BambuStudio/libigl/igl/opengl2/RotateWidget.h

548 lines
16 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_OPENGL2_ROTATE_WIDGET_H
#define IGL_OPENGL2_ROTATE_WIDGET_H
#include "../material_colors.h"
#include <Eigen/Geometry>
#include <Eigen/Core>
#include <vector>
namespace igl
{
namespace opengl2
{
// 3D Rotate tool widget similar to Maya's. Works best if field of view angle
// is less than ~25.
class RotateWidget
{
// If a is true then use A else use desaturated A
static inline void glColor4fv(const bool a, const Eigen::Vector4f & A);
public:
inline static Eigen::Quaterniond axis_q(const int a);
inline static Eigen::Vector3d view_direction(const int x, const int y);
inline static Eigen::Vector3d view_direction(const Eigen::Vector3d & pos);
Eigen::Vector3d pos;
Eigen::Quaterniond rot,down_rot;
Eigen::Vector2d down_xy,drag_xy,down_dir;
Eigen::Vector3d udown,udrag;
double outer_radius_on_screen;
double outer_over_inner;
bool m_is_enabled;
enum DownType
{
DOWN_TYPE_X = 0,
DOWN_TYPE_Y = 1,
DOWN_TYPE_Z = 2,
DOWN_TYPE_OUTLINE = 3,
DOWN_TYPE_TRACKBALL = 4,
DOWN_TYPE_NONE = 5,
NUM_DOWN_TYPES = 6
} down_type, selected_type;
inline RotateWidget();
// Vector from origin to mouse click "Unprojected" onto plane with depth of
// origin and scale to so that outer radius is 1
//
// Inputs:
// x mouse x position
// y mouse y position
// Returns vector
inline Eigen::Vector3d unproject_onto(const int x, const int y) const;
// Shoot ray from mouse click to sphere
//
// Inputs:
// x mouse x position
// y mouse y position
// Outputs:
// hit position of hit
// Returns true only if there was a hit
inline bool intersect(
const int x,
const int y,
Eigen::Vector3d & hit) const;
inline double unprojected_inner_radius() const;
inline bool down(const int x, const int y);
inline bool drag(const int x, const int y);
inline bool up(const int x, const int y);
inline bool is_down() const;
inline void draw() const;
inline void draw_guide() const;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
}
}
// Implementation
#include "../PI.h"
#include "../EPS.h"
#include "../ray_sphere_intersect.h"
#include "../mat_to_quat.h"
#include "../trackball.h"
#include "gl.h"
#include "project.h"
#include "unproject.h"
#include <iostream>
#include <cassert>
inline void igl::opengl2::RotateWidget::glColor4fv(
const bool a,
const Eigen::Vector4f & A)
{
if(a)
{
::glColor4fv(A.data());
}else
{
Eigen::Vector4f B;
const double f = 0.95; // desaturate by 95%
const double L = 0.3*A(0) + 0.6*A(1) + 0.1*A(2);
B.head(3) = A.head(3).array() + f*(L-A.head(3).array());
B(3) = A(3);
::glColor4fv(B.data());
}
}
inline Eigen::Quaterniond igl::opengl2::RotateWidget::axis_q(const int a)
{
assert(a<3 && a>=0);
const Eigen::Quaterniond axes[3] = {
Eigen::Quaterniond(Eigen::AngleAxisd(igl::PI*0.5,Eigen::Vector3d(0,1,0))),
Eigen::Quaterniond(Eigen::AngleAxisd(igl::PI*0.5,Eigen::Vector3d(1,0,0))),
Eigen::Quaterniond::Identity()};
return axes[a];
}
inline Eigen::Vector3d igl::opengl2::RotateWidget::view_direction(const int x, const int y)
{
using namespace Eigen;
const Vector3d win_s(x,y,0), win_d(x,y,1);
const Vector3d s = unproject(win_s);
const Vector3d d = unproject(win_d);
return d-s;
}
inline Eigen::Vector3d igl::opengl2::RotateWidget::view_direction(const Eigen::Vector3d & pos)
{
using namespace Eigen;
const Vector3d ppos = project(pos);
return view_direction(ppos(0),ppos(1));
}
inline igl::opengl2::RotateWidget::RotateWidget():
pos(0,0,0),
rot(Eigen::Quaterniond::Identity()),
down_rot(rot),
down_xy(-1,-1),drag_xy(-1,-1),
outer_radius_on_screen(91.),
outer_over_inner(1.13684210526),
m_is_enabled(true),
down_type(DOWN_TYPE_NONE),
selected_type(DOWN_TYPE_NONE)
{
}
inline Eigen::Vector3d igl::opengl2::RotateWidget::unproject_onto(
const int x,
const int y) const
{
using namespace Eigen;
// KNOWN BUG: This projects to same depths as pos. I think what we actually
// want is The intersection with the plane perpendicular to the view
// direction at pos. If the field of view angle is small then this difference
// is negligible.
