BambuStudio/libigl/igl/copyleft/comiso/frame_field.cpp

689 lines
17 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2015 Daniele Panozzo <daniele.panozzo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "frame_field.h"
#include <igl/triangle_triangle_adjacency.h>
#include <igl/edge_topology.h>
#include <igl/per_face_normals.h>
#include <igl/copyleft/comiso/nrosy.h>
#include <iostream>
namespace igl
{
namespace copyleft
{
namespace comiso
{
class FrameInterpolator
{
public:
// Init
IGL_INLINE FrameInterpolator(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F);
IGL_INLINE ~FrameInterpolator();
// Reset constraints (at least one constraint must be present or solve will fail)
IGL_INLINE void resetConstraints();
IGL_INLINE void setConstraint(const int fid, const Eigen::VectorXd& v);
IGL_INLINE void interpolateSymmetric();
// Generate the frame field
IGL_INLINE void solve();
// Convert the frame field in the canonical representation
IGL_INLINE void frame2canonical(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v, double& theta, Eigen::VectorXd& S);
// Convert the canonical representation in a frame field
IGL_INLINE void canonical2frame(const Eigen::MatrixXd& TP, const double theta, const Eigen::VectorXd& S, Eigen::RowVectorXd& v);
IGL_INLINE Eigen::MatrixXd getFieldPerFace();
IGL_INLINE void PolarDecomposition(Eigen::MatrixXd V, Eigen::MatrixXd& U, Eigen::MatrixXd& P);
// Symmetric
Eigen::MatrixXd S;
std::vector<bool> S_c;
// -------------------------------------------------
// Face Topology
Eigen::MatrixXi TT, TTi;
// Two faces are consistent if their representative vector are taken modulo PI
std::vector<bool> edge_consistency;
Eigen::MatrixXi edge_consistency_TT;
private:
IGL_INLINE double mod2pi(double d);
IGL_INLINE double modpi2(double d);
IGL_INLINE double modpi(double d);
// Convert a direction on the tangent space into an angle
IGL_INLINE double vector2theta(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v);
// Convert an angle in a vector in the tangent space
IGL_INLINE Eigen::RowVectorXd theta2vector(const Eigen::MatrixXd& TP, const double theta);
// Interpolate the cross field (theta)
IGL_INLINE void interpolateCross();
// Compute difference between reference frames
IGL_INLINE void computek();
// Compute edge consistency
IGL_INLINE void compute_edge_consistency();
// Cross field direction
Eigen::VectorXd thetas;
std::vector<bool> thetas_c;
// Edge Topology
Eigen::MatrixXi EV, FE, EF;
std::vector<bool> isBorderEdge;
// Angle between two reference frames
// R(k) * t0 = t1
Eigen::VectorXd k;
// Mesh
Eigen::MatrixXd V;
Eigen::MatrixXi F;
// Normals per face
Eigen::MatrixXd N;
// Reference frame per triangle
std::vector<Eigen::MatrixXd> TPs;
};
FrameInterpolator::FrameInterpolator(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F)
{
using namespace std;
