BambuStudio/libslic3r/Measure.cpp

1429 lines
63 KiB
C++

///|/ Copyright (c) Prusa Research 2022 - 2023 Lukáš Matěna @lukasmatena, Enrico Turri @enricoturri1966, Vojtěch Bubník @bubnikv, Pavel Mikuš @Godrak
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include "libslic3r/libslic3r.h"
#include "Measure.hpp"
#include "MeasureUtils.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/SurfaceMesh.hpp"
#include <numeric>
#include <tbb/parallel_for.h>
#define DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE 0
namespace Slic3r {
namespace Measure {
bool get_point_projection_to_plane(const Vec3d &pt, const Vec3d &plane_origin, const Vec3d &plane_normal, Vec3d &intersection_pt)
{
auto normal = plane_normal.normalized();
auto BA = plane_origin - pt;
auto length = BA.dot(normal);
intersection_pt = pt + length * normal;
return true;
}
Vec3d get_one_point_in_plane(const Vec3d &plane_origin, const Vec3d &plane_normal)
{
Vec3d dir(1, 0, 0);
float eps = 1e-3;
if (abs(plane_normal.dot(dir)) > 1 - eps) {
dir = Vec3d(0, 1, 0);
}
auto new_pt = plane_origin + dir;
Vec3d retult;
get_point_projection_to_plane(new_pt, plane_origin, plane_normal, retult);
return retult;
}
constexpr double feature_hover_limit = 0.5; // how close to a feature the mouse must be to highlight it
static std::tuple<Vec3d, double, double> get_center_and_radius(const std::vector<Vec3d>& points, const Transform3d& trafo, const Transform3d& trafo_inv)
{
Vec2ds out;
double z = 0.;
for (const Vec3d& pt : points) {
Vec3d pt_transformed = trafo * pt;
z = pt_transformed.z();
out.emplace_back(pt_transformed.x(), pt_transformed.y());
}
const int iter = points.size() < 10 ? 2 :
points.size() < 100 ? 4 :
6;
double error = std::numeric_limits<double>::max();
auto circle = Geometry::circle_ransac(out, iter, &error);
return std::make_tuple(trafo.inverse() * Vec3d(circle.center.x(), circle.center.y(), z), circle.radius, error);
}
static std::array<Vec3d, 3> orthonormal_basis(const Vec3d& v)
{
std::array<Vec3d, 3> ret;
ret[2] = v.normalized();
int index;
ret[2].cwiseAbs().maxCoeff(&index);
switch (index)
{
case 0: { ret[0] = Vec3d(ret[2].y(), -ret[2].x(), 0.0).normalized(); break; }
case 1: { ret[0] = Vec3d(0.0, ret[2].z(), -ret[2].y()).normalized(); break; }
case 2: { ret[0] = Vec3d(-ret[2].z(), 0.0, ret[2].x()).normalized(); break; }
}
ret[1] = ret[2].cross(ret[0]).normalized();
return ret;
}
class MeasuringImpl {
public:
explicit MeasuringImpl(const indexed_triangle_set& its);
struct PlaneData {
std::vector<int> facets;
std::vector<std::vector<Vec3d>> borders; // FIXME: should be in fact local in update_planes()
std::vector<SurfaceFeature> surface_features;
Vec3d normal;
float area;
bool features_extracted = false;
};
std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point, const Transform3d &world_tran);
int get_num_of_planes() const;
const std::vector<int>& get_plane_triangle_indices(int idx) const;
std::vector<int>* get_plane_tri_indices(int idx);
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id);
std::vector<SurfaceFeature>* get_plane_features_pointer(unsigned int plane_id);
const indexed_triangle_set& get_its() const;
private:
void update_planes();
void extract_features(int plane_idx);
std::vector<PlaneData> m_planes;
std::vector<size_t> m_face_to_plane;
indexed_triangle_set m_its;
};
MeasuringImpl::MeasuringImpl(const indexed_triangle_set& its)
: m_its(its)
{
update_planes();
// Extracting features will be done as needed.
// To extract all planes at once, run the following:
#if DEBUG_EXTRACT_ALL_FEATURES_AT_ONCE
for (int i=0; i<int(m_planes.size()); ++i)
extract_features(i);
#endif
}
void MeasuringImpl::update_planes()
{
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const size_t num_of_facets = m_its.indices.size();
m_face_to_plane.resize(num_of_facets, size_t(-1));
const std::vector<Vec3f> face_normals = its_face_normals(m_its);
const std::vector<Vec3i> face_neighbors = its_face_neighbors(m_its);
std::vector<int> facet_queue(num_of_facets, 0);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
size_t seed_facet_idx = 0;
auto is_same_normal = [](const stl_normal& a, const stl_normal& b) -> bool {
return (std::abs(a(0) - b(0)) < 0.001 && std::abs(a(1) - b(1)) < 0.001 && std::abs(a(2) - b(2)) < 0.001);
};
m_planes.clear();
m_planes.reserve(num_of_facets / 5); // empty plane data object is quite lightweight, let's save the initial reallocations
// First go through all the triangles and fill in m_planes vector. For each "plane"
// detected on the model, it will contain list of facets that are part of it.
