BambuStudio/slic3r/GUI/Gizmos/GLGizmoFlatten.cpp

384 lines
16 KiB
C++

// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoFlatten.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Model.hpp"
#include <numeric>
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id)
: GLGizmoBase(parent, icon_filename, sprite_id)
, m_normal(Vec3d::Zero())
, m_starting_center(Vec3d::Zero())
{
}
bool GLGizmoFlatten::on_init()
{
// BBS
m_shortcut_key = WXK_CONTROL_F;
return true;
}
void GLGizmoFlatten::on_set_state()
{
}
CommonGizmosDataID GLGizmoFlatten::on_get_requirements() const
{
return CommonGizmosDataID::SelectionInfo;
}
std::string GLGizmoFlatten::on_get_name() const
{
if (!on_is_activable() && m_state == EState::Off) {
return _u8L("Lay on face") + ":\n" + _u8L("Please select single object.");
} else {
return _u8L("Lay on face");
}
}
bool GLGizmoFlatten::on_is_activable() const
{
// This is assumed in GLCanvas3D::do_rotate, do not change this
// without updating that function too.
return m_parent.get_selection().is_single_full_instance();
}
void GLGizmoFlatten::on_start_dragging()
{
if (m_hover_id != -1) {
assert(m_planes_valid);
m_normal = m_planes[m_hover_id].normal;
m_starting_center = m_parent.get_selection().get_bounding_box().center();
}
}
void GLGizmoFlatten::on_render()
{
const Selection& selection = m_parent.get_selection();
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_BLEND));
if (selection.is_single_full_instance()) {
const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix();
glsafe(::glPushMatrix());
glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z()));
glsafe(::glMultMatrixd(m.data()));
if (this->is_plane_update_necessary())
update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i) {
if (i == m_hover_id)
glsafe(::glColor4fv(GLGizmoBase::FLATTEN_HOVER_COLOR.data()));
else
glsafe(::glColor4fv(GLGizmoBase::FLATTEN_COLOR.data()));
if (m_planes[i].vbo.has_VBOs())
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glDisable(GL_BLEND));
}
void GLGizmoFlatten::on_render_for_picking()
{
const Selection& selection = m_parent.get_selection();
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glDisable(GL_BLEND));
if (selection.is_single_full_instance() && !wxGetKeyState(WXK_CONTROL)) {
const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix();
glsafe(::glPushMatrix());
glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z()));
glsafe(::glMultMatrixd(m.data()));
if (this->is_plane_update_necessary())
update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i) {
glsafe(::glColor4fv(picking_color_component(i).data()));
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
glsafe(::glEnable(GL_CULL_FACE));
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_starting_center = Vec3d::Zero();
if (model_object != m_old_model_object) {
m_planes.clear();
m_planes_valid = false;
}
}
void GLGizmoFlatten::update_planes()
{
const ModelObject* mo = m_c->selection_info()->model_object();
TriangleMesh ch;
for (const ModelVolume* vol : mo->volumes) {
if (vol->type() != ModelVolumeType::MODEL_PART)
continue;
TriangleMesh vol_ch = vol->get_convex_hull();
vol_ch.transform(vol->get_matrix());
ch.merge(vol_ch);
}
ch = ch.convex_hull_3d();
m_planes.clear();
const Transform3d& inst_matrix = mo->instances.front()->get_matrix(true);
// Following constants are used for discarding too small polygons.
const float minimal_area = 5.f; // in square mm (world coordinates)
const float minimal_side = 1.f; // mm
const float minimal_angle = 1.f; // degree, initial value was 10, but cause bugs
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const int num_of_facets = ch.facets_count();
const std::vector<Vec3f> face_normals = its_face_normals(ch.its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(ch.its);
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
int facet_idx = 0;
while (1) {
// Find next unvisited triangle:
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &face_normals[facet_idx];
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = face_normals[facet_idx];
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
const Vec3i face = ch.its.indices[facet_idx];
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(ch.its.vertices[face[j]].cast<double>());
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j)
if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && ! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
m_planes.back().normal = normal_ptr->cast<double>();
Pointf3s& verts = m_planes.back().vertices;
// Now we'll transform all the points into world coordinates, so that the areas, angles and distances
// make real sense.
verts = transform(verts, inst_matrix);
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
if (verts.size() == 3 &&
((verts[0] - verts[1]).norm() < minimal_side
|| (verts[0] - verts[2]).norm() < minimal_side
|| (verts[1] - verts[2]).norm() < minimal_side))
m_planes.pop_back();
}
// Let's prepare transformation of the normal vector from mesh to instance coordinates.
