BambuStudio/libslic3r/Polyline.cpp

612 lines
21 KiB
C++

#include "BoundingBox.hpp"
#include "Polyline.hpp"
#include "Exception.hpp"
#include "ExPolygon.hpp"
#include "Line.hpp"
#include "Polygon.hpp"
#include <iostream>
#include <utility>
namespace Slic3r {
const Point& Polyline::leftmost_point() const
{
const Point *p = &this->points.front();
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++ it) {
if (it->x() < p->x())
p = &(*it);
}
return *p;
}
Lines Polyline::lines() const
{
Lines lines;
if (this->points.size() >= 2) {
lines.reserve(this->points.size() - 1);
for (Points::const_iterator it = this->points.begin(); it != this->points.end()-1; ++it) {
lines.push_back(Line(*it, *(it + 1)));
}
}
return lines;
}
void Polyline::reverse()
{
//BBS: reverse points
MultiPoint::reverse();
//BBS: reverse the fitting_result
if (!this->fitting_result.empty()) {
for (size_t i = 0; i < this->fitting_result.size(); i++) {
std::swap(fitting_result[i].start_point_index, fitting_result[i].end_point_index);
fitting_result[i].start_point_index = MultiPoint::size() - 1 - fitting_result[i].start_point_index;
fitting_result[i].end_point_index = MultiPoint::size() - 1 - fitting_result[i].end_point_index;
if (fitting_result[i].is_arc_move())
fitting_result[i].reverse_arc_path();
}
std::reverse(this->fitting_result.begin(), this->fitting_result.end());
}
}
// removes the given distance from the end of the polyline
void Polyline::clip_end(double distance)
{
bool last_point_inserted = false;
size_t remove_after_index = MultiPoint::size();
while (distance > 0) {
Vec2d last_point = this->last_point().cast<double>();
this->points.pop_back();
remove_after_index--;
if (this->points.empty()) {
this->fitting_result.clear();
return;
}
Vec2d v = this->last_point().cast<double>() - last_point;
double lsqr = v.squaredNorm();
if (lsqr > distance * distance) {
this->points.emplace_back((last_point + v * (distance / sqrt(lsqr))).cast<coord_t>());
last_point_inserted = true;
break;
}
distance -= sqrt(lsqr);
}
//BBS: don't need to clip fitting result if it's empty
if (fitting_result.empty())
return;
while (!fitting_result.empty() && fitting_result.back().start_point_index >= remove_after_index)
fitting_result.pop_back();
if (!fitting_result.empty()) {
//BBS: last remaining segment is arc move, then clip the arc at last point
if (fitting_result.back().path_type == EMovePathType::Arc_move_ccw
|| fitting_result.back().path_type == EMovePathType::Arc_move_cw) {
if (fitting_result.back().arc_data.clip_end(this->last_point()))
//BBS: succeed to clip arc, then update the last point
this->points.back() = fitting_result.back().arc_data.end_point;
else
//BBS: Failed to clip arc, then back to linear move
fitting_result.back().path_type = EMovePathType::Linear_move;
}
fitting_result.back().end_point_index = this->points.size() - 1;
}
}
// removes the given distance from the start of the polyline
void Polyline::clip_start(double distance)
{
this->reverse();
this->clip_end(distance);
if (this->points.size() >= 2)
this->reverse();
}
void Polyline::extend_end(double distance)
{
//BBS: append a new last point by extending the last segment by the specified length
Vec2d v = (this->points.back() - *(this->points.end() - 2)).cast<double>().normalized();
Point new_last_point = this->points.back() + (v * distance).cast<coord_t>();
this->append(new_last_point);
}
void Polyline::extend_start(double distance)
{
this->reverse();
this->extend_end(distance);
this->reverse();
}
/* this method returns a collection of points picked on the polygon contour
so that they are evenly spaced according to the input distance */
Points Polyline::equally_spaced_points(double distance) const
{
Points points;
points.emplace_back(this->first_point());
double len = 0;
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) {
Vec2d p1 = (it-1)->cast<double>();
Vec2d v = it->cast<double>() - p1;
double segment_length = v.norm();
len += segment_length;
if (len < distance)
continue;
if (len == distance) {
points.emplace_back(*it);
len = 0;
continue;
}
double take = segment_length - (len - distance); // how much we take of this segment
points.emplace_back((p1 + v * (take / v.norm())).cast<coord_t>());
-- it;
len = - take;
}
return points;
}
void Polyline::simplify(double tolerance)
{
this->points = MultiPoint::_douglas_peucker(this->points, tolerance);
this->fitting_result.clear();
}
void Polyline::simplify_by_fitting_arc(double tolerance)
{
//BBS: do arc fit first, then use DP simplify to handle the straight part to reduce point.