//const Vector3d ppos = project(pos);
//const Vector3d uxy = unproject( Vector3d(x,y,ppos(2)));
// http://en.wikipedia.org/wiki/Line-plane_intersection
//
// Hrrmmm. There's still something wrong here if the ball's in the corner of
// the screen. Am I somehow not accounting for perspective correctly?
//
// Q: What about just projecting the circle's equation and solving for the
// distance?
const Vector3d l0 = unproject(Vector3d(x,y,0));
const Vector3d l = unproject(Vector3d(x,y,1))-l0;
const Vector3d n = view_direction(pos);
const double t = (pos-l0).dot(n)/l.dot(n);
const Vector3d uxy = l0+t*l;
return (uxy-pos)/unprojected_inner_radius()*outer_over_inner*outer_over_inner;
}
inline bool igl::opengl2::RotateWidget::intersect(
const int x,
const int y,
Eigen::Vector3d & hit) const
{
using namespace Eigen;
Vector3d view = view_direction(x,y);
const Vector3d ppos = project(pos);
Vector3d uxy = unproject(Vector3d(x,y,ppos(2)));
double t0,t1;
if(!ray_sphere_intersect(uxy,view,pos,unprojected_inner_radius(),t0,t1))
{
return false;
}
hit = uxy+t0*view;
return true;
}
inline double igl::opengl2::RotateWidget::unprojected_inner_radius() const
{
using namespace Eigen;
Vector3d off,ppos,ppos_off,pos_off;
project(pos,ppos);
ppos_off = ppos;
ppos_off(0) += outer_radius_on_screen/outer_over_inner;
unproject(ppos_off,pos_off);
return (pos-pos_off).norm();
}
inline bool igl::opengl2::RotateWidget::down(const int x, const int y)
{
using namespace Eigen;
using namespace std;
if(!m_is_enabled)
{
return false;
}
down_type = DOWN_TYPE_NONE;
selected_type = DOWN_TYPE_NONE;
down_xy = Vector2d(x,y);
drag_xy = down_xy;
down_rot = rot;
Vector3d ppos = project(pos);
const double r = (ppos.head(2) - down_xy).norm();
const double thresh = 3;
if(fabs(r - outer_radius_on_screen)<thresh)
{
udown = unproject_onto(x,y);
udrag = udown;
down_type = DOWN_TYPE_OUTLINE;
selected_type = DOWN_TYPE_OUTLINE;
// project mouse to same depth as pos
return true;
}else if(r < outer_radius_on_screen/outer_over_inner+thresh*0.5)
{
Vector3d hit;
const bool is_hit = intersect(down_xy(0),down_xy(1),hit);
if(!is_hit)
{
//cout<<"~~~!is_hit"<<endl;
}
auto on_meridian = [&](
const Vector3d & hit,
const Quaterniond & rot,
const Quaterniond & m,
Vector3d & pl_hit) -> bool
{
// project onto rotate plane
pl_hit = hit-pos;
pl_hit = (m.conjugate()*rot.conjugate()*pl_hit).eval();
pl_hit(2) = 0;
pl_hit = (rot*m*pl_hit).eval();
pl_hit.normalize();
pl_hit *= unprojected_inner_radius();
pl_hit += pos;
return (project(pl_hit).head(2)-project(hit).head(2)).norm()<2*thresh;
};
udown = (hit-pos).normalized()/outer_radius_on_screen;
udrag = udown;
for(int a = 0;a<3;a++)
{
Vector3d pl_hit;
if(on_meridian(hit,rot,Quaterniond(axis_q(a)),pl_hit))
{
udown = (pl_hit-pos).normalized()/outer_radius_on_screen;
udrag = udown;
down_type = DownType(DOWN_TYPE_X+a);
selected_type = down_type;
{
Vector3d dir3 = axis_q(a).conjugate()*down_rot.conjugate()*(hit-pos);
