BambuStudio/libslic3r/GCode/ToolOrdering.cpp

1363 lines
62 KiB
C++

#include "Print.hpp"
#include "ToolOrdering.hpp"
#include "Layer.hpp"
#include "ClipperUtils.hpp"
#include "ParameterUtils.hpp"
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif
#include <cassert>
#include <limits>
#include <algorithm>
#include <libslic3r.h>
namespace Slic3r {
const static bool g_wipe_into_objects = false;
// Shortest hamilton path problem
static std::vector<unsigned int> solve_extruder_order(const std::vector<std::vector<float>>& wipe_volumes, std::vector<unsigned int> all_extruders, std::optional<unsigned int> start_extruder_id)
{
bool add_start_extruder_flag = false;
if (start_extruder_id) {
auto start_iter = std::find(all_extruders.begin(), all_extruders.end(), start_extruder_id);
if (start_iter == all_extruders.end())
all_extruders.insert(all_extruders.begin(), *start_extruder_id), add_start_extruder_flag = true;
else
std::swap(*all_extruders.begin(), *start_iter);
}
else {
*start_extruder_id = all_extruders.front();
}
unsigned int iterations = (1 << all_extruders.size());
unsigned int final_state = iterations - 1;
std::vector<std::vector<float>>cache(iterations, std::vector<float>(all_extruders.size(),0x7fffffff));
std::vector<std::vector<int>>prev(iterations, std::vector<int>(all_extruders.size(), -1));
cache[1][0] = 0.;
for (unsigned int state = 0; state < iterations; ++state) {
if (state & 1) {
for (unsigned int target = 0; target < all_extruders.size(); ++target) {
if (state >> target & 1) {
for (unsigned int mid_point = 0; mid_point < all_extruders.size(); ++mid_point) {
if(state>>mid_point&1){
auto tmp = cache[state - (1 << target)][mid_point] + wipe_volumes[all_extruders[mid_point]][all_extruders[target]];
if (cache[state][target] >tmp) {
cache[state][target] = tmp;
prev[state][target] = mid_point;
}
}
}
}
}
}
}
//get res
float cost = std::numeric_limits<float>::max();
int final_dst =0;
for (unsigned int dst = 0; dst < all_extruders.size(); ++dst) {
if (all_extruders[dst] != start_extruder_id && cost > cache[final_state][dst]) {
cost = cache[final_state][dst];
final_dst = dst;
}
}
std::vector<unsigned int>path;
unsigned int curr_state = final_state;
int curr_point = final_dst;
while (curr_point != -1) {
path.emplace_back(all_extruders[curr_point]);
auto mid_point = prev[curr_state][curr_point];
curr_state -= (1 << curr_point);
curr_point = mid_point;
};
if (add_start_extruder_flag)
path.pop_back();
std::reverse(path.begin(), path.end());
return path;
}
std::vector<unsigned int> get_extruders_order(const std::vector<std::vector<float>> &wipe_volumes, std::vector<unsigned int> all_extruders, std::optional<unsigned int>start_extruder_id)
{
#define USE_DP_OPTIMIZE
#ifdef USE_DP_OPTIMIZE
return solve_extruder_order(wipe_volumes, all_extruders, start_extruder_id);
#else
if (all_extruders.size() > 1) {
int begin_index = 0;
auto iter = std::find(all_extruders.begin(), all_extruders.end(), start_extruder_id);
if (iter != all_extruders.end()) {
for (int i = 0; i < all_extruders.size(); ++i) {
if (all_extruders[i] == start_extruder_id) {
std::swap(all_extruders[i], all_extruders[0]);
}
}
begin_index = 1;
}
std::pair<float, std::vector<unsigned int>> volumes_to_extruder_order;
volumes_to_extruder_order.first = 10000 * all_extruders.size();
std::sort(all_extruders.begin() + begin_index, all_extruders.end());
do {
float flush_volume = 0;
for (int i = 0; i < all_extruders.size() - 1; ++i) {
flush_volume += wipe_volumes[all_extruders[i]][all_extruders[i + 1]];
}
if (flush_volume < volumes_to_extruder_order.first) {
volumes_to_extruder_order = std::pair(flush_volume, all_extruders);
}
} while (std::next_permutation(all_extruders.begin() + begin_index, all_extruders.end()));
if (volumes_to_extruder_order.second.size() > 0)
return volumes_to_extruder_order.second;
}
return all_extruders;
#endif // OPTIMIZE
}
// Returns true in case that extruder a comes before b (b does not have to be present). False otherwise.
bool LayerTools::is_extruder_order(unsigned int a, unsigned int b) const
{
if (a == b)
return false;
for (auto extruder : extruders) {
if (extruder == a)
return true;
if (extruder == b)
return false;
}
return false;
}
// Return a zero based extruder from the region, or extruder_override if overriden.
unsigned int LayerTools::wall_filament(const PrintRegion &region) const
{
assert(region.config().wall_filament.value > 0);
return ((this->extruder_override == 0) ? region.config().wall_filament.value : this->extruder_override) - 1;
}
unsigned int LayerTools::sparse_infill_filament(const PrintRegion &region) const
{
assert(region.config().sparse_infill_filament.value > 0);
return ((this->extruder_override == 0) ? region.config().sparse_infill_filament.value : this->extruder_override) - 1;
}
unsigned int LayerTools::solid_infill_filament(const PrintRegion &region) const
{
assert(region.config().solid_infill_filament.value > 0);
return ((this->extruder_override == 0) ? region.config().solid_infill_filament.value : this->extruder_override) - 1;
}
// Returns a zero based extruder this eec should be printed with, according to PrintRegion config or extruder_override if overriden.
unsigned int LayerTools::extruder(const ExtrusionEntityCollection &extrusions, const PrintRegion &region) const
{
assert(region.config().wall_filament.value > 0);
assert(region.config().sparse_infill_filament.value > 0);
assert(region.config().solid_infill_filament.value > 0);
// 1 based extruder ID.
unsigned int extruder = ((this->extruder_override == 0) ?
(is_infill(extrusions.role()) ?
(is_solid_infill(extrusions.entities.front()->role()) ? region.config().solid_infill_filament : region.config().sparse_infill_filament) :
region.config().wall_filament.value) :
this->extruder_override);
return (extruder == 0) ? 0 : extruder - 1;
}
static double calc_max_layer_height(const PrintConfig &config, double max_object_layer_height)
{
double max_layer_height = std::numeric_limits<double>::max();
for (size_t i = 0; i < config.nozzle_diameter.values.size(); ++ i) {
double mlh = config.max_layer_height.values[i];
if (mlh == 0.)
mlh = 0.75 * config.nozzle_diameter.values[i];
max_layer_height = std::min(max_layer_height, mlh);
}
// The Prusa3D Fast (0.35mm layer height) print profile sets a higher layer height than what is normally allowed
// by the nozzle. This is a hack and it works by increasing extrusion width. See GH #3919.
return std::max(max_layer_height, max_object_layer_height);
}
// For the use case when each object is printed separately
// (print->config().print_sequence == PrintSequence::ByObject is true).