using namespace Eigen;
V = _V;
F = _F;
assert(V.rows() > 0);
assert(F.rows() > 0);
// Generate topological relations
igl::triangle_triangle_adjacency(F,TT,TTi);
igl::edge_topology(V,F, EV, FE, EF);
// Flag border edges
isBorderEdge.resize(EV.rows());
for(unsigned i=0; i<EV.rows(); ++i)
isBorderEdge[i] = (EF(i,0) == -1) || ((EF(i,1) == -1));
// Generate normals per face
igl::per_face_normals(V, F, N);
// Generate reference frames
for(unsigned fid=0; fid<F.rows(); ++fid)
{
// First edge
Vector3d e1 = V.row(F(fid,1)) - V.row(F(fid,0));
e1.normalize();
Vector3d e2 = N.row(fid);
e2 = e2.cross(e1);
e2.normalize();
MatrixXd TP(2,3);
TP << e1.transpose(), e2.transpose();
TPs.push_back(TP);
}
// Reset the constraints
resetConstraints();
// Compute k, differences between reference frames
computek();
// Alloc internal variables
thetas = VectorXd::Zero(F.rows());
S = MatrixXd::Zero(F.rows(),3);
compute_edge_consistency();
}
FrameInterpolator::~FrameInterpolator()
{
}
double FrameInterpolator::mod2pi(double d)
{
while(d<0)
d = d + (2.0*igl::PI);
return fmod(d, (2.0*igl::PI));
}
double FrameInterpolator::modpi2(double d)
{
while(d<0)
d = d + (igl::PI/2.0);
return fmod(d, (igl::PI/2.0));
}
double FrameInterpolator::modpi(double d)
{
while(d<0)
d = d + (igl::PI);
return fmod(d, (igl::PI));
}
double FrameInterpolator::vector2theta(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v)
{
// Project onto the tangent plane
Eigen::Vector2d vp = TP * v.transpose();
// Convert to angle
double theta = atan2(vp(1),vp(0));
return theta;
}
Eigen::RowVectorXd FrameInterpolator::theta2vector(const Eigen::MatrixXd& TP, const double theta)
{
Eigen::Vector2d vp(cos(theta),sin(theta));
return vp.transpose() * TP;
}
void FrameInterpolator::interpolateCross()
{
using namespace std;
using namespace Eigen;
//olga: was
// NRosyField nrosy(V,F);
// for (unsigned i=0; i<F.rows(); ++i)
// if(thetas_c[i])
// nrosy.setConstraintHard(i,theta2vector(TPs[i],thetas(i)));
// nrosy.solve(4);
// MatrixXd R = nrosy.getFieldPerFace();
//olga: is
Eigen::MatrixXd R;
Eigen::VectorXd S;
Eigen::VectorXi b; b.resize(F.rows(),1);
Eigen::MatrixXd bc; bc.resize(F.rows(),3);
int num = 0;
for (unsigned i=0; i<F.rows(); ++i)
if(thetas_c[i])
{
b[num] = i;
bc.row(num) = theta2vector(TPs[i],thetas(i));
num++;
}
b.conservativeResize(num,Eigen::NoChange);
bc.conservativeResize(num,Eigen::NoChange);
igl::copyleft::comiso::nrosy(V, F, b, bc, 4, R, S);
//olga:end
assert(R.rows() == F.rows());
for (unsigned i=0; i<F.rows(); ++i)
thetas(i) = vector2theta(TPs[i],R.row(i));
}
void FrameInterpolator::resetConstraints()
{
thetas_c.resize(F.rows());
S_c.resize(F.rows());
for(unsigned i=0; i<F.rows(); ++i)
{
thetas_c[i] = false;
S_c[i] = false;
}
}
void FrameInterpolator::compute_edge_consistency()
{
using namespace std;
using namespace Eigen;