dir3 = AngleAxisd(-PI*0.5,Vector3d(0,0,1))*dir3;
dir3 = (rot*axis_q(a)*dir3).eval();
down_dir = (project((hit+dir3).eval())-project(hit)).head(2);
down_dir.normalize();
//// flip y because y coordinate is going to be given backwards in
//// drag()
//down_dir(1) *= -1;
}
return true;
}
}
//assert(is_hit);
down_type = DOWN_TYPE_TRACKBALL;
selected_type = DOWN_TYPE_TRACKBALL;
return true;
}else
{
return false;
}
}
inline bool igl::opengl2::RotateWidget::drag(const int x, const int y)
{
using namespace std;
using namespace Eigen;
if(!m_is_enabled)
{
return false;
}
drag_xy = Vector2d(x,y);
switch(down_type)
{
case DOWN_TYPE_NONE:
return false;
default:
{
const Quaterniond & q = axis_q(down_type-DOWN_TYPE_X);
const double dtheta = -(drag_xy - down_xy).dot(down_dir)/
outer_radius_on_screen/outer_over_inner*PI/2.;
Quaterniond dq(AngleAxisd(dtheta,down_rot*q*Vector3d(0,0,1)));
rot = dq * down_rot;
udrag = dq * udown;
return true;
}
case DOWN_TYPE_OUTLINE:
{
Vector3d ppos = project(pos);
// project mouse to same depth as pos
udrag = unproject_onto(x,y);
const Vector2d A = down_xy - ppos.head(2);
const Vector2d B = drag_xy - ppos.head(2);
const double dtheta = atan2(A(0)*B(1)-A(1)*B(0),A(0)*B(0)+A(1)*B(1));
Vector3d n = view_direction(pos).normalized();
Quaterniond dq(AngleAxisd(dtheta,-n));
//Vector3d n = udrag.cross(udown).normalized();
//Quaterniond dq(AngleAxisd(fabs(dtheta),-n));
rot = dq * down_rot;
}
return true;
case DOWN_TYPE_TRACKBALL:
{
Vector3d ppos = project(pos);
const double r = (double)outer_radius_on_screen/outer_over_inner*2.0;
//const int h = w;
Vector4i vp;
glGetIntegerv(GL_VIEWPORT,vp.data());
const int h = vp(3);
Quaterniond dq;
trackball(
r,r,
1,
Quaterniond::Identity(),
double( down_xy(0)-ppos(0) )+r/2.,
double((h-down_xy(1))-(h-ppos(1)))+r/2.,
double( x-ppos(0) )+r/2.,
double( (h-y)-(h-ppos(1)))+r/2.,
dq);
// We've computed change in rotation according to this view:
// R = mv * r, R' = rot * (mv * r)
// But we only want new value for r:
// R' = mv * r'
// mv * r' = rot * (mv * r)
// r' = mv* * rot * mv * r
Matrix4d mv;
glGetDoublev(GL_MODELVIEW_MATRIX,mv.data());
Quaterniond scene_rot;
// Convert modelview matrix to quaternion
mat4_to_quat(mv.data(),scene_rot.coeffs().data());
scene_rot.normalize();
rot = scene_rot.conjugate() * dq * scene_rot * down_rot;
}
return true;
}
}
inline bool igl::opengl2::RotateWidget::up(const int /*x*/, const int /*y*/)
{
// even if disabled process up
down_type = DOWN_TYPE_NONE;
return false;
}
inline bool igl::opengl2::RotateWidget::is_down() const
{
return down_type != DOWN_TYPE_NONE;
}
inline void igl::opengl2::RotateWidget::draw() const
{
using namespace Eigen;
using namespace std;
glPushAttrib(GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_DEPTH_BUFFER_BIT | GL_LINE_BIT);
glDisable(GL_CLIP_PLANE0);
glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
glLineWidth(2.0);
double r = unprojected_inner_radius();
Vector3d view = view_direction(pos).normalized();