ToolOrdering::ToolOrdering(const PrintObject &object, unsigned int first_extruder, bool prime_multi_material)
{
m_print_object_ptr = &object;
if (object.layers().empty())
return;
// Initialize the print layers for just a single object.
{
std::vector<coordf_t> zs;
zs.reserve(zs.size() + object.layers().size() + object.support_layers().size());
for (auto layer : object.layers())
zs.emplace_back(layer->print_z);
for (auto layer : object.support_layers())
zs.emplace_back(layer->print_z);
this->initialize_layers(zs);
}
double max_layer_height = calc_max_layer_height(object.print()->config(), object.config().layer_height);
// Collect extruders reuqired to print the layers.
this->collect_extruders(object, std::vector<std::pair<double, unsigned int>>());
// BBS
// Reorder the extruders to minimize tool switches.
if (first_extruder == (unsigned int)-1) {
this->reorder_extruders(generate_first_layer_tool_order(object));
}
else {
this->reorder_extruders(first_extruder);
}
this->fill_wipe_tower_partitions(object.print()->config(), object.layers().front()->print_z - object.layers().front()->height, max_layer_height);
this->collect_extruder_statistics(prime_multi_material);
this->mark_skirt_layers(object.print()->config(), max_layer_height);
}
// For the use case when all objects are printed at once.
// (print->config().print_sequence == PrintSequence::ByObject is false).
ToolOrdering::ToolOrdering(const Print &print, unsigned int first_extruder, bool prime_multi_material)
{
m_print_config_ptr = &print.config();
// Initialize the print layers for all objects and all layers.
coordf_t object_bottom_z = 0.;
coordf_t max_layer_height = 0.;
{
std::vector<coordf_t> zs;
for (auto object : print.objects()) {
zs.reserve(zs.size() + object->layers().size() + object->support_layers().size());
for (auto layer : object->layers())
zs.emplace_back(layer->print_z);
for (auto layer : object->support_layers())
zs.emplace_back(layer->print_z);
// Find first object layer that is not empty and save its print_z
for (const Layer* layer : object->layers())
if (layer->has_extrusions()) {
object_bottom_z = layer->print_z - layer->height;
break;
}
max_layer_height = std::max(max_layer_height, object->config().layer_height.value);
}
this->initialize_layers(zs);
}
max_layer_height = calc_max_layer_height(print.config(), max_layer_height);
// Use the extruder switches from Model::custom_gcode_per_print_z to override the extruder to print the object.
// Do it only if all the objects were configured to be printed with a single extruder.
std::vector<std::pair<double, unsigned int>> per_layer_extruder_switches;
// BBS
if (auto num_filaments = unsigned(print.config().filament_diameter.size());
num_filaments > 1 && print.object_extruders().size() == 1 && // the current Print's configuration is CustomGCode::MultiAsSingle
//BBS: replace model custom gcode with current plate custom gcode
print.model().get_curr_plate_custom_gcodes().mode == CustomGCode::MultiAsSingle) {
// Printing a single extruder platter on a printer with more than 1 extruder (or single-extruder multi-material).
// There may be custom per-layer tool changes available at the model.
per_layer_extruder_switches = custom_tool_changes(print.model().get_curr_plate_custom_gcodes(), num_filaments);
}
// Collect extruders reuqired to print the layers.
for (auto object : print.objects())
this->collect_extruders(*object, per_layer_extruder_switches);
// Reorder the extruders to minimize tool switches.
std::vector<unsigned int> first_layer_tool_order;
if (first_extruder == (unsigned int)-1) {
first_layer_tool_order = generate_first_layer_tool_order(print);
}
if (!first_layer_tool_order.empty()) {
this->reorder_extruders(first_layer_tool_order);
}
else {
this->reorder_extruders(first_extruder);
}
this->fill_wipe_tower_partitions(print.config(), object_bottom_z, max_layer_height);
this->collect_extruder_statistics(prime_multi_material);
this->mark_skirt_layers(print.config(), max_layer_height);
}
// BBS
std::vector<unsigned int> ToolOrdering::generate_first_layer_tool_order(const Print& print)
{
std::vector<unsigned int> tool_order;
int initial_extruder_id = -1;
std::map<int, double> min_areas_per_extruder;
for (auto object : print.objects()) {
auto first_layer = object->get_layer(0);
for (auto layerm : first_layer->regions()) {
int extruder_id = layerm->region().config().option("wall_filament")->getInt();
for (auto expoly : layerm->raw_slices) {
if (offset_ex(expoly, -0.2 * scale_(print.config().initial_layer_line_width)).empty())
continue;
double contour_area = expoly.contour.area();
auto iter = min_areas_per_extruder.find(extruder_id);
if (iter == min_areas_per_extruder.end()) {
min_areas_per_extruder.insert({ extruder_id, contour_area });
}
else {
if (contour_area < min_areas_per_extruder.at(extruder_id)) {
min_areas_per_extruder[extruder_id] = contour_area;
}
}
}
}
}
double max_minimal_area = 0.;
for (auto ape : min_areas_per_extruder) {
auto iter = tool_order.begin();
for (; iter != tool_order.end(); iter++) {
if (min_areas_per_extruder.at(*iter) < min_areas_per_extruder.at(ape.first))
break;
}
tool_order.insert(iter, ape.first);
}
const ConfigOptionInts* first_layer_print_sequence_op = print.full_print_config().option<ConfigOptionInts>("first_layer_print_sequence");
if (first_layer_print_sequence_op) {
const std::vector<int>& print_sequence_1st = first_layer_print_sequence_op->values;
if (print_sequence_1st.size() >= tool_order.size()) {
std::sort(tool_order.begin(), tool_order.end(), [&print_sequence_1st](int lh, int rh) {
auto lh_it = std::find(print_sequence_1st.begin(), print_sequence_1st.end(), lh);
auto rh_it = std::find(print_sequence_1st.begin(), print_sequence_1st.end(), rh);
if (lh_it == print_sequence_1st.end() || rh_it == print_sequence_1st.end())
return false;
return lh_it < rh_it;
});
}
}
return tool_order;
}
std::vector<unsigned int> ToolOrdering::generate_first_layer_tool_order(const PrintObject& object)
{
std::vector<unsigned int> tool_order;
int initial_extruder_id = -1;
std::map<int, double> min_areas_per_extruder;
auto first_layer = object.get_layer(0);
for (auto layerm : first_layer->regions()) {
int extruder_id = layerm->region().config().option("wall_filament")->getInt();
for (auto expoly : layerm->raw_slices) {
if (offset_ex(expoly, -0.2 * scale_(object.config().line_width)).empty())
continue;
double contour_area = expoly.contour.area();
auto iter = min_areas_per_extruder.find(extruder_id);
if (iter == min_areas_per_extruder.end()) {
min_areas_per_extruder.insert({ extruder_id, contour_area });
}
else {
if (contour_area < min_areas_per_extruder.at(extruder_id)) {
min_areas_per_extruder[extruder_id] = contour_area;
}
}
}
}
double max_minimal_area = 0.;
for (auto ape : min_areas_per_extruder) {
auto iter = tool_order.begin();
for (; iter != tool_order.end(); iter++) {
if (min_areas_per_extruder.at(*iter) < min_areas_per_extruder.at(ape.first))
break;
}
tool_order.insert(iter, ape.first);
}
const ConfigOptionInts* first_layer_print_sequence_op = object.print()->full_print_config().option<ConfigOptionInts>("first_layer_print_sequence");
if (first_layer_print_sequence_op) {
const std::vector<int>& print_sequence_1st = first_layer_print_sequence_op->values;
if (print_sequence_1st.size() >= tool_order.size()) {
std::sort(tool_order.begin(), tool_order.end(), [&print_sequence_1st](int lh, int rh) {
auto lh_it = std::find(print_sequence_1st.begin(), print_sequence_1st.end(), lh);
auto rh_it = std::find(print_sequence_1st.begin(), print_sequence_1st.end(), rh);
if (lh_it == print_sequence_1st.end() || rh_it == print_sequence_1st.end())
return false;
return lh_it < rh_it;
});
}
}
return tool_order;
}
void ToolOrdering::initialize_layers(std::vector<coordf_t> &zs)
{
sort_remove_duplicates(zs);
// Merge numerically very close Z values.
