BambuStudio/libigl/igl/copyleft/cgal/SelfIntersectMesh.h

944 lines
26 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H
#define IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H
#include "CGAL_includes.hpp"
#include "RemeshSelfIntersectionsParam.h"
#include "../../unique.h"
#include <Eigen/Dense>
#include <list>
#include <map>
#include <vector>
#include <thread>
#include <mutex>
//#define IGL_SELFINTERSECTMESH_DEBUG
#ifndef IGL_FIRST_HIT_EXCEPTION
#define IGL_FIRST_HIT_EXCEPTION 10
#endif
// The easiest way to keep track of everything is to use a class
namespace igl
{
namespace copyleft
{
namespace cgal
{
// Kernel is a CGAL kernel like:
// CGAL::Exact_predicates_inexact_constructions_kernel
// or
// CGAL::Exact_predicates_exact_constructions_kernel
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
class SelfIntersectMesh
{
typedef
SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM> Self;
public:
// 3D Primitives
typedef CGAL::Point_3<Kernel> Point_3;
typedef CGAL::Segment_3<Kernel> Segment_3;
typedef CGAL::Triangle_3<Kernel> Triangle_3;
typedef CGAL::Plane_3<Kernel> Plane_3;
typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron_3;
// 2D Primitives
typedef CGAL::Point_2<Kernel> Point_2;
typedef CGAL::Segment_2<Kernel> Segment_2;
typedef CGAL::Triangle_2<Kernel> Triangle_2;
// 2D Constrained Delaunay Triangulation types
typedef CGAL::Exact_intersections_tag Itag;
// Axis-align boxes for all-pairs self-intersection detection
typedef std::vector<Triangle_3> Triangles;
typedef typename Triangles::iterator TrianglesIterator;
typedef typename Triangles::const_iterator TrianglesConstIterator;
typedef
CGAL::Box_intersection_d::Box_with_handle_d<double,3,TrianglesIterator>
Box;
// Input mesh
const Eigen::MatrixBase<DerivedV> & V;
const Eigen::MatrixBase<DerivedF> & F;
// Number of self-intersecting triangle pairs
typedef typename DerivedF::Index Index;
Index count;
typedef std::vector<std::pair<Index, CGAL::Object>> ObjectList;
// Using a vector here makes this **not** output sensitive
Triangles T;
typedef std::vector<Index> IndexList;
IndexList lIF;
// #F-long list of faces with intersections mapping to the order in
// which they were first found
std::map<Index,ObjectList> offending;
// Make a short name for the edge map's key
typedef std::pair<Index,Index> EMK;
// Make a short name for the type stored at each edge, the edge map's
// value
typedef std::vector<Index> EMV;
// Make a short name for the edge map
typedef std::map<EMK,EMV> EdgeMap;
// Maps edges of offending faces to all incident offending faces
std::vector<std::pair<TrianglesIterator, TrianglesIterator> >
candidate_triangle_pairs;
public:
RemeshSelfIntersectionsParam params;
public:
// Constructs (VV,FF) a new mesh with self-intersections of (V,F)
// subdivided
//
// See also: remesh_self_intersections.h
inline SelfIntersectMesh(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const RemeshSelfIntersectionsParam & params,
Eigen::PlainObjectBase<DerivedVV> & VV,
Eigen::PlainObjectBase<DerivedFF> & FF,
Eigen::PlainObjectBase<DerivedIF> & IF,
Eigen::PlainObjectBase<DerivedJ> & J,
Eigen::PlainObjectBase<DerivedIM> & IM);
private:
// Helper function to mark a face as offensive
//
// Inputs:
// f index of face in F
inline void mark_offensive(const Index f);
// Helper function to count intersections between faces
//
// Input:
// fa index of face A in F
// fb index of face B in F
inline void count_intersection( const Index fa, const Index fb);
// Helper function for box_intersect. Intersect two triangles A and B,
// append the intersection object (point,segment,triangle) to a running
// list for A and B
//
// Inputs:
// A triangle in 3D
// B triangle in 3D
// fa index of A in F (and key into offending)
// fb index of B in F (and key into offending)
// Returns true only if A intersects B
//
inline bool intersect(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb);
// Helper function for box_intersect. In the case where A and B have
// already been identified to share a vertex, then we only want to
// add possible segment intersections. Assumes truly duplicate
// triangles are not given as input
//
// Inputs:
// A triangle in 3D
// B triangle in 3D
// fa index of A in F (and key into offending)
// fb index of B in F (and key into offending)
// va index of shared vertex in A (and key into offending)
// vb index of shared vertex in B (and key into offending)
// Returns true if intersection (besides shared point)
//
inline bool single_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const Index va,
const Index vb);
// Helper handling one direction
inline bool single_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const Index va);
// Helper function for box_intersect. In the case where A and B have
// already been identified to share two vertices, then we only want
// to add a possible coplanar (Triangle) intersection. Assumes truly
// degenerate facets are not givin as input.