// We will also fill in m_face_to_plane, which contains index into m_planes
// for each of the source facets.
while (1) {
// Find next unvisited triangle:
for (; seed_facet_idx < num_of_facets; ++ seed_facet_idx)
if (m_face_to_plane[seed_facet_idx] == size_t(-1)) {
facet_queue[facet_queue_cnt ++] = seed_facet_idx;
normal_ptr = &face_normals[seed_facet_idx];
m_face_to_plane[seed_facet_idx] = m_planes.size();
m_planes.emplace_back();
break;
}
if (seed_facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = face_normals[facet_idx];
if (is_same_normal(this_normal, *normal_ptr)) {
// const Vec3i& face = m_its.indices[facet_idx];
m_face_to_plane[facet_idx] = m_planes.size() - 1;
m_planes.back().facets.emplace_back(facet_idx);
for (int j = 0; j < 3; ++ j)
if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && m_face_to_plane[neighbor_idx] == size_t(-1))
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
m_planes.back().normal = normal_ptr->cast<double>();
std::sort(m_planes.back().facets.begin(), m_planes.back().facets.end());
}
// Check that each facet is part of one of the planes.
assert(std::none_of(m_face_to_plane.begin(), m_face_to_plane.end(), [](size_t val) { return val == size_t(-1); }));
// Now we will walk around each of the planes and save vertices which form the border.
const SurfaceMesh sm(m_its);
const auto& face_to_plane = m_face_to_plane;
auto& planes = m_planes;
tbb::parallel_for(tbb::blocked_range<size_t>(0, m_planes.size()),
[&planes, &face_to_plane, &face_neighbors, &sm](const tbb::blocked_range<size_t>& range) {
for (size_t plane_id = range.begin(); plane_id != range.end(); ++plane_id) {
const auto& facets = planes[plane_id].facets;
planes[plane_id].borders.clear();
std::vector<std::array<bool, 3>> visited(facets.size(), {false, false, false});
for (int face_id=0; face_id<int(facets.size()); ++face_id) {
assert(face_to_plane[facets[face_id]] == plane_id);
for (int edge_id=0; edge_id<3; ++edge_id) {
// Every facet's edge which has a neighbor from a different plane is
// part of an edge that we want to walk around. Skip the others.
int neighbor_idx = face_neighbors[facets[face_id]][edge_id];
if (neighbor_idx == -1)
goto PLANE_FAILURE;
if (visited[face_id][edge_id] || face_to_plane[neighbor_idx] == plane_id) {
visited[face_id][edge_id] = true;
continue;
}
Halfedge_index he = sm.halfedge(Face_index(facets[face_id]));
while (he.side() != edge_id)
he = sm.next(he);
// he is the first halfedge on the border. Now walk around and append the points.
//const Halfedge_index he_orig = he;
planes[plane_id].borders.emplace_back();
std::vector<Vec3d>& last_border = planes[plane_id].borders.back();
last_border.reserve(4);
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
//Vertex_index target = sm.target(he);
const Halfedge_index he_start = he;
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
assert(face_it != facets.end());
assert(*face_it == int(fi));
visited[face_it - facets.begin()][he.side()] = true;
do {
const Halfedge_index he_orig = he;
he = sm.next_around_target(he);
if (he.is_invalid())
goto PLANE_FAILURE;
// For broken meshes, the iteration might never get back to he_orig.
// Remember all halfedges we saw to break out of such infinite loops.
boost::container::small_vector<Halfedge_index, 10> he_seen;
while ( face_to_plane[sm.face(he)] == plane_id && he != he_orig) {
he_seen.emplace_back(he);
he = sm.next_around_target(he);
if (he.is_invalid() || std::find(he_seen.begin(), he_seen.end(), he) != he_seen.end())
goto PLANE_FAILURE;
}
he = sm.opposite(he);
if (he.is_invalid())
goto PLANE_FAILURE;
Face_index fi = he.face();
auto face_it = std::lower_bound(facets.begin(), facets.end(), int(fi));
if (face_it == facets.end() || *face_it != int(fi)) // This indicates a broken mesh.
goto PLANE_FAILURE;
if (visited[face_it - facets.begin()][he.side()] && he != he_start) {
last_border.resize(1);
break;
}
visited[face_it - facets.begin()][he.side()] = true;
last_border.emplace_back(sm.point(sm.source(he)).cast<double>());
// In case of broken meshes, this loop might be infinite. Break
// out in case it is clearly going bad.
if (last_border.size() > 3*facets.size()+1)
goto PLANE_FAILURE;
} while (he != he_start);
if (last_border.size() == 1)
planes[plane_id].borders.pop_back();
else {
assert(last_border.front() == last_border.back());
last_border.pop_back();
}
}
}
continue; // There was no failure.