for (size_t i = 0; i < zs.size();) {
// Find the last layer with roughly the same print_z.
size_t j = i + 1;
coordf_t zmax = zs[i] + EPSILON;
for (; j < zs.size() && zs[j] <= zmax; ++ j) ;
// Assign an average print_z to the set of layers with nearly equal print_z.
m_layer_tools.emplace_back(LayerTools(0.5 * (zs[i] + zs[j-1])));
i = j;
}
}
// Collect extruders reuqired to print layers.
void ToolOrdering::collect_extruders(const PrintObject &object, const std::vector<std::pair<double, unsigned int>> &per_layer_extruder_switches)
{
// Collect the support extruders.
for (auto support_layer : object.support_layers()) {
LayerTools &layer_tools = this->tools_for_layer(support_layer->print_z);
ExtrusionRole role = support_layer->support_fills.role();
bool has_support = role == erMixed || role == erSupportMaterial || role == erSupportTransition;
bool has_interface = role == erMixed || role == erSupportMaterialInterface;
unsigned int extruder_support = object.config().support_filament.value;
unsigned int extruder_interface = object.config().support_interface_filament.value;
if (has_support)
layer_tools.extruders.push_back(extruder_support);
if (has_interface)
layer_tools.extruders.push_back(extruder_interface);
if (has_support || has_interface) {
layer_tools.has_support = true;
layer_tools.wiping_extrusions().is_support_overriddable_and_mark(role, object);
}
}
// Extruder overrides are ordered by print_z.
std::vector<std::pair<double, unsigned int>>::const_iterator it_per_layer_extruder_override;
it_per_layer_extruder_override = per_layer_extruder_switches.begin();
unsigned int extruder_override = 0;
// BBS: collect first layer extruders of an object's wall, which will be used by brim generator
int layerCount = 0;
std::vector<int> firstLayerExtruders;
firstLayerExtruders.clear();
// Collect the object extruders.
for (auto layer : object.layers()) {
LayerTools &layer_tools = this->tools_for_layer(layer->print_z);
// Override extruder with the next
for (; it_per_layer_extruder_override != per_layer_extruder_switches.end() && it_per_layer_extruder_override->first < layer->print_z + EPSILON; ++ it_per_layer_extruder_override)
extruder_override = (int)it_per_layer_extruder_override->second;
// Store the current extruder override (set to zero if no overriden), so that layer_tools.wiping_extrusions().is_overridable_and_mark() will use it.
layer_tools.extruder_override = extruder_override;
// What extruders are required to print this object layer?
for (const LayerRegion *layerm : layer->regions()) {
const PrintRegion &region = layerm->region();
if (! layerm->perimeters.entities.empty()) {
bool something_nonoverriddable = true;
if (m_print_config_ptr) { // in this case print->config().print_sequence != PrintSequence::ByObject (see ToolOrdering constructors)
something_nonoverriddable = false;
for (const auto& eec : layerm->perimeters.entities) // let's check if there are nonoverriddable entities
if (!layer_tools.wiping_extrusions().is_overriddable_and_mark(dynamic_cast<const ExtrusionEntityCollection&>(*eec), *m_print_config_ptr, object, region))
something_nonoverriddable = true;
}
if (something_nonoverriddable){
layer_tools.extruders.emplace_back((extruder_override == 0) ? region.config().wall_filament.value : extruder_override);
if (layerCount == 0) {
firstLayerExtruders.emplace_back((extruder_override == 0) ? region.config().wall_filament.value : extruder_override);
}
}
layer_tools.has_object = true;
}
bool has_infill = false;
bool has_solid_infill = false;
bool something_nonoverriddable = false;
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
ExtrusionRole role = fill->entities.empty() ? erNone : fill->entities.front()->role();
if (is_solid_infill(role))
has_solid_infill = true;
else if (role != erNone)
has_infill = true;
if (m_print_config_ptr) {
if (! layer_tools.wiping_extrusions().is_overriddable_and_mark(*fill, *m_print_config_ptr, object, region))
something_nonoverriddable = true;
}
}
if (something_nonoverriddable || !m_print_config_ptr) {
if (extruder_override == 0) {
if (has_solid_infill)
layer_tools.extruders.emplace_back(region.config().solid_infill_filament);
if (has_infill)
layer_tools.extruders.emplace_back(region.config().sparse_infill_filament);
} else if (has_solid_infill || has_infill)
layer_tools.extruders.emplace_back(extruder_override);
}
if (has_solid_infill || has_infill)
layer_tools.has_object = true;
}
layerCount++;
}
sort_remove_duplicates(firstLayerExtruders);
const_cast<PrintObject&>(object).object_first_layer_wall_extruders = firstLayerExtruders;
for (auto& layer : m_layer_tools) {
// Sort and remove duplicates
sort_remove_duplicates(layer.extruders);
// make sure that there are some tools for each object layer (e.g. tall wiping object will result in empty extruders vector)
if (layer.extruders.empty() && layer.has_object)
layer.extruders.emplace_back(0); // 0="dontcare" extruder - it will be taken care of in reorder_extruders
}
}
// Reorder extruders to minimize layer changes.
void ToolOrdering::reorder_extruders(unsigned int last_extruder_id)
{
if (m_layer_tools.empty())
return;
if (last_extruder_id == (unsigned int)-1) {
// The initial print extruder has not been decided yet.
