BambuStudio/libslic3r/Support/SupportLayer.hpp

151 lines
5.9 KiB
C++

#pragma once
#include <oneapi/tbb/scalable_allocator.h>
#include <oneapi/tbb/spin_mutex.h>
#include "../PrintConfig.hpp"
#include "../Slicing.hpp"
#include "../Fill/FillBase.hpp"
#include "../ClipperUtils.hpp"
#include "../Polygon.hpp"
namespace Slic3r {
class PrintObject;
class PrintConfig;
class PrintObjectConfig;
// Support layer type to be used by MyLayer. This type carries a much more detailed information
// about the support layer type than the final support layers stored in a PrintObject.
enum SupporLayerType {
sltUnknown = 0,
// Ratft base layer, to be printed with the support material.
sltRaftBase,
// Raft interface layer, to be printed with the support interface material.
sltRaftInterface,
// Bottom contact layer placed over a top surface of an object. To be printed with a support interface material.
sltBottomContact,
// Dense interface layer, to be printed with the support interface material.
// This layer is separated from an object by an sltBottomContact layer.
sltBottomInterface,
// Sparse base support layer, to be printed with a support material.
sltBase,
// Dense interface layer, to be printed with the support interface material.
// This layer is separated from an object with sltTopContact layer.
sltTopInterface,
// Top contact layer directly supporting an overhang. To be printed with a support interface material.
sltTopContact,
// Some undecided type yet. It will turn into sltBase first, then it may turn into sltBottomInterface or sltTopInterface.
sltIntermediate,
};
// A support layer type used internally by the SupportMaterial class. This class carries a much more detailed
// information about the support layer than the layers stored in the PrintObject, mainly
// the SupportGeneratorLayer is aware of the bridging flow and the interface gaps between the object and the support.
// This is from the old "MyLayer".
class SupportGeneratorLayer
{
public:
void reset() {
*this = SupportGeneratorLayer();
}
bool operator==(const SupportGeneratorLayer& layer2) const {
return print_z == layer2.print_z && height == layer2.height && bridging == layer2.bridging;
}
// Order the layers by lexicographically by an increasing print_z and a decreasing layer height.
bool operator<(const SupportGeneratorLayer& layer2) const {
if (print_z < layer2.print_z) {
return true;
}
else if (print_z == layer2.print_z) {
if (height > layer2.height)
return true;
else if (height == layer2.height) {
// Bridging layers first.
return bridging && !layer2.bridging;
}
else
return false;
}
else
return false;
}
void merge(SupportGeneratorLayer&& rhs) {
// The union_() does not support move semantic yet, but maybe one day it will.
this->polygons = union_(this->polygons, std::move(rhs.polygons));
auto merge = [](std::unique_ptr<Polygons>& dst, std::unique_ptr<Polygons>& src) {
if (!dst || dst->empty())
dst = std::move(src);
else if (src && !src->empty())
*dst = union_(*dst, std::move(*src));
};
merge(this->contact_polygons, rhs.contact_polygons);
merge(this->overhang_polygons, rhs.overhang_polygons);
merge(this->enforcer_polygons, rhs.enforcer_polygons);
rhs.reset();
}
// For the bridging flow, bottom_print_z will be above bottom_z to account for the vertical separation.
// For the non-bridging flow, bottom_print_z will be equal to bottom_z.
coordf_t bottom_print_z() const { return print_z - height; }
// To sort the extremes of top / bottom interface layers.
coordf_t extreme_z() const { return (this->layer_type == SupporLayerType::sltTopContact) ? this->bottom_z : this->print_z; }
SupporLayerType layer_type{ SupporLayerType::sltUnknown };
// Z used for printing, in unscaled coordinates.
coordf_t print_z{ 0 };
// Bottom Z of this layer. For soluble layers, bottom_z + height = print_z,
// otherwise bottom_z + gap + height = print_z.
coordf_t bottom_z{ 0 };
// Layer height in unscaled coordinates.
coordf_t height{ 0 };
// Index of a PrintObject layer_id supported by this layer. This will be set for top contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_above{ size_t(-1) };
// Index of a PrintObject layer_id, which supports this layer. This will be set for bottom contact layers.
// If this is not a contact layer, it will be set to size_t(-1).
size_t idx_object_layer_below{ size_t(-1) };
// Use a bridging flow when printing this support layer.
bool bridging{ false };
// Polygons to be filled by the support pattern.
Polygons polygons;
// Currently for the contact layers only.
std::unique_ptr<Polygons> contact_polygons;
std::unique_ptr<Polygons> overhang_polygons;
// Enforcers need to be propagated independently in case the "support on build plate only" option is enabled.
std::unique_ptr<Polygons> enforcer_polygons;
};
// Layers are allocated and owned by a deque. Once a layer is allocated, it is maintained
// up to the end of a generate() method. The layer storage may be replaced by an allocator class in the future,
// which would allocate layers by multiple chunks.
class SupportGeneratorLayerStorage {
public:
SupportGeneratorLayer& allocate_unguarded(SupporLayerType layer_type) {
m_storage.emplace_back();
m_storage.back().layer_type = layer_type;
return m_storage.back();
}
SupportGeneratorLayer& allocate(SupporLayerType layer_type)
{
m_mutex.lock();
m_storage.emplace_back();
SupportGeneratorLayer *layer_new = &m_storage.back();
m_mutex.unlock();
layer_new->layer_type = layer_type;
return *layer_new;
}
private:
template<typename BaseType>
using Allocator = tbb::scalable_allocator<BaseType>;
Slic3r::deque<SupportGeneratorLayer, Allocator<SupportGeneratorLayer>> m_storage;
tbb::spin_mutex m_mutex;
};
using SupportGeneratorLayersPtr = std::vector<SupportGeneratorLayer*>;
} // namespace Slic3r