Geometry::Transformation t(inst_matrix);
Vec3d scaling = t.get_scaling_factor();
t.set_scaling_factor(Vec3d(1./scaling(0), 1./scaling(1), 1./scaling(2)));
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal;
// transform the normal according to the instance matrix:
Vec3d normal_transformed = t.get_matrix() * normal;
// We are going to rotate about z and y to flatten the plane
Eigen::Quaterniond q;
Transform3d m = Transform3d::Identity();
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix();
polygon = transform(polygon, m);
// Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since
// it works in fixed point representation, we will rescale the polygon to avoid overflows.
// And yes, it is a nasty thing to do. Whoever has time is free to refactor.
Vec3d bb_size = BoundingBoxf3(polygon).size();
float sf = std::min(1./bb_size(0), 1./bb_size(1));
Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f));
polygon = transform(polygon, tr);
polygon = Slic3r::Geometry::convex_hull(polygon);
polygon = transform(polygon, tr.inverse());
// Calculate area of the polygons and discard ones that are too small
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = 0.5f * std::abs(area);
bool discard = false;
if (area < minimal_area)
discard = true;
else {
// We also check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(minimal_angle * (double)PI / 180.0);
for (unsigned int i = 0; i < polygon.size(); ++i) {
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& curr = polygon[i];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) {
discard = true;
break;
}
}
}
if (discard) {
m_planes[polygon_id--] = std::move(m_planes.back());
m_planes.pop_back();
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
centroid /= (double)polygon.size();
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Raise a bit above the object surface to avoid flickering:
for (auto& b : polygon)
b(2) += 0.1f;
// Transform back to 3D (and also back to mesh coordinates)
polygon = transform(polygon, inst_matrix.inverse() * m.inverse());
}
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 254));
// Planes are finished - let's save what we calculated it from:
m_volumes_matrices.clear();
m_volumes_types.clear();
for (const ModelVolume* vol : mo->volumes) {
m_volumes_matrices.push_back(vol->get_matrix());
m_volumes_types.push_back(vol->type());
}
m_first_instance_scale = mo->instances.front()->get_scaling_factor();
m_first_instance_mirror = mo->instances.front()->get_mirror();
m_old_model_object = mo;
// And finally create respective VBOs. The polygon is convex with
// the vertices in order, so triangulation is trivial.
for (auto& plane : m_planes) {
plane.vbo.reserve(plane.vertices.size());
for (const auto& vert : plane.vertices)
plane.vbo.push_geometry(vert, plane.normal);
for (size_t i=1; i<plane.vertices.size()-1; ++i)
plane.vbo.push_triangle(0, i, i+1); // triangle fan
plane.vbo.finalize_geometry(true);
// FIXME: vertices should really be local, they need not
// persist now when we use VBOs
plane.vertices.clear();
plane.vertices.shrink_to_fit();
}
m_planes_valid = true;
}
bool GLGizmoFlatten::is_plane_update_necessary() const
{
const ModelObject* mo = m_c->selection_info()->model_object();
if (m_state != On || ! mo || mo->instances.empty())
return false;
if (! m_planes_valid || mo != m_old_model_object
|| mo->volumes.size() != m_volumes_matrices.size())
return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.
if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale)
|| ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror))
return true;
for (unsigned int i=0; i < mo->volumes.size(); ++i)
if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|| mo->volumes[i]->type() != m_volumes_types[i])
return true;
return false;
}
Vec3d GLGizmoFlatten::get_flattening_normal() const
{
Vec3d out = m_normal;
m_normal = Vec3d::Zero();
m_starting_center = Vec3d::Zero();
return out;
}
} // namespace GUI
} // namespace Slic3r