// Initialize the last_extruder_id with the first non-zero extruder id used for the print.
last_extruder_id = 0;
for (size_t i = 0; i < m_layer_tools.size() && last_extruder_id == 0; ++ i) {
const LayerTools &lt = m_layer_tools[i];
for (unsigned int extruder_id : lt.extruders)
if (extruder_id > 0) {
last_extruder_id = extruder_id;
break;
}
}
if (last_extruder_id == 0)
// Nothing to extrude.
return;
} else
// 1 based index
++ last_extruder_id;
for (LayerTools &lt : m_layer_tools) {
if (lt.extruders.empty())
continue;
if (lt.extruders.size() == 1 && lt.extruders.front() == 0)
lt.extruders.front() = last_extruder_id;
else {
if (lt.extruders.front() == 0)
// Pop the "don't care" extruder, the "don't care" region will be merged with the next one.
lt.extruders.erase(lt.extruders.begin());
// Reorder the extruders to start with the last one.
for (size_t i = 1; i < lt.extruders.size(); ++ i)
if (lt.extruders[i] == last_extruder_id) {
// Move the last extruder to the front.
memmove(lt.extruders.data() + 1, lt.extruders.data(), i * sizeof(unsigned int));
lt.extruders.front() = last_extruder_id;
break;
}
// On first layer with wipe tower, prefer a soluble extruder
// at the beginning, so it is not wiped on the first layer.
if (lt == m_layer_tools[0] && m_print_config_ptr && m_print_config_ptr->enable_prime_tower) {
for (size_t i = 0; i<lt.extruders.size(); ++i)
if (m_print_config_ptr->filament_soluble.get_at(lt.extruders[i]-1)) { // 1-based...
std::swap(lt.extruders[i], lt.extruders.front());
break;
}
}
}
last_extruder_id = lt.extruders.back();
}
// Reindex the extruders, so they are zero based, not 1 based.
for (LayerTools &lt : m_layer_tools)
for (unsigned int &extruder_id : lt.extruders) {
assert(extruder_id > 0);
-- extruder_id;
}
// reorder the extruders for minimum flush volume
reorder_extruders_for_minimum_flush_volume();
}
// BBS
void ToolOrdering::reorder_extruders(std::vector<unsigned int> tool_order_layer0)
{
if (m_layer_tools.empty())
return;
if (tool_order_layer0.empty())
return;
// Reorder the extruders of first layer
{
LayerTools& lt = m_layer_tools[0];
std::vector<unsigned int> layer0_extruders = lt.extruders;
lt.extruders.clear();
for (unsigned int extruder_id : tool_order_layer0) {
auto iter = std::find(layer0_extruders.begin(), layer0_extruders.end(), extruder_id);
if (iter != layer0_extruders.end()) {
lt.extruders.push_back(extruder_id);
*iter = (unsigned int)-1;
}
}
for (unsigned int extruder_id : layer0_extruders) {
if (extruder_id == 0)
continue;
if (extruder_id != (unsigned int)-1)
lt.extruders.push_back(extruder_id);
}
// all extruders are zero
if (lt.extruders.empty()) {
lt.extruders.push_back(tool_order_layer0[0]);
}
}
int last_extruder_id = m_layer_tools[0].extruders.back();
for (int i = 1; i < m_layer_tools.size(); i++) {
LayerTools& lt = m_layer_tools[i];
if (lt.extruders.empty())
continue;
if (lt.extruders.size() == 1 && lt.extruders.front() == 0)
lt.extruders.front() = last_extruder_id;
else {
if (lt.extruders.front() == 0)
// Pop the "don't care" extruder, the "don't care" region will be merged with the next one.
lt.extruders.erase(lt.extruders.begin());
// Reorder the extruders to start with the last one.
for (size_t i = 1; i < lt.extruders.size(); ++i)
if (lt.extruders[i] == last_extruder_id) {
// Move the last extruder to the front.
memmove(lt.extruders.data() + 1, lt.extruders.data(), i * sizeof(unsigned int));
lt.extruders.front() = last_extruder_id;
break;
}
}
last_extruder_id = lt.extruders.back();
}
// Reindex the extruders, so they are zero based, not 1 based.
for (LayerTools& lt : m_layer_tools)
for (unsigned int& extruder_id : lt.extruders) {
assert(extruder_id > 0);
--extruder_id;
}
// reorder the extruders for minimum flush volume
reorder_extruders_for_minimum_flush_volume();
}
void ToolOrdering::fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z, coordf_t max_layer_height)
{
if (m_layer_tools.empty())
return;
// Count the minimum number of tool changes per layer.
size_t last_extruder = size_t(-1);
for (LayerTools &lt : m_layer_tools) {
lt.wipe_tower_partitions = lt.extruders.size();
if (! lt.extruders.empty()) {
if (last_extruder == size_t(-1) || last_extruder == lt.extruders.front())
// The first extruder on this layer is equal to the current one, no need to do an initial tool change.
-- lt.wipe_tower_partitions;
last_extruder = lt.extruders.back();
}
}
// Propagate the wipe tower partitions down to support the upper partitions by the lower partitions.
for (int i = int(m_layer_tools.size()) - 2; i >= 0; -- i)
m_layer_tools[i].wipe_tower_partitions = std::max(m_layer_tools[i + 1].wipe_tower_partitions, m_layer_tools[i].wipe_tower_partitions);
//FIXME this is a hack to get the ball rolling.
for (LayerTools &lt : m_layer_tools)
lt.has_wipe_tower = (lt.has_object && (config.timelapse_type == TimelapseType::tlSmooth || lt.wipe_tower_partitions > 0))
|| lt.print_z < object_bottom_z + EPSILON;
// Test for a raft, insert additional wipe tower layer to fill in the raft separation gap.
for (size_t i = 0; i + 1 < m_layer_tools.size(); ++ i) {
const LayerTools &lt = m_layer_tools[i];
const LayerTools &lt_next = m_layer_tools[i + 1];
if (lt.print_z < object_bottom_z + EPSILON && lt_next.print_z >= object_bottom_z + EPSILON) {
// lt is the last raft layer. Find the 1st object layer.
size_t j = i + 1;
for (; j < m_layer_tools.size() && ! m_layer_tools[j].has_wipe_tower; ++ j);
if (j < m_layer_tools.size()) {
const LayerTools &lt_object = m_layer_tools[j];
coordf_t gap = lt_object.print_z - lt.print_z;
assert(gap > 0.f);
if (gap > max_layer_height + EPSILON) {
// Insert one additional wipe tower layer between lh.print_z and lt_object.print_z.
