
|
|
typedef CGAL::Plane_3<Kernel> Plane_3;
|
|
typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron_3;
|
|
// 2D Primitives
|
|
typedef CGAL::Point_2<Kernel> Point_2;
|
|
typedef CGAL::Segment_2<Kernel> Segment_2;
|
|
typedef CGAL::Triangle_2<Kernel> Triangle_2;
|
|
// 2D Constrained Delaunay Triangulation types
|
|
typedef CGAL::Exact_intersections_tag Itag;
|
|
// Axis-align boxes for all-pairs self-intersection detection
|
|
typedef std::vector<Triangle_3> Triangles;
|
|
typedef typename Triangles::iterator TrianglesIterator;
|
|
typedef typename Triangles::const_iterator TrianglesConstIterator;
|
|
typedef
|
|
CGAL::Box_intersection_d::Box_with_handle_d<double,3,TrianglesIterator>
|
|
Box;
|
|
|
|
// Input mesh
|
|
const Eigen::MatrixBase<DerivedV> & V;
|
|
const Eigen::MatrixBase<DerivedF> & F;
|
|
// Number of self-intersecting triangle pairs
|
|
typedef typename DerivedF::Index Index;
|
|
Index count;
|
|
typedef std::vector<std::pair<Index, CGAL::Object>> ObjectList;
|
|
// Using a vector here makes this **not** output sensitive
|
|
Triangles T;
|
|
typedef std::vector<Index> IndexList;
|
|
IndexList lIF;
|
|
// #F-long list of faces with intersections mapping to the order in
|
|
// which they were first found
|
|
std::map<Index,ObjectList> offending;
|
|
// Make a short name for the edge map's key
|
|
typedef std::pair<Index,Index> EMK;
|
|
// Make a short name for the type stored at each edge, the edge map's
|
|
// value
|
|
typedef std::vector<Index> EMV;
|
|
// Make a short name for the edge map
|
|
typedef std::map<EMK,EMV> EdgeMap;
|
|
// Maps edges of offending faces to all incident offending faces
|
|
std::vector<std::pair<TrianglesIterator, TrianglesIterator> >
|
|
candidate_triangle_pairs;
|
|
|
|
public:
|
|
RemeshSelfIntersectionsParam params;
|
|
public:
|
|
// Constructs (VV,FF) a new mesh with self-intersections of (V,F)
|
|
// subdivided
|
|
//
|
|
// See also: remesh_self_intersections.h
|
|
inline SelfIntersectMesh(
|
|
const Eigen::MatrixBase<DerivedV> & V,
|
|
const Eigen::MatrixBase<DerivedF> & F,
|
|
const RemeshSelfIntersectionsParam & params,
|
|
Eigen::PlainObjectBase<DerivedVV> & VV,
|
|
Eigen::PlainObjectBase<DerivedFF> & FF,
|
|
Eigen::PlainObjectBase<DerivedIF> & IF,
|
|
Eigen::PlainObjectBase<DerivedJ> & J,
|
|
Eigen::PlainObjectBase<DerivedIM> & IM);
|
|
private:
|
|
// Helper function to mark a face as offensive
|
|
//
|
|
// Inputs:
|
|
// f index of face in F
|
|
inline void mark_offensive(const Index f);
|
|
// Helper function to count intersections between faces
|
|
//
|
|
// Input:
|
|
// fa index of face A in F
|
|
// fb index of face B in F
|
|
inline void count_intersection( const Index fa, const Index fb);
|
|
// Helper function for box_intersect. Intersect two triangles A and B,
|
|
// append the intersection object (point,segment,triangle) to a running
|
|
// list for A and B
|
|
//
|
|
// Inputs:
|
|
// A triangle in 3D
|
|
// B triangle in 3D
|
|
// fa index of A in F (and key into offending)
|
|
// fb index of B in F (and key into offending)
|
|
// Returns true only if A intersects B
|
|
//
|
|
inline bool intersect(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb);
|
|
// Helper function for box_intersect. In the case where A and B have
|
|
// already been identified to share a vertex, then we only want to
|
|
// add possible segment intersections. Assumes truly duplicate
|
|
// triangles are not given as input
|
|
//
|
|
// Inputs:
|
|
// A triangle in 3D
|
|
// B triangle in 3D
|
|
// fa index of A in F (and key into offending)
|
|
// fb index of B in F (and key into offending)
|
|
// va index of shared vertex in A (and key into offending)
|
|
// vb index of shared vertex in B (and key into offending)
|
|
// Returns true if intersection (besides shared point)
|
|
//
|
|
inline bool single_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const Index va,
|
|
const Index vb);
|
|
// Helper handling one direction
|
|
inline bool single_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const Index va);
|
|
// Helper function for box_intersect. In the case where A and B have
|
|
// already been identified to share two vertices, then we only want
|
|
// to add a possible coplanar (Triangle) intersection. Assumes truly
|
|
// degenerate facets are not givin as input.