PLANE_FAILURE:
planes[plane_id].borders.clear();
}});
m_planes.shrink_to_fit();
}
void MeasuringImpl::extract_features(int plane_idx)
{
assert(! m_planes[plane_idx].features_extracted);
PlaneData& plane = m_planes[plane_idx];
plane.surface_features.clear();
const Vec3d& normal = plane.normal;
Eigen::Quaterniond q;
q.setFromTwoVectors(plane.normal, Vec3d::UnitZ());
Transform3d trafo = Transform3d::Identity();
trafo.rotate(q);
const Transform3d trafo_inv = trafo.inverse();
std::vector<double> angles; // placed in outer scope to prevent reallocations
std::vector<double> lengths;
for (const std::vector<Vec3d>& border : plane.borders) {
if (border.size() <= 1)
continue;
bool done = false;
if (border.size() > 4) {
const auto& [center, radius, err] = get_center_and_radius(border, trafo, trafo_inv);
if (err < 0.05) {
// The whole border is one circle. Just add it into the list of features
// and we are done.
bool is_polygon = border.size()>4 && border.size()<=8;
bool lengths_match = std::all_of(border.begin()+2, border.end(), [is_polygon](const Vec3d& pt) {
return Slic3r::is_approx((pt - *((&pt)-1)).squaredNorm(), (*((&pt)-1) - *((&pt)-2)).squaredNorm(), is_polygon ? 0.01 : 0.01);
});
if (lengths_match && (is_polygon || border.size() > 8)) {
if (is_polygon) {
// This is a polygon, add the separate edges with the center.
for (int j=0; j<int(border.size()); ++j)
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge,
border[j==0 ? border.size()-1 : j-1], border[j],
std::make_optional(center)));
} else {
// The fit went well and it has more than 8 points - let's consider this a circle.
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
done = true;
}
}
}
if (! done) {
// In this case, the border is not a circle and may contain circular
// segments. Try to find them and then add all remaining edges as edges.
auto are_angles_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
auto are_lengths_same = [](double a, double b) { return Slic3r::is_approx(a,b,0.01); };
// Given an idx into border, return the index that is idx+offset position,
// while taking into account the need for wrap-around and the fact that
// the first and last point are the same.
auto offset_to_index = [border_size = int(border.size())](int idx, int offset) -> int {
assert(std::abs(offset) < border_size);
int out = idx+offset;
if (out >= border_size)
out = out - border_size;
else if (out < 0)
out = border_size + out;
return out;
};
// First calculate angles at all the vertices.
angles.clear();
lengths.clear();
int first_different_angle_idx = 0;
for (int i=0; i<int(border.size()); ++i) {
const Vec3d& v2 = border[i] - (i == 0 ? border[border.size()-1] : border[i-1]);
const Vec3d& v1 = (i == int(border.size()-1) ? border[0] : border[i+1]) - border[i];
double angle = atan2(-normal.dot(v1.cross(v2)), -v1.dot(v2)) + M_PI;
if (angle > M_PI)
angle = 2*M_PI - angle;
angles.push_back(angle);
lengths.push_back(v2.norm());
if (first_different_angle_idx == 0 && angles.size() > 1) {
if (! are_angles_same(angles.back(), angles[angles.size()-2]))
first_different_angle_idx = angles.size()-1;
}
}
assert(border.size() == angles.size());
assert(border.size() == lengths.size());
// First go around the border and pick what might be circular segments.
// Save pair of indices to where such potential segments start and end.