LayerTools lt_new(0.5f * (lt.print_z + lt_object.print_z));
// Find the 1st layer above lt_new.
for (j = i + 1; j < m_layer_tools.size() && m_layer_tools[j].print_z < lt_new.print_z - EPSILON; ++ j);
if (std::abs(m_layer_tools[j].print_z - lt_new.print_z) < EPSILON) {
m_layer_tools[j].has_wipe_tower = true;
} else {
LayerTools &lt_extra = *m_layer_tools.insert(m_layer_tools.begin() + j, lt_new);
//LayerTools &lt_prev = m_layer_tools[j];
LayerTools &lt_next = m_layer_tools[j + 1];
assert(! m_layer_tools[j - 1].extruders.empty() && ! lt_next.extruders.empty());
// FIXME: Following assert tripped when running combine_infill.t. I decided to comment it out for now.
// If it is a bug, it's likely not critical, because this code is unchanged for a long time. It might
// still be worth looking into it more and decide if it is a bug or an obsolete assert.
//assert(lt_prev.extruders.back() == lt_next.extruders.front());
lt_extra.has_wipe_tower = true;
lt_extra.extruders.push_back(lt_next.extruders.front());
lt_extra.wipe_tower_partitions = lt_next.wipe_tower_partitions;
}
}
}
break;
}
}
// If the model contains empty layers (such as https://github.com/prusa3d/Slic3r/issues/1266), there might be layers
// that were not marked as has_wipe_tower, even when they should have been. This produces a crash with soluble supports
// and maybe other problems. We will therefore go through layer_tools and detect and fix this.
// So, if there is a non-object layer starting with different extruder than the last one ended with (or containing more than one extruder),
// we'll mark it with has_wipe tower.
for (unsigned int i=0; i+1<m_layer_tools.size(); ++i) {
LayerTools& lt = m_layer_tools[i];
LayerTools& lt_next = m_layer_tools[i+1];
if (lt.extruders.empty() || lt_next.extruders.empty())
break;
if (!lt_next.has_wipe_tower && (lt_next.extruders.front() != lt.extruders.back() || lt_next.extruders.size() > 1))
lt_next.has_wipe_tower = true;
// We should also check that the next wipe tower layer is no further than max_layer_height:
unsigned int j = i+1;
double last_wipe_tower_print_z = lt_next.print_z;
while (++j < m_layer_tools.size()-1 && !m_layer_tools[j].has_wipe_tower)
if (m_layer_tools[j+1].print_z - last_wipe_tower_print_z > max_layer_height + EPSILON) {
m_layer_tools[j].has_wipe_tower = true;
last_wipe_tower_print_z = m_layer_tools[j].print_z;
}
}
// Calculate the wipe_tower_layer_height values.
coordf_t wipe_tower_print_z_last = 0.;
for (LayerTools &lt : m_layer_tools)
if (lt.has_wipe_tower) {
lt.wipe_tower_layer_height = lt.print_z - wipe_tower_print_z_last;
wipe_tower_print_z_last = lt.print_z;
}
}
void ToolOrdering::collect_extruder_statistics(bool prime_multi_material)
{
m_first_printing_extruder = (unsigned int)-1;
for (const auto &lt : m_layer_tools)
if (! lt.extruders.empty()) {
m_first_printing_extruder = lt.extruders.front();
break;
}
m_last_printing_extruder = (unsigned int)-1;
for (auto lt_it = m_layer_tools.rbegin(); lt_it != m_layer_tools.rend(); ++ lt_it)
if (! lt_it->extruders.empty()) {
m_last_printing_extruder = lt_it->extruders.back();
break;
}
m_all_printing_extruders.clear();
for (const auto &lt : m_layer_tools) {
append(m_all_printing_extruders, lt.extruders);
sort_remove_duplicates(m_all_printing_extruders);
}
if (prime_multi_material && ! m_all_printing_extruders.empty()) {
// Reorder m_all_printing_extruders in the sequence they will be primed, the last one will be m_first_printing_extruder.
// Then set m_first_printing_extruder to the 1st extruder primed.
m_all_printing_extruders.erase(
std::remove_if(m_all_printing_extruders.begin(), m_all_printing_extruders.end(),
[ this ](const unsigned int eid) { return eid == m_first_printing_extruder; }),
m_all_printing_extruders.end());
m_all_printing_extruders.emplace_back(m_first_printing_extruder);
m_first_printing_extruder = m_all_printing_extruders.front();
}
}
void ToolOrdering::reorder_extruders_for_minimum_flush_volume()
{
const PrintConfig *print_config = m_print_config_ptr;
if (!print_config && m_print_object_ptr) {
print_config = &(m_print_object_ptr->print()->config());
}
if (!print_config || m_layer_tools.empty())
return;
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
std::vector<float> flush_matrix(cast<float>(print_config->flush_volumes_matrix.values));
const unsigned int number_of_extruders = (unsigned int) (sqrt(flush_matrix.size()) + EPSILON);
// Extract purging volumes for each extruder pair:
std::vector<std::vector<float>> wipe_volumes;
for (unsigned int i = 0; i < number_of_extruders; ++i)
wipe_volumes.push_back(std::vector<float>(flush_matrix.begin() + i * number_of_extruders, flush_matrix.begin() + (i + 1) * number_of_extruders));
auto extruders_to_hash_key = [](const std::vector<unsigned int>& extruders, std::optional<unsigned int>initial_extruder_id)->uint32_t {
uint32_t hash_key = 0;
// high 16 bit define initial extruder ,low 16 bit define extruder set
if (initial_extruder_id)
hash_key |= (1 << (16 + *initial_extruder_id));
for (auto item : extruders)
hash_key |= (1 << item);
return hash_key;
};
std::vector<LayerPrintSequence> other_layers_seqs;
const ConfigOptionInts *other_layers_print_sequence_op = print_config->option<ConfigOptionInts>("other_layers_print_sequence");
const ConfigOptionInt *other_layers_print_sequence_nums_op = print_config->option<ConfigOptionInt>("other_layers_print_sequence_nums");
if (other_layers_print_sequence_op && other_layers_print_sequence_nums_op) {
const std::vector<int> &print_sequence = other_layers_print_sequence_op->values;
int sequence_nums = other_layers_print_sequence_nums_op->value;
other_layers_seqs = get_other_layers_print_sequence(sequence_nums, print_sequence);
}
// other_layers_seq: the layer_idx and extruder_idx are base on 1
auto get_custom_seq = [&other_layers_seqs](int layer_idx, std::vector<int>& out_seq) -> bool {
for (size_t idx = other_layers_seqs.size() - 1; idx != size_t(-1); --idx) {
const auto &other_layers_seq = other_layers_seqs[idx];
if (layer_idx + 1 >= other_layers_seq.first.first && layer_idx + 1 <= other_layers_seq.first.second) {
out_seq = other_layers_seq.second;
return true;
}
}
return false;
};
std::optional<unsigned int>current_extruder_id;
for (int i = 0; i < m_layer_tools.size(); ++i) {
LayerTools& lt = m_layer_tools[i];
if (lt.extruders.empty())
continue;
std::vector<int> custom_extruder_seq;
if (get_custom_seq(i, custom_extruder_seq) && !custom_extruder_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_extruder_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(lt.extruders.begin(), lt.extruders.end(), unsign_extruder);
if (it != lt.extruders.end()) {
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
}
}
assert(lt.extruders.size() == unsign_custom_extruder_seq.size());
lt.extruders = unsign_custom_extruder_seq;
current_extruder_id = lt.extruders.back();
continue;
}
// The algorithm complexity is O(n2*2^n)
if (i != 0) {
auto hash_key = extruders_to_hash_key(lt.extruders, current_extruder_id);
auto iter = m_tool_order_cache.find(hash_key);
if (iter == m_tool_order_cache.end()) {
lt.extruders = get_extruders_order(wipe_volumes, lt.extruders, current_extruder_id);
std::vector<uint8_t> hash_val;
hash_val.reserve(lt.extruders.size());
for (auto item : lt.extruders)
hash_val.emplace_back(static_cast<uint8_t>(item));
m_tool_order_cache[hash_key] = hash_val;
}
else {
std::vector<unsigned int>extruder_order;
extruder_order.reserve(iter->second.size());
for (auto item : iter->second)
extruder_order.emplace_back(static_cast<unsigned int>(item));
lt.extruders = std::move(extruder_order);
}
}
current_extruder_id = lt.extruders.back();
}
}
// Layers are marked for infinite skirt aka draft shield. Not all the layers have to be printed.