|
|
inline bool double_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const std::vector<std::pair<Index,Index> > shared);
|
|
|
|
public:
|
|
// Callback function called during box self intersections test. Means
|
|
// boxes a and b intersect. This method then checks if the triangles
|
|
// in each box intersect and if so, then processes the intersections
|
|
//
|
|
// Inputs:
|
|
// a box containing a triangle
|
|
// b box containing a triangle
|
|
inline void box_intersect(const Box& a, const Box& b);
|
|
inline void process_intersecting_boxes();
|
|
public:
|
|
// Getters:
|
|
//const IndexList& get_lIF() const{ return lIF;}
|
|
static inline void box_intersect_static(
|
|
SelfIntersectMesh * SIM,
|
|
const Box &a,
|
|
const Box &b);
|
|
private:
|
|
std::mutex m_offending_lock;
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implementation
|
|
|
|
#include "mesh_to_cgal_triangle_list.h"
|
|
#include "remesh_intersections.h"
|
|
|
|
#include "../../REDRUM.h"
|
|
#include "../../get_seconds.h"
|
|
#include "../../C_STR.h"
|
|
|
|
|
|
#include <functional>
|
|
#include <algorithm>
|
|
#include <exception>
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
// References:
|
|
// http://minregret.googlecode.com/svn/trunk/skyline/src/extern/CGAL-3.3.1/examples/Polyhedron/polyhedron_self_intersection.cpp
|
|
// http://www.cgal.org/Manual/3.9/examples/Boolean_set_operations_2/do_intersect.cpp
|
|
|
|
// Q: Should we be using CGAL::Polyhedron_3?
|
|
// A: No! Input is just a list of unoriented triangles. Polyhedron_3 requires
|
|
// a 2-manifold.
|
|
// A: But! It seems we could use CGAL::Triangulation_3. Though it won't be easy
|
|
// to take advantage of functions like insert_in_facet because we want to
|
|
// constrain segments. Hmmm. Actually Triangulation_3 doesn't look right...
|
|
|
|
// CGAL's box_self_intersection_d uses C-style function callbacks without
|
|
// userdata. This is a leapfrog method for calling a member function. It should
|
|
// be bound as if the prototype was:
|
|
// static void box_intersect(const Box &a, const Box &b)
|
|
// using boost:
|
|
// boost::function<void(const Box &a,const Box &b)> cb
|
|
// = boost::bind(&::box_intersect, this, _1,_2);
|
|
//
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline void igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::box_intersect_static(
|
|
Self * SIM,
|
|
const typename Self::Box &a,
|
|
const typename Self::Box &b)
|
|
{
|
|
SIM->box_intersect(a,b);
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::SelfIntersectMesh(
|
|
const Eigen::MatrixBase<DerivedV> & V,
|
|
const Eigen::MatrixBase<DerivedF> & F,
|
|
const RemeshSelfIntersectionsParam & params,
|
|
Eigen::PlainObjectBase<DerivedVV> & VV,
|
|
Eigen::PlainObjectBase<DerivedFF> & FF,
|
|
Eigen::PlainObjectBase<DerivedIF> & IF,
|
|
Eigen::PlainObjectBase<DerivedJ> & J,
|
|
Eigen::PlainObjectBase<DerivedIM> & IM):
|
|
V(V),
|
|
F(F),
|
|
count(0),
|
|
T(),
|
|
lIF(),
|
|
offending(),
|
|
params(params)
|
|
{
|
|
using namespace std;
|
|
using namespace Eigen;
|
|
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
const auto & tictoc = []() -> double
|
|
{
|
|
static double t_start = igl::get_seconds();
|
|
double diff = igl::get_seconds()-t_start;
|
|
t_start += diff;
|
|
return diff;
|
|
};
|
|
const auto log_time = [&](const std::string& label) -> void{
|
|
std::cout << "SelfIntersectMesh." << label << ": "
|
|
<< tictoc() << std::endl;
|
|
};
|
|
tictoc();
|
|
#endif
|
|
|
|
// Compute and process self intersections
|
|
mesh_to_cgal_triangle_list(V,F,T);
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("convert_to_triangle_list");
|
|
#endif
|
|
// http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html#Section_63.5
|
|
// Create the corresponding vector of bounding boxes