ArcFitter::do_arc_fitting_and_simplify(this->points, this->fitting_result, tolerance);
}
Polylines Polyline::equally_spaced_lines(double distance) const
{
Polylines lines;
Polyline line;
line.append(this->first_point());
double len = 0;
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) {
Vec2d p1 = line.points.back().cast<double>();
Vec2d v = it->cast<double>() - p1;
double segment_length = v.norm();
len += segment_length;
if (len < distance)
continue;
if (len == distance) {
line.append(*it);
lines.emplace_back(line);
line.clear();
line.append(*it);
len = 0;
continue;
}
double take = distance; // how much we take of this segment
line.append((p1 + v * (take / v.norm())).cast<coord_t>());
lines.emplace_back(line);
line.clear();
line.append(lines.back().last_point());
--it;
len = -take;
}
// add the last reminder
if (line.size() == 1) {
line.append(this->last_point());
if(line.first_point()!=line.last_point())
lines.emplace_back(line);
}
return lines;
}
#if 0
// This method simplifies all *lines* contained in the supplied area
template <class T>
void Polyline::simplify_by_visibility(const T &area)
{
Points &pp = this->points;
size_t s = 0;
bool did_erase = false;
for (size_t i = s+2; i < pp.size(); i = s + 2) {
if (area.contains(Line(pp[s], pp[i]))) {
pp.erase(pp.begin() + s + 1, pp.begin() + i);
did_erase = true;
} else {
++s;
}
}
if (did_erase)
this->simplify_by_visibility(area);
}
template void Polyline::simplify_by_visibility<ExPolygon>(const ExPolygon &area);
template void Polyline::simplify_by_visibility<ExPolygonCollection>(const ExPolygonCollection &area);
#endif
void Polyline::split_at(Point &point, Polyline* p1, Polyline* p2) const
{
if (this->points.empty()) return;
//0 judge whether the point is on the polyline
int index = this->find_point(point);
if (index != -1) {
//BBS: the spilit point is on the polyline, then easy
split_at_index(index, p1, p2);
point = p1->is_valid()? p1->last_point(): p2->first_point();
return;
}
//1 find the line to split at
size_t line_idx = 0;
Point p = this->first_point();
double min = (p - point).cast<double>().norm();
Lines lines = this->lines();
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
Point p_tmp = point.projection_onto(*line);
if ((p_tmp - point).cast<double>().norm() < min) {
p = p_tmp;
min = (p - point).cast<double>().norm();
line_idx = line - lines.begin();
}
}
//2 judge whether the cloest point is one vertex of polyline.
// and spilit the polyline at different index
index = this->find_point(p);
if (index != -1)
{
this->split_at_index(index, p1, p2);
p1->append(point);
p2->append_before(point);
} else {
Polyline temp;
this->split_at_index(line_idx, p1, &temp);
p1->append(point);
this->split_at_index(line_idx + 1, &temp, p2);
p2->append_before(point);
}
}
bool Polyline::split_at_index(const size_t index, Polyline* p1, Polyline* p2) const
{
if (index > this->size() - 1)
return false;
if (index == 0) {
p1->clear();
p1->append(this->first_point());
*p2 = *this;
} else if (index == this->size() - 1) {
p2->clear();
p2->append(this->last_point());
*p1 = *this;
} else {
//BBS: spilit first part
p1->clear();
p1->points.reserve(index + 1);
p1->points.insert(p1->begin(), this->begin(), this->begin() + index + 1);
Point new_endpoint;
if (this->split_fitting_result_before_index(index, new_endpoint, p1->fitting_result))
p1->points.back() = new_endpoint;
p2->clear();
p2->points.reserve(this->size() - index);
p2->points.insert(p2->begin(), this->begin() + index, this->end());
Point new_startpoint;
if (this->split_fitting_result_after_index(index, new_startpoint, p2->fitting_result))
p2->points.front() = new_startpoint;
}
return true;
}
bool Polyline::split_at_length(const double length, Polyline *p1, Polyline *p2) const
{
if (this->points.empty()) return false;
if (length < 0 || length > this->length()) { return false; }
if (length < SCALED_EPSILON) {
p1->clear();
p1->append(this->first_point());
*p2 = *this;
} else if (is_approx(length, this->length(), SCALED_EPSILON)) {
p2->clear();
p2->append(this->last_point());
*p1 = *this;
} else {
// 1 find the line to split at
size_t line_idx = 0;
double acc_length = 0;
Point p = this->first_point();
for (const auto &l : this->lines()) {
p = l.b;
const double current_length = l.length();
if (acc_length + current_length >= length) {
p = lerp(l.a, l.b, (length - acc_length) / current_length);
break;
}
acc_length += current_length;
line_idx++;
}
// 2 judge whether the cloest point is one vertex of polyline.