void ToolOrdering::mark_skirt_layers(const PrintConfig &config, coordf_t max_layer_height)
{
if (m_layer_tools.empty())
return;
if (m_layer_tools.front().extruders.empty()) {
// Empty first layer, no skirt will be printed.
//FIXME throw an exception?
return;
}
size_t i = 0;
for (;;) {
m_layer_tools[i].has_skirt = true;
size_t j = i + 1;
for (; j < m_layer_tools.size() && ! m_layer_tools[j].has_object; ++ j);
// i and j are two successive layers printing an object.
if (j == m_layer_tools.size())
// Don't print skirt above the last object layer.
break;
// Mark some printing intermediate layers as having skirt.
double last_z = m_layer_tools[i].print_z;
for (size_t k = i + 1; k < j; ++ k) {
if (m_layer_tools[k + 1].print_z - last_z > max_layer_height + EPSILON) {
// Layer k is the last one not violating the maximum layer height.
// Don't extrude skirt on empty layers.
while (m_layer_tools[k].extruders.empty())
-- k;
if (m_layer_tools[k].has_skirt) {
// Skirt cannot be generated due to empty layers, there would be a missing layer in the skirt.
//FIXME throw an exception?
break;
}
m_layer_tools[k].has_skirt = true;
last_z = m_layer_tools[k].print_z;
}
}
i = j;
}
}
// Assign a pointer to a custom G-code to the respective ToolOrdering::LayerTools.
// Ignore color changes, which are performed on a layer and for such an extruder, that the extruder will not be printing above that layer.
// If multiple events are planned over a span of a single layer, use the last one.
// BBS: replace model custom gcode with current plate custom gcode
static CustomGCode::Info custom_gcode_per_print_z;
void ToolOrdering::assign_custom_gcodes(const Print &print)
{
// Only valid for non-sequential print.
assert(print.config().print_sequence == PrintSequence::ByLayer);
custom_gcode_per_print_z = print.model().get_curr_plate_custom_gcodes();
if (custom_gcode_per_print_z.gcodes.empty())
return;
// BBS
auto num_filaments = unsigned(print.config().filament_diameter.size());
CustomGCode::Mode mode =
(num_filaments == 1) ? CustomGCode::SingleExtruder :
print.object_extruders().size() == 1 ? CustomGCode::MultiAsSingle : CustomGCode::MultiExtruder;
CustomGCode::Mode model_mode = print.model().get_curr_plate_custom_gcodes().mode;
std::vector<unsigned char> extruder_printing_above(num_filaments, false);
auto custom_gcode_it = custom_gcode_per_print_z.gcodes.rbegin();
// Tool changes and color changes will be ignored, if the model's tool/color changes were entered in mm mode and the print is in non mm mode
// or vice versa.
bool ignore_tool_and_color_changes = (mode == CustomGCode::MultiExtruder) != (model_mode == CustomGCode::MultiExtruder);
// If printing on a single extruder machine, make the tool changes trigger color change (M600) events.
bool tool_changes_as_color_changes = mode == CustomGCode::SingleExtruder && model_mode == CustomGCode::MultiAsSingle;
// From the last layer to the first one:
for (auto it_lt = m_layer_tools.rbegin(); it_lt != m_layer_tools.rend(); ++ it_lt) {
LayerTools &lt = *it_lt;
// Add the extruders of the current layer to the set of extruders printing at and above this print_z.
for (unsigned int i : lt.extruders)
extruder_printing_above[i] = true;
// Skip all custom G-codes above this layer and skip all extruder switches.
for (; custom_gcode_it != custom_gcode_per_print_z.gcodes.rend() && (custom_gcode_it->print_z > lt.print_z + EPSILON || custom_gcode_it->type == CustomGCode::ToolChange); ++ custom_gcode_it);
if (custom_gcode_it == custom_gcode_per_print_z.gcodes.rend())
// Custom G-codes were processed.
break;
// Some custom G-code is configured for this layer or a layer below.
const CustomGCode::Item &custom_gcode = *custom_gcode_it;
// print_z of the layer below the current layer.
coordf_t print_z_below = 0.;
if (auto it_lt_below = it_lt; ++ it_lt_below != m_layer_tools.rend())
print_z_below = it_lt_below->print_z;
if (custom_gcode.print_z > print_z_below + 0.5 * EPSILON) {
// The custom G-code applies to the current layer.
bool color_change = custom_gcode.type == CustomGCode::ColorChange;
bool tool_change = custom_gcode.type == CustomGCode::ToolChange;
bool pause_or_custom_gcode = ! color_change && ! tool_change;
bool apply_color_change = ! ignore_tool_and_color_changes &&
// If it is color change, it will actually be useful as the exturder above will print.
// BBS
(color_change ?
mode == CustomGCode::SingleExtruder ||
(custom_gcode.extruder <= int(num_filaments) && extruder_printing_above[unsigned(custom_gcode.extruder - 1)]) :
tool_change && tool_changes_as_color_changes);
if (pause_or_custom_gcode || apply_color_change)
lt.custom_gcode = &custom_gcode;
// Consume that custom G-code event.