auto draw_circle = [&](const bool cull)
{
Vector3d view = view_direction(pos).normalized();
glBegin(GL_LINES);
const double th_step = (2.0*igl::PI/100.0);
for(double th = 0;th<2.0*igl::PI+th_step;th+=th_step)
{
Vector3d a(cos(th),sin(th),0.0);
Vector3d b(cos(th+th_step),sin(th+th_step),0.0);
if(!cull || (0.5*(a+b)).dot(view)<FLOAT_EPS)
{
glVertex3dv(a.data());
glVertex3dv(b.data());
}
}
glEnd();
};
glPushMatrix();
glTranslated(pos(0),pos(1),pos(2));
glScaled(r,r,r);
// Draw outlines
{
glPushMatrix();
glColor4fv(m_is_enabled,MAYA_GREY);
Quaterniond q;
q.setFromTwoVectors(Vector3d(0,0,1),view);
glMultMatrixd(Affine3d(q).matrix().data());
draw_circle(false);
glScaled(outer_over_inner,outer_over_inner,outer_over_inner);
if(selected_type == DOWN_TYPE_OUTLINE)
{
glColor4fv(m_is_enabled,MAYA_YELLOW);
}else
{
glColor4fv(m_is_enabled,MAYA_CYAN);
}
draw_circle(false);
glPopMatrix();
}
// Draw quartiles
{
glPushMatrix();
glMultMatrixd(Affine3d(rot).matrix().data());
if(selected_type == DOWN_TYPE_Z)
{
glColor4fv(m_is_enabled,MAYA_YELLOW);
}else
{
glColor4fv(m_is_enabled,MAYA_BLUE);
}
draw_circle(true);
if(selected_type == DOWN_TYPE_Y)
{
glColor4fv(m_is_enabled,MAYA_YELLOW);
}else
{
glColor4fv(m_is_enabled,MAYA_GREEN);
}
glRotated(90.0,1.0,0.0,0.0);
draw_circle(true);
if(selected_type == DOWN_TYPE_X)
{
glColor4fv(m_is_enabled,MAYA_YELLOW);
}else
{
glColor4fv(m_is_enabled,MAYA_RED);
}
glRotated(90.0,0.0,1.0,0.0);
draw_circle(true);
glPopMatrix();
}
glColor4fv(m_is_enabled,MAYA_GREY);
draw_guide();
glPopMatrix();
glPopAttrib();
};
inline void igl::opengl2::RotateWidget::draw_guide() const
{
using namespace Eigen;
using namespace std;
glPushAttrib(
GL_DEPTH_BUFFER_BIT |
GL_ENABLE_BIT |
GL_POLYGON_BIT |
GL_POINT_BIT |
GL_TRANSFORM_BIT |
GL_STENCIL_BUFFER_BIT |
GL_LIGHTING_BIT);
// http://www.codeproject.com/Articles/23444/A-Simple-OpenGL-Stipple-Polygon-Example-EP_OpenGL_
const GLubyte halftone[] = {
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};
switch(down_type)
{
case DOWN_TYPE_NONE:
case DOWN_TYPE_TRACKBALL:
goto finish;
case DOWN_TYPE_OUTLINE:
glScaled(outer_over_inner,outer_over_inner,outer_over_inner);
break;
default:
break;
}
{
const Vector3d nudown(udown.normalized()),
nudrag(udrag.normalized());
glPushMatrix();
glDisable(GL_CULL_FACE);
glDisable(GL_POINT_SMOOTH);
glPointSize(5.);
glBegin(GL_POINTS);
glVertex3dv(nudown.data());
glVertex3d(0,0,0);
glVertex3dv(nudrag.data());
glEnd();
glBegin(GL_LINE_STRIP);
glVertex3dv(nudown.data());
glVertex3d(0,0,0);
glVertex3dv(nudrag.data());
glEnd();
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(halftone);
glBegin(GL_TRIANGLE_FAN);
glVertex3d(0,0,0);
Quaterniond dq = rot * down_rot.conjugate();
//dq.setFromTwoVectors(nudown,nudrag);
for(double t = 0;t<1;t+=0.1)
{
const Vector3d p = Quaterniond::Identity().slerp(t,dq) * nudown;
glVertex3dv(p.data());
}
glVertex3dv(nudrag.data());
glEnd();
glPopMatrix();
}
finish:
glPopAttrib();
}
#endif