|
|
std::vector<Box> boxes;
|
|
boxes.reserve(T.size());
|
|
for (
|
|
TrianglesIterator tit = T.begin();
|
|
tit != T.end();
|
|
++tit)
|
|
{
|
|
if (!tit->is_degenerate())
|
|
{
|
|
boxes.push_back(Box(tit->bbox(), tit));
|
|
}
|
|
}
|
|
// Leapfrog callback
|
|
std::function<void(const Box &a,const Box &b)> cb =
|
|
std::bind(&box_intersect_static, this,
|
|
// Explicitly use std namespace to avoid confusion with boost (who puts
|
|
// _1 etc. in global namespace)
|
|
std::placeholders::_1,
|
|
std::placeholders::_2);
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("box_and_bind");
|
|
#endif
|
|
// Run the self intersection algorithm with all defaults
|
|
CGAL::box_self_intersection_d(boxes.begin(), boxes.end(),cb);
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("box_intersection_d");
|
|
#endif
|
|
try{
|
|
process_intersecting_boxes();
|
|
}catch(int e)
|
|
{
|
|
// Rethrow if not IGL_FIRST_HIT_EXCEPTION
|
|
if(e != IGL_FIRST_HIT_EXCEPTION)
|
|
{
|
|
throw e;
|
|
}
|
|
// Otherwise just fall through
|
|
}
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("resolve_intersection");
|
|
#endif
|
|
|
|
// Convert lIF to Eigen matrix
|
|
assert(lIF.size()%2 == 0);
|
|
IF.resize(lIF.size()/2,2);
|
|
{
|
|
Index i=0;
|
|
for(
|
|
typename IndexList::const_iterator ifit = lIF.begin();
|
|
ifit!=lIF.end();
|
|
)
|
|
{
|
|
IF(i,0) = (*ifit);
|
|
ifit++;
|
|
IF(i,1) = (*ifit);
|
|
ifit++;
|
|
i++;
|
|
}
|
|
}
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("store_intersecting_face_pairs");
|
|
#endif
|
|
|
|
if(params.detect_only)
|
|
{
|
|
return;
|
|
}
|
|
|
|
remesh_intersections(
|
|
V,F,T,offending,params.stitch_all,VV,FF,J,IM);
|
|
|
|
#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
log_time("remesh_intersection");
|
|
#endif
|
|
}
|
|
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline void igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::mark_offensive(const Index f)
|
|
{
|
|
using namespace std;
|
|
lIF.push_back(f);
|
|
if(offending.count(f) == 0)
|
|
{
|
|
// first time marking, initialize with new id and empty list
|
|
offending[f] = {};
|
|
}
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline void igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::count_intersection(
|
|
const Index fa,
|
|
const Index fb)
|
|
{
|
|
std::lock_guard<std::mutex> guard(m_offending_lock);
|
|
mark_offensive(fa);
|
|
mark_offensive(fb);
|
|
this->count++;
|
|
// We found the first intersection
|
|
if(params.first_only && this->count >= 1)
|
|
{
|
|
throw IGL_FIRST_HIT_EXCEPTION;
|
|
}
|
|
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline bool igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::intersect(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb)
|
|
{
|
|
// Determine whether there is an intersection
|
|
if(!CGAL::do_intersect(A,B))
|
|
{
|
|
return false;
|
|
}
|
|
count_intersection(fa,fb);
|
|
if(!params.detect_only)
|
|
{
|
|
// Construct intersection
|
|
CGAL::Object result = CGAL::intersection(A,B);
|
|
std::lock_guard<std::mutex> guard(m_offending_lock);
|
|
offending[fa].push_back({fb, result});
|
|
offending[fb].push_back({fa, result});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline bool igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::single_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const Index va,
|
|
const Index vb)
|
|
{
|
|
if(single_shared_vertex(A,B,fa,fb,va))
|
|
{
|
|
return true;
|
|
}
|
|
return single_shared_vertex(B,A,fb,fa,vb);
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline bool igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::single_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const Index va)
|
|
{
|
|
// This was not a good idea. It will not handle coplanar triangles well.