inline bool double_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const std::vector<std::pair<Index,Index> > shared);
public:
// Callback function called during box self intersections test. Means
// boxes a and b intersect. This method then checks if the triangles
// in each box intersect and if so, then processes the intersections
//
// Inputs:
// a box containing a triangle
// b box containing a triangle
inline void box_intersect(const Box& a, const Box& b);
inline void process_intersecting_boxes();
public:
// Getters:
//const IndexList& get_lIF() const{ return lIF;}
static inline void box_intersect_static(
SelfIntersectMesh * SIM,
const Box &a,
const Box &b);
private:
std::mutex m_offending_lock;
};
}
}
}
// Implementation
#include "mesh_to_cgal_triangle_list.h"
#include "remesh_intersections.h"
#include "../../REDRUM.h"
#include "../../get_seconds.h"
#include "../../C_STR.h"
#include <functional>
#include <algorithm>
#include <exception>
#include <cassert>
#include <iostream>
// References:
// http://minregret.googlecode.com/svn/trunk/skyline/src/extern/CGAL-3.3.1/examples/Polyhedron/polyhedron_self_intersection.cpp
// http://www.cgal.org/Manual/3.9/examples/Boolean_set_operations_2/do_intersect.cpp
// Q: Should we be using CGAL::Polyhedron_3?
// A: No! Input is just a list of unoriented triangles. Polyhedron_3 requires
// a 2-manifold.
// A: But! It seems we could use CGAL::Triangulation_3. Though it won't be easy
// to take advantage of functions like insert_in_facet because we want to
// constrain segments. Hmmm. Actually Triangulation_3 doesn't look right...
// CGAL's box_self_intersection_d uses C-style function callbacks without
// userdata. This is a leapfrog method for calling a member function. It should
// be bound as if the prototype was:
// static void box_intersect(const Box &a, const Box &b)
// using boost:
// boost::function<void(const Box &a,const Box &b)> cb
// = boost::bind(&::box_intersect, this, _1,_2);
//
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::box_intersect_static(
Self * SIM,
const typename Self::Box &a,
const typename Self::Box &b)
{
SIM->box_intersect(a,b);
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::SelfIntersectMesh(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const RemeshSelfIntersectionsParam & params,
Eigen::PlainObjectBase<DerivedVV> & VV,
Eigen::PlainObjectBase<DerivedFF> & FF,
Eigen::PlainObjectBase<DerivedIF> & IF,
Eigen::PlainObjectBase<DerivedJ> & J,
Eigen::PlainObjectBase<DerivedIM> & IM):
V(V),
F(F),
count(0),
T(),
lIF(),
offending(),
params(params)
{
using namespace std;
using namespace Eigen;
#ifdef IGL_SELFINTERSECTMESH_DEBUG
const auto & tictoc = []() -> double
{
static double t_start = igl::get_seconds();
double diff = igl::get_seconds()-t_start;
t_start += diff;
return diff;
};
const auto log_time = [&](const std::string& label) -> void{
std::cout << "SelfIntersectMesh." << label << ": "
<< tictoc() << std::endl;
};
tictoc();
#endif
// Compute and process self intersections
mesh_to_cgal_triangle_list(V,F,T);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("convert_to_triangle_list");
#endif
// http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html#Section_63.5
// Create the corresponding vector of bounding boxes
std::vector<Box> boxes;
boxes.reserve(T.size());
for (
TrianglesIterator tit = T.begin();
tit != T.end();
++tit)
{
if (!tit->is_degenerate())
{
boxes.push_back(Box(tit->bbox(), tit));
}
}
// Leapfrog callback
std::function<void(const Box &a,const Box &b)> cb =
std::bind(&box_intersect_static, this,