// Compute per-edge consistency
edge_consistency.resize(EF.rows());
edge_consistency_TT = MatrixXi::Constant(TT.rows(),3,-1);
// For every non-border edge
for (unsigned eid=0; eid<EF.rows(); ++eid)
{
if (!isBorderEdge[eid])
{
int fid0 = EF(eid,0);
int fid1 = EF(eid,1);
double theta0 = thetas(fid0);
double theta1 = thetas(fid1);
theta0 = theta0 + k(eid);
double r = modpi(theta0-theta1);
edge_consistency[eid] = r < igl::PI/4.0 || r > 3*(igl::PI/4.0);
// Copy it into edge_consistency_TT
int i1 = -1;
int i2 = -1;
for (unsigned i=0; i<3; ++i)
{
if (TT(fid0,i) == fid1)
i1 = i;
if (TT(fid1,i) == fid0)
i2 = i;
}
assert(i1 != -1);
assert(i2 != -1);
edge_consistency_TT(fid0,i1) = edge_consistency[eid];
edge_consistency_TT(fid1,i2) = edge_consistency[eid];
}
}
}
void FrameInterpolator::computek()
{
using namespace std;
using namespace Eigen;
k.resize(EF.rows());
// For every non-border edge
for (unsigned eid=0; eid<EF.rows(); ++eid)
{
if (!isBorderEdge[eid])
{
int fid0 = EF(eid,0);
int fid1 = EF(eid,1);
Vector3d N0 = N.row(fid0);
//Vector3d N1 = N.row(fid1);
// find common edge on triangle 0 and 1
int fid0_vc = -1;
int fid1_vc = -1;
for (unsigned i=0;i<3;++i)
{
if (EV(eid,0) == F(fid0,i))
fid0_vc = i;
if (EV(eid,1) == F(fid1,i))
fid1_vc = i;
}
assert(fid0_vc != -1);
assert(fid1_vc != -1);
Vector3d common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
common_edge.normalize();
// Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
MatrixXd P(3,3);
VectorXd o = V.row(F(fid0,fid0_vc));
VectorXd tmp = -N0.cross(common_edge);
P << common_edge, tmp, N0;
P.transposeInPlace();
MatrixXd V0(3,3);
V0.row(0) = V.row(F(fid0,0)).transpose() -o;
V0.row(1) = V.row(F(fid0,1)).transpose() -o;
V0.row(2) = V.row(F(fid0,2)).transpose() -o;
V0 = (P*V0.transpose()).transpose();
assert(V0(0,2) < 10e-10);
assert(V0(1,2) < 10e-10);
assert(V0(2,2) < 10e-10);
MatrixXd V1(3,3);
V1.row(0) = V.row(F(fid1,0)).transpose() -o;
V1.row(1) = V.row(F(fid1,1)).transpose() -o;
V1.row(2) = V.row(F(fid1,2)).transpose() -o;
V1 = (P*V1.transpose()).transpose();
assert(V1(fid1_vc,2) < 10e-10);
assert(V1((fid1_vc+1)%3,2) < 10e-10);
// compute rotation R such that R * N1 = N0
// i.e. map both triangles to the same plane
double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
MatrixXd R(3,3);
R << 1, 0, 0,
0, cos(alpha), -sin(alpha) ,
0, sin(alpha), cos(alpha);
V1 = (R*V1.transpose()).transpose();
assert(V1(0,2) < 10e-10);
assert(V1(1,2) < 10e-10);
assert(V1(2,2) < 10e-10);
// measure the angle between the reference frames
// k_ij is the angle between the triangle on the left and the one on the right
VectorXd ref0 = V0.row(1) - V0.row(0);
VectorXd ref1 = V1.row(1) - V1.row(0);
ref0.normalize();
ref1.normalize();
double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
// just to be sure, rotate ref0 using angle ktemp...