++ custom_gcode_it;
}
}
}
const LayerTools& ToolOrdering::tools_for_layer(coordf_t print_z) const
{
auto it_layer_tools = std::lower_bound(m_layer_tools.begin(), m_layer_tools.end(), LayerTools(print_z - EPSILON));
assert(it_layer_tools != m_layer_tools.end());
coordf_t dist_min = std::abs(it_layer_tools->print_z - print_z);
for (++ it_layer_tools; it_layer_tools != m_layer_tools.end(); ++ it_layer_tools) {
coordf_t d = std::abs(it_layer_tools->print_z - print_z);
if (d >= dist_min)
break;
dist_min = d;
}
-- it_layer_tools;
assert(dist_min < EPSILON);
return *it_layer_tools;
}
// This function is called from Print::mark_wiping_extrusions and sets extruder this entity should be printed with (-1 .. as usual)
void WipingExtrusions::set_extruder_override(const ExtrusionEntity* entity, const PrintObject* object, size_t copy_id, int extruder, size_t num_of_copies)
{
something_overridden = true;
auto entity_map_it = (entity_map.emplace(std::make_tuple(entity, object), ExtruderPerCopy())).first; // (add and) return iterator
ExtruderPerCopy& copies_vector = entity_map_it->second;
copies_vector.resize(num_of_copies, -1);
if (copies_vector[copy_id] != -1)
std::cout << "ERROR: Entity extruder overriden multiple times!!!\n"; // A debugging message - this must never happen.
copies_vector[copy_id] = extruder;
}
// BBS
void WipingExtrusions::set_support_extruder_override(const PrintObject* object, size_t copy_id, int extruder, size_t num_of_copies)
{
something_overridden = true;
support_map.emplace(object, extruder);
}
void WipingExtrusions::set_support_interface_extruder_override(const PrintObject* object, size_t copy_id, int extruder, size_t num_of_copies)
{
something_overridden = true;
support_intf_map.emplace(object, extruder);
}
// Finds first non-soluble extruder on the layer
int WipingExtrusions::first_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
{
const LayerTools& lt = *m_layer_tools;
for (auto extruders_it = lt.extruders.begin(); extruders_it != lt.extruders.end(); ++extruders_it)
if (!print_config.filament_soluble.get_at(*extruders_it) && !print_config.filament_is_support.get_at(*extruders_it))
return (*extruders_it);
return (-1);
}
// Finds last non-soluble extruder on the layer
int WipingExtrusions::last_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
{
const LayerTools& lt = *m_layer_tools;
for (auto extruders_it = lt.extruders.rbegin(); extruders_it != lt.extruders.rend(); ++extruders_it)
if (!print_config.filament_soluble.get_at(*extruders_it) && !print_config.filament_is_support.get_at(*extruders_it))
return (*extruders_it);
return (-1);
}
// Decides whether this entity could be overridden
bool WipingExtrusions::is_overriddable(const ExtrusionEntityCollection& eec, const PrintConfig& print_config, const PrintObject& object, const PrintRegion& region) const
{
if (print_config.filament_soluble.get_at(m_layer_tools->extruder(eec, region)))
return false;
if (object.config().flush_into_objects)
return true;
if (!object.config().flush_into_infill || eec.role() != erInternalInfill)
return false;
return true;
}
// BBS
bool WipingExtrusions::is_support_overriddable(const ExtrusionRole role, const PrintObject& object) const
{
if (!object.config().flush_into_support)
return false;
if (role == erMixed) {
return object.config().support_filament == 0 || object.config().support_interface_filament == 0;
}
else if (role == erSupportMaterial || role == erSupportTransition) {
return object.config().support_filament == 0;
}
else if (role == erSupportMaterialInterface) {
return object.config().support_interface_filament == 0;
}
return false;
}
// Following function iterates through all extrusions on the layer, remembers those that could be used for wiping after toolchange
// and returns volume that is left to be wiped on the wipe tower.
float WipingExtrusions::mark_wiping_extrusions(const Print& print, unsigned int old_extruder, unsigned int new_extruder, float volume_to_wipe)
{
const LayerTools& lt = *m_layer_tools;
const float min_infill_volume = 0.f; // ignore infill with smaller volume than this
if (! this->something_overridable || volume_to_wipe <= 0. || print.config().filament_soluble.get_at(old_extruder) || print.config().filament_soluble.get_at(new_extruder))
return std::max(0.f, volume_to_wipe); // Soluble filament cannot be wiped in a random infill, neither the filament after it
// BBS
if (print.config().filament_is_support.get_at(old_extruder) || print.config().filament_is_support.get_at(new_extruder))
return std::max(0.f, volume_to_wipe); // Support filament cannot be used to print support, infill, wipe_tower, etc.
// we will sort objects so that dedicated for wiping are at the beginning:
ConstPrintObjectPtrs object_list = print.objects().vector();
// BBS: fix the exception caused by not fixed order between different objects
std::sort(object_list.begin(), object_list.end(), [object_list](const PrintObject* a, const PrintObject* b) {
if (a->config().flush_into_objects != b->config().flush_into_objects) {
return a->config().flush_into_objects.getBool();
}
else {
return a->id() < b->id();
}
});
// We will now iterate through
// - first the dedicated objects to mark perimeters or infills (depending on infill_first)
// - second through the dedicated ones again to mark infills or perimeters (depending on infill_first)
// - then all the others to mark infills (in case that !infill_first, we must also check that the perimeter is finished already
// this is controlled by the following variable:
bool perimeters_done = false;
for (int i=0 ; i<(int)object_list.size() + (perimeters_done ? 0 : 1); ++i) {
if (!perimeters_done && (i==(int)object_list.size() || !object_list[i]->config().flush_into_objects)) { // we passed the last dedicated object in list
perimeters_done = true;
i=-1; // let's go from the start again
continue;
}
const PrintObject* object = object_list[i];
// Finds this layer:
const Layer* this_layer = object->get_layer_at_printz(lt.print_z, EPSILON);
if (this_layer == nullptr)
continue;
size_t num_of_copies = object->instances().size();
// iterate through copies (aka PrintObject instances) first, so that we mark neighbouring infills to minimize travel moves
for (unsigned int copy = 0; copy < num_of_copies; ++copy) {
for (const LayerRegion *layerm : this_layer->regions()) {
const auto &region = layerm->region();
if (!object->config().flush_into_infill && !object->config().flush_into_objects && !object->config().flush_into_support)
continue;
bool wipe_into_infill_only = !object->config().flush_into_objects && object->config().flush_into_infill;
bool is_infill_first = print.config().is_infill_first;
if (is_infill_first != perimeters_done || wipe_into_infill_only) {
for (const ExtrusionEntity* ee : layerm->fills.entities) { // iterate through all infill Collections
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (!is_overriddable(*fill, print.config(), *object, region))
continue;
if (wipe_into_infill_only && ! is_infill_first)
// In this case we must check that the original extruder is used on this layer before the one we are overridding
// (and the perimeters will be finished before the infill is printed):
if (!lt.is_extruder_order(lt.wall_filament(region), new_extruder))
continue;
if ((!is_entity_overridden(fill, object, copy) && fill->total_volume() > min_infill_volume))
{ // this infill will be used to wipe this extruder
set_extruder_override(fill, object, copy, new_extruder, num_of_copies);
if ((volume_to_wipe -= float(fill->total_volume())) <= 0.f)
// More material was purged already than asked for.