// Explicitly use std namespace to avoid confusion with boost (who puts
// _1 etc. in global namespace)
std::placeholders::_1,
std::placeholders::_2);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("box_and_bind");
#endif
// Run the self intersection algorithm with all defaults
CGAL::box_self_intersection_d(boxes.begin(), boxes.end(),cb);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("box_intersection_d");
#endif
try{
process_intersecting_boxes();
}catch(int e)
{
// Rethrow if not IGL_FIRST_HIT_EXCEPTION
if(e != IGL_FIRST_HIT_EXCEPTION)
{
throw e;
}
// Otherwise just fall through
}
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("resolve_intersection");
#endif
// Convert lIF to Eigen matrix
assert(lIF.size()%2 == 0);
IF.resize(lIF.size()/2,2);
{
Index i=0;
for(
typename IndexList::const_iterator ifit = lIF.begin();
ifit!=lIF.end();
)
{
IF(i,0) = (*ifit);
ifit++;
IF(i,1) = (*ifit);
ifit++;
i++;
}
}
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("store_intersecting_face_pairs");
#endif
if(params.detect_only)
{
return;
}
remesh_intersections(
V,F,T,offending,params.stitch_all,VV,FF,J,IM);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
log_time("remesh_intersection");
#endif
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::mark_offensive(const Index f)
{
using namespace std;
lIF.push_back(f);
if(offending.count(f) == 0)
{
// first time marking, initialize with new id and empty list
offending[f] = {};
}
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::count_intersection(
const Index fa,
const Index fb)
{
std::lock_guard<std::mutex> guard(m_offending_lock);
mark_offensive(fa);
mark_offensive(fb);
this->count++;
// We found the first intersection
if(params.first_only && this->count >= 1)
{
throw IGL_FIRST_HIT_EXCEPTION;
}
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::intersect(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb)
{
// Determine whether there is an intersection
if(!CGAL::do_intersect(A,B))
{
return false;
}
count_intersection(fa,fb);
if(!params.detect_only)
{
// Construct intersection
CGAL::Object result = CGAL::intersection(A,B);
std::lock_guard<std::mutex> guard(m_offending_lock);
offending[fa].push_back({fb, result});
offending[fb].push_back({fa, result});
}
return true;
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::single_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const Index va,
const Index vb)
{
if(single_shared_vertex(A,B,fa,fb,va))
{
return true;
}
return single_shared_vertex(B,A,fb,fa,vb);
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::single_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const Index va)
{
// This was not a good idea. It will not handle coplanar triangles well.
using namespace std;
Segment_3 sa(
A.vertex((va+1)%3),
A.vertex((va+2)%3));
if(CGAL::do_intersect(sa,B))
{
// can't put count_intersection(fa,fb) here since we use intersect below
// and then it will be counted twice.
if(params.detect_only)
{
count_intersection(fa,fb);
return true;
}
CGAL::Object result = CGAL::intersection(sa,B);
if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
{
// Single intersection --> segment from shared point to intersection
CGAL::Object seg = CGAL::make_object(Segment_3(
A.vertex(va),
*p));
count_intersection(fa,fb);
std::lock_guard<std::mutex> guard(m_offending_lock);
offending[fa].push_back({fb, seg});
offending[fb].push_back({fa, seg});
return true;
}else if(CGAL::object_cast<Segment_3 >(&result))
{
// Need to do full test. Intersection could be a general poly.