MatrixXd R2(2,2);
R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
tmp = R2*ref0.head<2>();
assert(tmp(0) - ref1(0) < (0.000001));
assert(tmp(1) - ref1(1) < (0.000001));
k[eid] = ktemp;
}
}
}
void FrameInterpolator::frame2canonical(const Eigen::MatrixXd& TP, const Eigen::RowVectorXd& v, double& theta, Eigen::VectorXd& S_v)
{
using namespace std;
using namespace Eigen;
RowVectorXd v0 = v.segment<3>(0);
RowVectorXd v1 = v.segment<3>(3);
// Project onto the tangent plane
Vector2d vp0 = TP * v0.transpose();
Vector2d vp1 = TP * v1.transpose();
// Assemble matrix
MatrixXd M(2,2);
M << vp0, vp1;
if (M.determinant() < 0)
M.col(1) = -M.col(1);
assert(M.determinant() > 0);
// cerr << "M: " << M << endl;
MatrixXd R,S;
PolarDecomposition(M,R,S);
// Finally, express the cross field as an angle
theta = atan2(R(1,0),R(0,0));
MatrixXd R2(2,2);
R2 << cos(theta), -sin(theta), sin(theta), cos(theta);
assert((R2-R).norm() < 10e-8);
// Convert into rotation invariant form
S = R * S * R.inverse();
// Copy in vector form
S_v = VectorXd(3);
S_v << S(0,0), S(0,1), S(1,1);
}
void FrameInterpolator::canonical2frame(const Eigen::MatrixXd& TP, const double theta, const Eigen::VectorXd& S_v, Eigen::RowVectorXd& v)
{
using namespace std;
using namespace Eigen;
assert(S_v.size() == 3);
MatrixXd S_temp(2,2);
S_temp << S_v(0), S_v(1), S_v(1), S_v(2);
// Convert angle in vector in the tangent plane
// Vector2d vp(cos(theta),sin(theta));
// First reconstruct R
MatrixXd R(2,2);
R << cos(theta), -sin(theta), sin(theta), cos(theta);
// Rotation invariant reconstruction
MatrixXd M = S_temp * R;
Vector2d vp0(M(0,0),M(1,0));
Vector2d vp1(M(0,1),M(1,1));
// Unproject the vectors
RowVectorXd v0 = vp0.transpose() * TP;
RowVectorXd v1 = vp1.transpose() * TP;
v.resize(6);
v << v0, v1;
}
void FrameInterpolator::solve()
{
interpolateCross();
interpolateSymmetric();
}
void FrameInterpolator::interpolateSymmetric()
{
using namespace std;
using namespace Eigen;
// Generate uniform Laplacian matrix
typedef Eigen::Triplet<double> triplet;
std::vector<triplet> triplets;
// Variables are stacked as x1,y1,z1,x2,y2,z2
triplets.reserve(3*4*F.rows());
MatrixXd b = MatrixXd::Zero(3*F.rows(),1);
// Build L and b
for (unsigned eid=0; eid<EF.rows(); ++eid)
{
if (!isBorderEdge[eid])
{
for (int z=0;z<2;++z)
{
// W = [w_a, w_b
// w_b, w_c]
//
// It is not symmetric
int i = EF(eid,z==0?0:1);
int j = EF(eid,z==0?1:0);
int w_a_0 = (i*3)+0;
int w_b_0 = (i*3)+1;
int w_c_0 = (i*3)+2;
int w_a_1 = (j*3)+0;
int w_b_1 = (j*3)+1;
int w_c_1 = (j*3)+2;
// Rotation to change frame
double r_a = cos(z==1?k(eid):-k(eid));
double r_b = -sin(z==1?k(eid):-k(eid));
double r_c = sin(z==1?k(eid):-k(eid));
double r_d = cos(z==1?k(eid):-k(eid));
// First term
// w_a_0 = r_a^2 w_a_1 + 2 r_a r_b w_b_1 + r_b^2 w_c_1 = 0
triplets.push_back(triplet(w_a_0,w_a_0, -1 ));
triplets.push_back(triplet(w_a_0,w_a_1, r_a*r_a ));
triplets.push_back(triplet(w_a_0,w_b_1, 2 * r_a*r_b ));
triplets.push_back(triplet(w_a_0,w_c_1, r_b*r_b ));
// Second term
// w_b_0 = r_a r_c w_a + (r_b r_c + r_a r_d) w_b + r_b r_d w_c