// and spilit the polyline at different index
int index = this->find_point(p);
if (index != -1) {
this->split_at_index(index, p1, p2);
} else {
Polyline temp;
this->split_at_index(line_idx, p1, &temp);
p1->append(p);
this->split_at_index(line_idx + 1, &temp, p2);
p2->append_before(p);
}
}
return true;
}
bool Polyline::is_straight() const
{
// Check that each segment's direction is equal to the line connecting
// first point and last point. (Checking each line against the previous
// one would cause the error to accumulate.)
double dir = Line(this->first_point(), this->last_point()).direction();
for (const auto &line: this->lines())
if (! line.parallel_to(dir))
return false;
return true;
}
void Polyline::append(const Polyline &src)
{
if (!src.is_valid()) return;
if (this->points.empty()) {
this->points = src.points;
this->fitting_result = src.fitting_result;
} else {
//BBS: append the first point to create connection first, update the fitting date as well
this->append(src.points[0]);
//BBS: append a polyline which has fitting data to a polyline without fitting data.
//Then create a fake fitting data first, so that we can keep the fitting data in last polyline
if (this->fitting_result.empty() &&
!src.fitting_result.empty()) {
this->fitting_result.emplace_back(PathFittingData{ 0, this->points.size() - 1, EMovePathType::Linear_move, ArcSegment() });
}
//BBS: then append the remain points
MultiPoint::append(src.points.begin() + 1, src.points.end());
//BBS: finally append the fitting data
append_fitting_result_after_append_polyline(src);
}
}
void Polyline::append(Polyline &&src)
{
if (!src.is_valid()) return;
if (this->points.empty()) {
this->points = std::move(src.points);
this->fitting_result = std::move(src.fitting_result);
} else {
//BBS: append the first point to create connection first, update the fitting date as well
this->append(src.points[0]);
//BBS: append a polyline which has fitting data to a polyline without fitting data.
//Then create a fake fitting data first, so that we can keep the fitting data in last polyline
if (this->fitting_result.empty() &&
!src.fitting_result.empty()) {
this->fitting_result.emplace_back(PathFittingData{ 0, this->points.size() - 1, EMovePathType::Linear_move, ArcSegment() });
}
//BBS: then append the remain points
MultiPoint::append(src.points.begin() + 1, src.points.end());
//BBS: finally append the fitting data
append_fitting_result_after_append_polyline(src);
src.points.clear();
src.fitting_result.clear();
}
}
void Polyline::append_fitting_result_after_append_points() {
if (!fitting_result.empty()) {
if (fitting_result.back().is_linear_move()) {
fitting_result.back().end_point_index = this->points.size() - 1;
} else {
size_t new_start = fitting_result.back().end_point_index;
size_t new_end = this->points.size() - 1;
if (new_start != new_end)
fitting_result.emplace_back(PathFittingData{ new_start, new_end, EMovePathType::Linear_move, ArcSegment() });
}
}
}
void Polyline::append_fitting_result_after_append_polyline(const Polyline& src)
{
if (!this->fitting_result.empty()) {
//BBS: offset and save the fitting_result from src polyline
if (!src.fitting_result.empty()) {
size_t old_size = this->fitting_result.size();
size_t index_offset = this->fitting_result.back().end_point_index;
this->fitting_result.insert(this->fitting_result.end(), src.fitting_result.begin(), src.fitting_result.end());
for (size_t i = old_size; i < this->fitting_result.size(); i++) {
this->fitting_result[i].start_point_index += index_offset;
this->fitting_result[i].end_point_index += index_offset;
}
} else {
//BBS: the append polyline has no fitting data, then append as linear move directly
size_t new_start = this->fitting_result.back().end_point_index;
size_t new_end = this->size() - 1;
if (new_start != new_end)
this->fitting_result.emplace_back(PathFittingData{ new_start, new_end, EMovePathType::Linear_move, ArcSegment() });
}
}
}
void Polyline::reset_to_linear_move()
{
this->fitting_result.clear();
fitting_result.emplace_back(PathFittingData{ 0, points.size() - 1, EMovePathType::Linear_move, ArcSegment() });
this->fitting_result.shrink_to_fit();
}
bool Polyline::split_fitting_result_before_index(const size_t index, Point& new_endpoint, std::vector<PathFittingData>& data) const