|
|
using namespace std;
|
|
Segment_3 sa(
|
|
A.vertex((va+1)%3),
|
|
A.vertex((va+2)%3));
|
|
|
|
if(CGAL::do_intersect(sa,B))
|
|
{
|
|
// can't put count_intersection(fa,fb) here since we use intersect below
|
|
// and then it will be counted twice.
|
|
if(params.detect_only)
|
|
{
|
|
count_intersection(fa,fb);
|
|
return true;
|
|
}
|
|
CGAL::Object result = CGAL::intersection(sa,B);
|
|
if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
|
|
{
|
|
// Single intersection --> segment from shared point to intersection
|
|
CGAL::Object seg = CGAL::make_object(Segment_3(
|
|
A.vertex(va),
|
|
*p));
|
|
count_intersection(fa,fb);
|
|
std::lock_guard<std::mutex> guard(m_offending_lock);
|
|
offending[fa].push_back({fb, seg});
|
|
offending[fb].push_back({fa, seg});
|
|
return true;
|
|
}else if(CGAL::object_cast<Segment_3 >(&result))
|
|
{
|
|
// Need to do full test. Intersection could be a general poly.
|
|
bool test = intersect(A,B,fa,fb);
|
|
((void)test);
|
|
assert(test && "intersect should agree with do_intersect");
|
|
return true;
|
|
}else
|
|
{
|
|
cerr<<REDRUM("Segment ∩ triangle neither point nor segment?")<<endl;
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline bool igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::double_shared_vertex(
|
|
const Triangle_3 & A,
|
|
const Triangle_3 & B,
|
|
const Index fa,
|
|
const Index fb,
|
|
const std::vector<std::pair<Index,Index> > shared)
|
|
{
|
|
using namespace std;
|
|
|
|
auto opposite_vertex = [](const Index a0, const Index a1) {
|
|
// get opposite index of A
|
|
int a2=-1;
|
|
for(int c=0;c<3;++c)
|
|
if(c!=a0 && c!=a1) {
|
|
a2 = c;
|
|
break;
|
|
}
|
|
assert(a2 != -1);
|
|
return a2;
|
|
};
|
|
|
|
// must be co-planar
|
|
Index a2 = opposite_vertex(shared[0].first, shared[1].first);
|
|
if (! B.supporting_plane().has_on(A.vertex(a2)))
|
|
return false;
|
|
|
|
Index b2 = opposite_vertex(shared[0].second, shared[1].second);
|
|
|
|
if (int(CGAL::coplanar_orientation(A.vertex(shared[0].first), A.vertex(shared[1].first), A.vertex(a2))) *
|
|
int(CGAL::coplanar_orientation(B.vertex(shared[0].second), B.vertex(shared[1].second), B.vertex(b2))) < 0)
|
|
// There is certainly no self intersection as the non-shared triangle vertices lie on opposite sides of the shared edge.
|
|
return false;
|
|
|
|
// Since A and B are non-degenerate the intersection must be a polygon
|
|
// (triangle). Either
|
|
// - the vertex of A (B) opposite the shared edge of lies on B (A), or
|
|
// - an edge of A intersects and edge of B without sharing a vertex
|
|
//
|
|
// Determine if the vertex opposite edge (a0,a1) in triangle A lies in
|
|
// (intersects) triangle B
|
|
const auto & opposite_point_inside = [](
|
|
const Triangle_3 & A, const Index a2, const Triangle_3 & B)
|
|
-> bool
|
|
{
|
|
return CGAL::do_intersect(A.vertex(a2),B);
|
|
};
|
|
|
|
// Determine if edge opposite vertex va in triangle A intersects edge
|
|
// opposite vertex vb in triangle B.