return 0.f;
}
}
}
// Now the same for perimeters - see comments above for explanation:
if (object->config().flush_into_objects && is_infill_first == perimeters_done)
{
for (const ExtrusionEntity* ee : layerm->perimeters.entities) {
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (is_overriddable(*fill, print.config(), *object, region) && !is_entity_overridden(fill, object, copy) && fill->total_volume() > min_infill_volume) {
set_extruder_override(fill, object, copy, new_extruder, num_of_copies);
if ((volume_to_wipe -= float(fill->total_volume())) <= 0.f)
// More material was purged already than asked for.
return 0.f;
}
}
}
}
// BBS
if (object->config().flush_into_support) {
auto& object_config = object->config();
const SupportLayer* this_support_layer = object->get_support_layer_at_printz(lt.print_z, EPSILON);
do {
if (this_support_layer == nullptr)
break;
bool support_overriddable = object_config.support_filament == 0;
bool support_intf_overriddable = object_config.support_interface_filament == 0;
if (!support_overriddable && !support_intf_overriddable)
break;
auto &entities = this_support_layer->support_fills.entities;
if (support_overriddable && !is_support_overridden(object) && !(object_config.support_interface_not_for_body.value && !support_intf_overriddable &&(new_extruder==object_config.support_interface_filament-1||old_extruder==object_config.support_interface_filament-1))) {
set_support_extruder_override(object, copy, new_extruder, num_of_copies);
for (const ExtrusionEntity* ee : entities) {
if (ee->role() == erSupportMaterial || ee->role() == erSupportTransition)
volume_to_wipe -= ee->total_volume();
if (volume_to_wipe <= 0.f)
return 0.f;
}
}
if (support_intf_overriddable && !is_support_interface_overridden(object)) {
set_support_interface_extruder_override(object, copy, new_extruder, num_of_copies);
for (const ExtrusionEntity* ee : entities) {
if (ee->role() == erSupportMaterialInterface)
volume_to_wipe -= ee->total_volume();
if (volume_to_wipe <= 0.f)
return 0.f;
}
}
} while (0);
}
}
}
// Some purge remains to be done on the Wipe Tower.
assert(volume_to_wipe > 0.);
return volume_to_wipe;
}
// Called after all toolchanges on a layer were mark_infill_overridden. There might still be overridable entities,
// that were not actually overridden. If they are part of a dedicated object, printing them with the extruder
// they were initially assigned to might mean violating the perimeter-infill order. We will therefore go through
// them again and make sure we override it.
void WipingExtrusions::ensure_perimeters_infills_order(const Print& print)
{
if (! this->something_overridable)
return;
const LayerTools& lt = *m_layer_tools;
unsigned int first_nonsoluble_extruder = first_nonsoluble_extruder_on_layer(print.config());
unsigned int last_nonsoluble_extruder = last_nonsoluble_extruder_on_layer(print.config());
for (const PrintObject* object : print.objects()) {
// Finds this layer:
const Layer* this_layer = object->get_layer_at_printz(lt.print_z, EPSILON);
if (this_layer == nullptr)
continue;
size_t num_of_copies = object->instances().size();
for (size_t copy = 0; copy < num_of_copies; ++copy) { // iterate through copies first, so that we mark neighbouring infills to minimize travel moves
for (const LayerRegion *layerm : this_layer->regions()) {
const auto &region = layerm->region();
//BBS
if (!object->config().flush_into_infill && !object->config().flush_into_objects)
continue;
bool is_infill_first = print.config().is_infill_first;
for (const ExtrusionEntity* ee : layerm->fills.entities) { // iterate through all infill Collections
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (!is_overriddable(*fill, print.config(), *object, region)
|| is_entity_overridden(fill, object, copy) )
continue;
// This infill could have been overridden but was not - unless we do something, it could be
// printed before its perimeter, or not be printed at all (in case its original extruder has
// not been added to LayerTools
// Either way, we will now force-override it with something suitable:
//BBS
if (is_infill_first
//BBS
//|| object->config().flush_into_objects // in this case the perimeter is overridden, so we can override by the last one safely
|| lt.is_extruder_order(lt.wall_filament(region), last_nonsoluble_extruder // !infill_first, but perimeter is already printed when last extruder prints
|| ! lt.has_extruder(lt.sparse_infill_filament(region)))) // we have to force override - this could violate infill_first (FIXME)
set_extruder_override(fill, object, copy, (is_infill_first ? first_nonsoluble_extruder : last_nonsoluble_extruder), num_of_copies);
else {
// In this case we can (and should) leave it to be printed normally.
// Force overriding would mean it gets printed before its perimeter.
}
}
// Now the same for perimeters - see comments above for explanation:
for (const ExtrusionEntity* ee : layerm->perimeters.entities) { // iterate through all perimeter Collections
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (is_overriddable(*fill, print.config(), *object, region) && ! is_entity_overridden(fill, object, copy))
set_extruder_override(fill, object, copy, (is_infill_first ? last_nonsoluble_extruder : first_nonsoluble_extruder), num_of_copies);
}
}
}
}
}
// Following function is called from GCode::process_layer and returns pointer to vector with information about which extruders should be used for given copy of this entity.
// If this extrusion does not have any override, nullptr is returned.
// Otherwise it modifies the vector in place and changes all -1 to correct_extruder_id (at the time the overrides were created, correct extruders were not known,
// so -1 was used as "print as usual").
// The resulting vector therefore keeps track of which extrusions are the ones that were overridden and which were not. If the extruder used is overridden,
// its number is saved as is (zero-based index). Regular extrusions are saved as -number-1 (unfortunately there is no negative zero).
const WipingExtrusions::ExtruderPerCopy* WipingExtrusions::get_extruder_overrides(const ExtrusionEntity* entity, const PrintObject* object, int correct_extruder_id, size_t num_of_copies)
{
ExtruderPerCopy *overrides = nullptr;
auto entity_map_it = entity_map.find(std::make_tuple(entity, object));
if (entity_map_it != entity_map.end()) {
overrides = &entity_map_it->second;
overrides->resize(num_of_copies, -1);
// Each -1 now means "print as usual" - we will replace it with actual extruder id (shifted it so we don't lose that information):
std::replace(overrides->begin(), overrides->end(), -1, -correct_extruder_id-1);
}
return overrides;
}
// BBS
int WipingExtrusions::get_support_extruder_overrides(const PrintObject* object)
{
auto iter = support_map.find(object);
if (iter != support_map.end())
return iter->second;
return -1;
}
int WipingExtrusions::get_support_interface_extruder_overrides(const PrintObject* object)
{
auto iter = support_intf_map.find(object);
if (iter != support_intf_map.end())
return iter->second;
return -1;
}
} // namespace Slic3r