{
data.clear();
new_endpoint = this->points[index];
if (!this->fitting_result.empty()) {
//BBS: max size
data.reserve(this->fitting_result.size());
//BBS: save fitting result before index
for (size_t i = 0; i < this->fitting_result.size(); i++)
{
if (this->fitting_result[i].start_point_index < index)
data.push_back(this->fitting_result[i]);
else
break;
}
if (!data.empty()) {
//BBS: need to clip the arc and generate new end point
if (data.back().is_arc_move() && data.back().end_point_index > index) {
if (!data.back().arc_data.clip_end(this->points[index]))
//BBS: failed to clip arc, then return to be linear move
data.back().path_type = EMovePathType::Linear_move;
else
//BBS: succeed to clip arc, then update and return the new end point
new_endpoint = data.back().arc_data.end_point;
}
data.back().end_point_index = index;
}
data.shrink_to_fit();
return true;
}
return false;
}
bool Polyline::split_fitting_result_after_index(const size_t index, Point& new_startpoint, std::vector<PathFittingData>& data) const
{
data.clear();
new_startpoint = this->points[index];
if (!this->fitting_result.empty()) {
data.reserve(this->fitting_result.size());
for (size_t i = 0; i < this->fitting_result.size(); i++) {
if (this->fitting_result[i].end_point_index > index)
data.push_back(this->fitting_result[i]);
}
if (!data.empty()) {
for (size_t i = 0; i < data.size(); i++) {
if (i != 0) {
data[i].start_point_index -= index;
data[i].end_point_index -= index;
} else {
data[i].end_point_index -= index;
//BBS: need to clip the arc and generate new start point
if (data.front().is_arc_move() && data.front().start_point_index < index) {
if (!data.front().arc_data.clip_start(this->points[index]))
//BBS: failed to clip arc, then return to be linear move
data.front().path_type = EMovePathType::Linear_move;
else
//BBS: succeed to clip arc, then update and return the new start point
new_startpoint = data.front().arc_data.start_point;
}
data[i].start_point_index = 0;
}
}
}
data.shrink_to_fit();
return true;
}
return false;
}
BoundingBox get_extents(const Polyline &polyline)
{
return polyline.bounding_box();
}
BoundingBox get_extents(const Polylines &polylines)
{
BoundingBox bb;
if (! polylines.empty()) {
bb = polylines.front().bounding_box();
for (size_t i = 1; i < polylines.size(); ++ i)
bb.merge(polylines[i].points);
}
return bb;
}
const Point& leftmost_point(const Polylines &polylines)
{
if (polylines.empty())
throw Slic3r::InvalidArgument("leftmost_point() called on empty PolylineCollection");
Polylines::const_iterator it = polylines.begin();
const Point *p = &it->leftmost_point();
for (++ it; it != polylines.end(); ++it) {
const Point *p2 = &it->leftmost_point();
if (p2->x() < p->x())
p = p2;
}
return *p;
}
bool remove_degenerate(Polylines &polylines)
{
bool modified = false;
size_t j = 0;
for (size_t i = 0; i < polylines.size(); ++ i) {
if (polylines[i].points.size() >= 2) {
if (j < i)
std::swap(polylines[i].points, polylines[j].points);
++ j;
} else
modified = true;
}
if (j < polylines.size())
polylines.erase(polylines.begin() + j, polylines.end());
return modified;
}
std::pair<int, Point> foot_pt(const Points &polyline, const Point &pt)
{
if (polyline.size() < 2) return std::make_pair(-1, Point(0, 0));
auto d2_min = std::numeric_limits<double>::max();
Point foot_pt_min;
Point prev = polyline.front();
auto it = polyline.begin();
auto it_proj = polyline.begin();
for (++it; it != polyline.end(); ++it) {
Point foot_pt = pt.projection_onto(Line(prev, *it));
double d2 = (foot_pt - pt).cast<double>().squaredNorm();
if (d2 < d2_min) {
d2_min = d2;
foot_pt_min = foot_pt;
it_proj = it;
}
prev = *it;
}
return std::make_pair(int(it_proj - polyline.begin()) - 1, foot_pt_min);
}
ThickLines ThickPolyline::thicklines() const
{
ThickLines lines;
if (this->points.size() >= 2) {
lines.reserve(this->points.size() - 1);
for (size_t i = 0; i + 1 < this->points.size(); ++ i)
lines.emplace_back(this->points[i], this->points[i + 1], this->width[2 * i], this->width[2 * i + 1]);
}
return lines;
}
Lines3 Polyline3::lines() const
{
Lines3 lines;
if (points.size() >= 2)
{
lines.reserve(points.size() - 1);
for (Points3::const_iterator it = points.begin(); it != points.end() - 1; ++it)
{
lines.emplace_back(*it, *(it + 1));
}
}
return lines;
}
}