bool test = intersect(A,B,fa,fb);
((void)test);
assert(test && "intersect should agree with do_intersect");
return true;
}else
{
cerr<<REDRUM("Segment ∩ triangle neither point nor segment?")<<endl;
assert(false);
}
}
return false;
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::double_shared_vertex(
const Triangle_3 & A,
const Triangle_3 & B,
const Index fa,
const Index fb,
const std::vector<std::pair<Index,Index> > shared)
{
using namespace std;
auto opposite_vertex = [](const Index a0, const Index a1) {
// get opposite index of A
int a2=-1;
for(int c=0;c<3;++c)
if(c!=a0 && c!=a1) {
a2 = c;
break;
}
assert(a2 != -1);
return a2;
};
// must be co-planar
Index a2 = opposite_vertex(shared[0].first, shared[1].first);
if (! B.supporting_plane().has_on(A.vertex(a2)))
return false;
Index b2 = opposite_vertex(shared[0].second, shared[1].second);
if (int(CGAL::coplanar_orientation(A.vertex(shared[0].first), A.vertex(shared[1].first), A.vertex(a2))) *
int(CGAL::coplanar_orientation(B.vertex(shared[0].second), B.vertex(shared[1].second), B.vertex(b2))) < 0)
// There is certainly no self intersection as the non-shared triangle vertices lie on opposite sides of the shared edge.
return false;
// Since A and B are non-degenerate the intersection must be a polygon
// (triangle). Either
// - the vertex of A (B) opposite the shared edge of lies on B (A), or
// - an edge of A intersects and edge of B without sharing a vertex
//
// Determine if the vertex opposite edge (a0,a1) in triangle A lies in
// (intersects) triangle B
const auto & opposite_point_inside = [](
const Triangle_3 & A, const Index a2, const Triangle_3 & B)
-> bool
{
return CGAL::do_intersect(A.vertex(a2),B);
};
// Determine if edge opposite vertex va in triangle A intersects edge
// opposite vertex vb in triangle B.
const auto & opposite_edges_intersect = [](
const Triangle_3 & A, const Index va,
const Triangle_3 & B, const Index vb) -> bool
{
Segment_3 sa( A.vertex((va+1)%3), A.vertex((va+2)%3));
Segment_3 sb( B.vertex((vb+1)%3), B.vertex((vb+2)%3));
bool ret = CGAL::do_intersect(sa,sb);
return ret;
};
if(
!opposite_point_inside(A,a2,B) &&
!opposite_point_inside(B,b2,A) &&
!opposite_edges_intersect(A,shared[0].first,B,shared[1].second) &&
!opposite_edges_intersect(A,shared[1].first,B,shared[0].second))
{
return false;
}
// there is an intersection indeed
count_intersection(fa,fb);
if(params.detect_only)
{
return true;
}
// Construct intersection
try
{
// This can fail for Epick but not Epeck
CGAL::Object result = CGAL::intersection(A,B);
if(!result.empty())
{
if(CGAL::object_cast<Segment_3 >(&result))
{
// not coplanar
assert(false &&
"Co-planar non-degenerate triangles should intersect over triangle");
return false;
} else if(CGAL::object_cast<Point_3 >(&result))
{
// this "shouldn't" happen but does for inexact
assert(false &&
"Co-planar non-degenerate triangles should intersect over triangle");
return false;
} else
{
// Triangle object
std::lock_guard<std::mutex> guard(m_offending_lock);
offending[fa].push_back({fb, result});
offending[fb].push_back({fa, result});
return true;
}
}else
{
// CGAL::intersection is disagreeing with do_intersect
assert(false && "CGAL::intersection should agree with predicate tests");
return false;
}
}catch(...)
{
// This catches some cgal assertion:
// CGAL error: assertion violation!
// Expression : is_finite(d)
// File : /opt/local/include/CGAL/GMP/Gmpq_type.h
// Line : 132
// Explanation:
// But only if NDEBUG is not defined, otherwise there's an uncaught
// "Floating point exception: 8" SIGFPE
return false;
}
// No intersection.
return false;
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::box_intersect(
const Box& a,
const Box& b)
{
candidate_triangle_pairs.push_back({a.handle(), b.handle()});
}
template <
typename Kernel,
typename DerivedV,
typename DerivedF,
typename DerivedVV,
typename DerivedFF,
typename DerivedIF,
typename DerivedJ,
typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
Kernel,
DerivedV,
DerivedF,
DerivedVV,
DerivedFF,
DerivedIF,
DerivedJ,
DerivedIM>::process_intersecting_boxes()
{
std::vector<std::mutex> triangle_locks(T.size());
std::vector<std::mutex> vertex_locks(V.rows());
std::mutex index_lock;
std::mutex exception_mutex;
bool exception_fired = false;
int exception = -1;
auto process_chunk =
[&](
const size_t first,
const size_t last) -> void
{
try
{
assert(last >= first);
for (size_t i=first; i<last; i++)
{
if(exception_fired) return;
Index fa=T.size(), fb=T.size();
{
// Before knowing which triangles are involved, we need to lock
// everything to prevent race condition in updating reference
// counters.