|
|
const auto & opposite_edges_intersect = [](
|
|
const Triangle_3 & A, const Index va,
|
|
const Triangle_3 & B, const Index vb) -> bool
|
|
{
|
|
Segment_3 sa( A.vertex((va+1)%3), A.vertex((va+2)%3));
|
|
Segment_3 sb( B.vertex((vb+1)%3), B.vertex((vb+2)%3));
|
|
bool ret = CGAL::do_intersect(sa,sb);
|
|
return ret;
|
|
};
|
|
|
|
if(
|
|
!opposite_point_inside(A,a2,B) &&
|
|
!opposite_point_inside(B,b2,A) &&
|
|
!opposite_edges_intersect(A,shared[0].first,B,shared[1].second) &&
|
|
!opposite_edges_intersect(A,shared[1].first,B,shared[0].second))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// there is an intersection indeed
|
|
count_intersection(fa,fb);
|
|
if(params.detect_only)
|
|
{
|
|
return true;
|
|
}
|
|
// Construct intersection
|
|
try
|
|
{
|
|
// This can fail for Epick but not Epeck
|
|
CGAL::Object result = CGAL::intersection(A,B);
|
|
if(!result.empty())
|
|
{
|
|
if(CGAL::object_cast<Segment_3 >(&result))
|
|
{
|
|
// not coplanar
|
|
assert(false &&
|
|
"Co-planar non-degenerate triangles should intersect over triangle");
|
|
return false;
|
|
} else if(CGAL::object_cast<Point_3 >(&result))
|
|
{
|
|
// this "shouldn't" happen but does for inexact
|
|
assert(false &&
|
|
"Co-planar non-degenerate triangles should intersect over triangle");
|
|
return false;
|
|
} else
|
|
{
|
|
// Triangle object
|
|
std::lock_guard<std::mutex> guard(m_offending_lock);
|
|
offending[fa].push_back({fb, result});
|
|
offending[fb].push_back({fa, result});
|
|
return true;
|
|
}
|
|
}else
|
|
{
|
|
// CGAL::intersection is disagreeing with do_intersect
|
|
assert(false && "CGAL::intersection should agree with predicate tests");
|
|
return false;
|
|
}
|
|
}catch(...)
|
|
{
|
|
// This catches some cgal assertion:
|
|
// CGAL error: assertion violation!
|
|
// Expression : is_finite(d)
|
|
// File : /opt/local/include/CGAL/GMP/Gmpq_type.h
|
|
// Line : 132
|
|
// Explanation:
|
|
// But only if NDEBUG is not defined, otherwise there's an uncaught
|
|
// "Floating point exception: 8" SIGFPE
|
|
return false;
|
|
}
|
|
// No intersection.
|
|
return false;
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline void igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::box_intersect(
|
|
const Box& a,
|
|
const Box& b)
|
|
{
|
|
candidate_triangle_pairs.push_back({a.handle(), b.handle()});
|
|
}
|
|
|
|
template <
|
|
typename Kernel,
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVV,
|
|
typename DerivedFF,
|
|
typename DerivedIF,
|
|
typename DerivedJ,
|
|
typename DerivedIM>
|
|
inline void igl::copyleft::cgal::SelfIntersectMesh<
|
|
Kernel,
|
|
DerivedV,
|
|
DerivedF,
|
|
DerivedVV,
|
|
DerivedFF,
|
|
DerivedIF,
|
|
DerivedJ,
|
|
DerivedIM>::process_intersecting_boxes()
|
|
{
|
|
std::vector<std::mutex> triangle_locks(T.size());
|
|
std::vector<std::mutex> vertex_locks(V.rows());
|
|
std::mutex index_lock;
|
|
std::mutex exception_mutex;
|
|
bool exception_fired = false;
|
|
int exception = -1;
|
|
auto process_chunk =
|
|
[&](
|
|
const size_t first,
|
|
const size_t last) -> void
|
|
{
|
|
try
|
|
{
|
|
assert(last >= first);
|
|
|
|
for (size_t i=first; i<last; i++)
|
|
{
|
|
if(exception_fired) return;
|
|
Index fa=T.size(), fb=T.size();
|
|
{
|
|
// Before knowing which triangles are involved, we need to lock
|
|
// everything to prevent race condition in updating reference
|
|
// counters.