triplets.push_back(triplet(w_b_0,w_b_0, -1 ));
triplets.push_back(triplet(w_b_0,w_a_1, r_a*r_c ));
triplets.push_back(triplet(w_b_0,w_b_1, r_b*r_c + r_a*r_d ));
triplets.push_back(triplet(w_b_0,w_c_1, r_b*r_d ));
// Third term
// w_c_0 = r_c^2 w_a + 2 r_c r_d w_b + r_d^2 w_c
triplets.push_back(triplet(w_c_0,w_c_0, -1 ));
triplets.push_back(triplet(w_c_0,w_a_1, r_c*r_c ));
triplets.push_back(triplet(w_c_0,w_b_1, 2 * r_c*r_d ));
triplets.push_back(triplet(w_c_0,w_c_1, r_d*r_d ));
}
}
}
SparseMatrix<double> L(3*F.rows(),3*F.rows());
L.setFromTriplets(triplets.begin(), triplets.end());
triplets.clear();
// Add soft constraints
double w = 100000;
for (unsigned fid=0; fid < F.rows(); ++fid)
{
if (S_c[fid])
{
for (unsigned i=0;i<3;++i)
{
triplets.push_back(triplet(3*fid + i,3*fid + i,w));
b(3*fid + i) += w*S(fid,i);
}
}
}
SparseMatrix<double> soft(3*F.rows(),3*F.rows());
soft.setFromTriplets(triplets.begin(), triplets.end());
SparseMatrix<double> M;
M = L + soft;
// Solve Lx = b;
SparseLU<SparseMatrix<double> > solver;
solver.compute(M);
if(solver.info()!=Success)
{
std::cerr << "LU failed - frame_interpolator.cpp" << std::endl;
assert(0);
}
MatrixXd x;
x = solver.solve(b);
if(solver.info()!=Success)
{
std::cerr << "Linear solve failed - frame_interpolator.cpp" << std::endl;
assert(0);
}
S = MatrixXd::Zero(F.rows(),3);
// Copy back the result
for (unsigned i=0;i<F.rows();++i)
S.row(i) << x(i*3+0), x(i*3+1), x(i*3+2);
}
void FrameInterpolator::setConstraint(const int fid, const Eigen::VectorXd& v)
{
using namespace std;
using namespace Eigen;
double t_;
VectorXd S_;
frame2canonical(TPs[fid],v,t_,S_);
Eigen::RowVectorXd v2;
canonical2frame(TPs[fid], t_, S_, v2);
thetas(fid) = t_;
thetas_c[fid] = true;
S.row(fid) = S_;
S_c[fid] = true;
}
Eigen::MatrixXd FrameInterpolator::getFieldPerFace()
{
using namespace std;
using namespace Eigen;
MatrixXd R(F.rows(),6);
for (unsigned i=0; i<F.rows(); ++i)
{
RowVectorXd v;
canonical2frame(TPs[i],thetas(i),S.row(i),v);
R.row(i) = v;
}
return R;
}
void FrameInterpolator::PolarDecomposition(Eigen::MatrixXd V, Eigen::MatrixXd& U, Eigen::MatrixXd& P)
{
using namespace std;
using namespace Eigen;
// Polar Decomposition
JacobiSVD<MatrixXd> svd(V,Eigen::ComputeFullU | Eigen::ComputeFullV);
U = svd.matrixU() * svd.matrixV().transpose();
P = svd.matrixV() * svd.singularValues().asDiagonal() * svd.matrixV().transpose();
}
}
}
}
IGL_INLINE void igl::copyleft::comiso::frame_field(
const Eigen::MatrixXd& V,
const Eigen::MatrixXi& F,
const Eigen::VectorXi& b,
const Eigen::MatrixXd& bc1,
const Eigen::MatrixXd& bc2,
Eigen::MatrixXd& FF1,
Eigen::MatrixXd& FF2
)
{
using namespace std;
using namespace Eigen;
assert(b.size() > 0);
// Init Solver
FrameInterpolator field(V,F);
for (unsigned i=0; i<b.size(); ++i)
{
VectorXd t(6); t << bc1.row(i).transpose(), bc2.row(i).transpose();
field.setConstraint(b(i), t);
}
// Solve
field.solve();
// Copy back
MatrixXd R = field.getFieldPerFace();
FF1 = R.block(0, 0, R.rows(), 3);
FF2 = R.block(0, 3, R.rows(), 3);
}