std::lock_guard<std::mutex> guard(index_lock);
const auto& tri_pair = candidate_triangle_pairs[i];
fa = tri_pair.first - T.begin();
fb = tri_pair.second - T.begin();
}
assert(fa < T.size());
assert(fb < T.size());
// Lock triangles
std::lock_guard<std::mutex> guard_A(triangle_locks[fa]);
std::lock_guard<std::mutex> guard_B(triangle_locks[fb]);
// Lock vertices
std::list<std::lock_guard<std::mutex> > guard_vertices;
{
std::vector<typename DerivedF::Scalar> unique_vertices;
std::vector<size_t> tmp1, tmp2;
igl::unique({F(fa,0), F(fa,1), F(fa,2), F(fb,0), F(fb,1), F(fb,2)},
unique_vertices, tmp1, tmp2);
std::for_each(unique_vertices.begin(), unique_vertices.end(),
[&](const typename DerivedF::Scalar& vi) {
guard_vertices.emplace_back(vertex_locks[vi]);
});
}
if(exception_fired) return;
const Triangle_3& A = T[fa];
const Triangle_3& B = T[fb];
// Number of combinatorially shared vertices
Index comb_shared_vertices = 0;
// Number of geometrically shared vertices (*not* including
// combinatorially shared)
Index geo_shared_vertices = 0;
// Keep track of shared vertex indices
std::vector<std::pair<Index,Index> > shared;
Index ea,eb;
for(ea=0;ea<3;ea++)
{
for(eb=0;eb<3;eb++)
{
if(F(fa,ea) == F(fb,eb))
{
comb_shared_vertices++;
shared.emplace_back(ea,eb);
}else if(A.vertex(ea) == B.vertex(eb))
{
geo_shared_vertices++;
shared.emplace_back(ea,eb);
}
}
}
const Index total_shared_vertices =
comb_shared_vertices + geo_shared_vertices;
if(exception_fired) return;
if(comb_shared_vertices== 3)
{
assert(shared.size() == 3);
// Combinatorially duplicate face, these should be removed by
// preprocessing
continue;
}
if(total_shared_vertices== 3)
{
assert(shared.size() == 3);
// Geometrically duplicate face, these should be removed by
// preprocessing
continue;
}
if(total_shared_vertices == 2)
{
assert(shared.size() == 2);
// Q: What about coplanar?
//
// o o
// |\ /|
// | \/ |
// | /\ |
// |/ \|
// o----o
double_shared_vertex(A,B,fa,fb,shared);
continue;
}
assert(total_shared_vertices<=1);
if(total_shared_vertices==1)
{
single_shared_vertex(A,B,fa,fb,shared[0].first,shared[0].second);
}else
{
intersect(A,B,fa,fb);
}
}
}catch(int e)
{
std::lock_guard<std::mutex> exception_lock(exception_mutex);
exception_fired = true;
exception = e;
}
};
size_t num_threads=0;
const size_t hardware_limit = std::thread::hardware_concurrency();
if (const char* igl_num_threads = std::getenv("LIBIGL_NUM_THREADS")) {
num_threads = atoi(igl_num_threads);
}
if (num_threads == 0 || num_threads > hardware_limit) {
num_threads = hardware_limit;
}
assert(num_threads > 0);
const size_t num_pairs = candidate_triangle_pairs.size();
const size_t chunk_size = num_pairs / num_threads;
std::vector<std::thread> threads;
for (size_t i=0; i<num_threads-1; i++)
{
threads.emplace_back(process_chunk, i*chunk_size, (i+1)*chunk_size);
}
// Do some work in the master thread.
process_chunk((num_threads-1)*chunk_size, num_pairs);
for (auto& t : threads)
{
if (t.joinable()) t.join();
}
if(exception_fired) throw exception;
//process_chunk(0, candidate_triangle_pairs.size());
}
#endif