|
|
std::lock_guard<std::mutex> guard(index_lock);
|
|
const auto& tri_pair = candidate_triangle_pairs[i];
|
|
fa = tri_pair.first - T.begin();
|
|
fb = tri_pair.second - T.begin();
|
|
}
|
|
assert(fa < T.size());
|
|
assert(fb < T.size());
|
|
|
|
// Lock triangles
|
|
std::lock_guard<std::mutex> guard_A(triangle_locks[fa]);
|
|
std::lock_guard<std::mutex> guard_B(triangle_locks[fb]);
|
|
|
|
// Lock vertices
|
|
std::list<std::lock_guard<std::mutex> > guard_vertices;
|
|
{
|
|
std::vector<typename DerivedF::Scalar> unique_vertices;
|
|
std::vector<size_t> tmp1, tmp2;
|
|
igl::unique({F(fa,0), F(fa,1), F(fa,2), F(fb,0), F(fb,1), F(fb,2)},
|
|
unique_vertices, tmp1, tmp2);
|
|
std::for_each(unique_vertices.begin(), unique_vertices.end(),
|
|
[&](const typename DerivedF::Scalar& vi) {
|
|
guard_vertices.emplace_back(vertex_locks[vi]);
|
|
});
|
|
}
|
|
if(exception_fired) return;
|
|
|
|
const Triangle_3& A = T[fa];
|
|
const Triangle_3& B = T[fb];
|
|
|
|
// Number of combinatorially shared vertices
|
|
Index comb_shared_vertices = 0;
|
|
// Number of geometrically shared vertices (*not* including
|
|
// combinatorially shared)
|
|
Index geo_shared_vertices = 0;
|
|
// Keep track of shared vertex indices
|
|
std::vector<std::pair<Index,Index> > shared;
|
|
Index ea,eb;
|
|
for(ea=0;ea<3;ea++)
|
|
{
|
|
for(eb=0;eb<3;eb++)
|
|
{
|
|
if(F(fa,ea) == F(fb,eb))
|
|
{
|
|
comb_shared_vertices++;
|
|
shared.emplace_back(ea,eb);
|
|
}else if(A.vertex(ea) == B.vertex(eb))
|
|
{
|
|
geo_shared_vertices++;
|
|
shared.emplace_back(ea,eb);
|
|
}
|
|
}
|
|
}
|
|
const Index total_shared_vertices =
|
|
comb_shared_vertices + geo_shared_vertices;
|
|
if(exception_fired) return;
|
|
|
|
if(comb_shared_vertices== 3)
|
|
{
|
|
assert(shared.size() == 3);
|
|
// Combinatorially duplicate face, these should be removed by
|
|
// preprocessing
|
|
continue;
|
|
}
|
|
if(total_shared_vertices== 3)
|
|
{
|
|
assert(shared.size() == 3);
|
|
// Geometrically duplicate face, these should be removed by
|
|
// preprocessing
|
|
continue;
|
|
}
|
|
if(total_shared_vertices == 2)
|
|
{
|
|
assert(shared.size() == 2);
|
|
// Q: What about coplanar?
|
|
//
|
|
// o o
|
|
// |\ /|
|
|
// | \/ |
|
|
// | /\ |
|
|
// |/ \|
|
|
// o----o
|
|
double_shared_vertex(A,B,fa,fb,shared);
|
|
continue;
|
|
}
|
|
assert(total_shared_vertices<=1);
|
|
if(total_shared_vertices==1)
|
|
{
|
|
single_shared_vertex(A,B,fa,fb,shared[0].first,shared[0].second);
|
|
}else
|
|
{
|
|
intersect(A,B,fa,fb);
|
|
}
|
|
}
|
|
}catch(int e)
|
|
{
|
|
std::lock_guard<std::mutex> exception_lock(exception_mutex);
|
|
exception_fired = true;
|
|
exception = e;
|
|
}
|
|
};
|
|
size_t num_threads=0;
|
|
const size_t hardware_limit = std::thread::hardware_concurrency();
|
|
if (const char* igl_num_threads = std::getenv("LIBIGL_NUM_THREADS")) {
|
|
num_threads = atoi(igl_num_threads);
|
|
}
|
|
if (num_threads == 0 || num_threads > hardware_limit) {
|
|
num_threads = hardware_limit;
|
|
}
|
|
assert(num_threads > 0);
|
|
const size_t num_pairs = candidate_triangle_pairs.size();
|
|
const size_t chunk_size = num_pairs / num_threads;
|
|
std::vector<std::thread> threads;
|
|
for (size_t i=0; i<num_threads-1; i++)
|
|
{
|
|
threads.emplace_back(process_chunk, i*chunk_size, (i+1)*chunk_size);
|
|
}
|
|
// Do some work in the master thread.
|
|
process_chunk((num_threads-1)*chunk_size, num_pairs);
|
|
for (auto& t : threads)
|
|
{
|
|
if (t.joinable()) t.join();
|
|
}
|
|
if(exception_fired) throw exception;
|
|
//process_chunk(0, candidate_triangle_pairs.size());
|
|
}
|
|
|
|
#endif |