// Also remember the length of these segments.
int start_idx = -1;
bool circle = false;
bool first_iter = true;
std::vector<SurfaceFeature> circles;
std::vector<SurfaceFeature> edges;
std::vector<std::pair<int, int>> circles_idxs;
//std::vector<double> circles_lengths;
std::vector<Vec3d> single_circle; // could be in loop-scope, but reallocations
double single_circle_length = 0.;
int first_pt_idx = offset_to_index(first_different_angle_idx, 1);
int i = first_pt_idx;
while (i != first_pt_idx || first_iter) {
if (are_angles_same(angles[i], angles[offset_to_index(i,-1)])
&& i != offset_to_index(first_pt_idx, -1) // not the last point
&& i != start_idx ) {
// circle
if (! circle) {
circle = true;
single_circle.clear();
single_circle_length = 0.;
start_idx = offset_to_index(i, -2);
single_circle = { border[start_idx], border[offset_to_index(start_idx,1)] };
single_circle_length += lengths[offset_to_index(i, -1)];
}
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
} else {
if (circle && single_circle.size() >= 5) { // Less than 5 vertices? Not a circle.
single_circle.emplace_back(border[i]);
single_circle_length += lengths[i];
bool accept_circle = true;
{
// Check that lengths of internal (!!!) edges match.
int j = offset_to_index(start_idx, 3);
while (j != i) {
if (! are_lengths_same(lengths[offset_to_index(j,-1)], lengths[j])) {
accept_circle = false;
break;
}
j = offset_to_index(j, 1);
}
}
if (accept_circle) {
const auto& [center, radius, err] = get_center_and_radius(single_circle, trafo, trafo_inv);
// Check that the fit went well. The tolerance is high, only to
// reject complete failures.
accept_circle &= err < 0.05;
// If the segment subtends less than 90 degrees, throw it away.
accept_circle &= single_circle_length / radius > 0.9*M_PI/2.;
if (accept_circle) {
// Add the circle and remember indices into borders.
circles_idxs.emplace_back(start_idx, i);
circles.emplace_back(SurfaceFeature(SurfaceFeatureType::Circle, center, plane.normal, std::nullopt, radius));
}
}
}
circle = false;
}
// Take care of the wrap around.
first_iter = false;
i = offset_to_index(i, 1);
}
// We have the circles. Now go around again and pick edges, while jumping over circles.
if (circles_idxs.empty()) {
// Just add all edges.
for (int i=1; i<int(border.size()); ++i)
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[i-1], border[i]));
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[0], border[border.size()-1]));
} else if (circles_idxs.size() > 1 || circles_idxs.front().first != circles_idxs.front().second) {
// There is at least one circular segment. Start at its end and add edges until the start of the next one.
int i = circles_idxs.front().second;
int circle_idx = 1;
while (true) {
i = offset_to_index(i, 1);
edges.emplace_back(SurfaceFeature(SurfaceFeatureType::Edge, border[offset_to_index(i,-1)], border[i]));
if (circle_idx < int(circles_idxs.size()) && i == circles_idxs[circle_idx].first) {
i = circles_idxs[circle_idx].second;
++circle_idx;
}
if (i == circles_idxs.front().first)
break;
}
}
// Merge adjacent edges where needed.
assert(std::all_of(edges.begin(), edges.end(),
[](const SurfaceFeature& f) { return f.get_type() == SurfaceFeatureType::Edge; }));
for (int i=edges.size()-1; i>=0; --i) {
const auto& [first_start, first_end] = edges[i==0 ? edges.size()-1 : i-1].get_edge();
const auto& [second_start, second_end] = edges[i].get_edge();
if (Slic3r::is_approx(first_end, second_start)
&& Slic3r::is_approx((first_end-first_start).normalized().dot((second_end-second_start).normalized()), 1.)) {
// The edges have the same direction and share a point. Merge them.
edges[i==0 ? edges.size()-1 : i-1] = SurfaceFeature(SurfaceFeatureType::Edge, first_start, second_end);
edges.erase(edges.begin() + i);
}
}
// Now move the circles and edges into the feature list for the plane.
assert(std::all_of(circles.begin(), circles.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Circle;
}));
assert(std::all_of(edges.begin(), edges.end(), [](const SurfaceFeature& f) {
return f.get_type() == SurfaceFeatureType::Edge;
}));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(circles.begin()),
std::make_move_iterator(circles.end()));
plane.surface_features.insert(plane.surface_features.end(), std::make_move_iterator(edges.begin()),
std::make_move_iterator(edges.end()));
}
}
// The last surface feature is the plane itself.
Vec3d cog = Vec3d::Zero();
size_t counter = 0;
for (const std::vector<Vec3d>& b : plane.borders) {
for (size_t i = 0; i < b.size(); ++i) {
cog += b[i];
++counter;
}
}
cog /= double(counter);
plane.surface_features.emplace_back(SurfaceFeature(SurfaceFeatureType::Plane,
plane.normal, cog, std::optional<Vec3d>(), plane_idx + 0.0001));
plane.borders.clear();
plane.borders.shrink_to_fit();
plane.features_extracted = true;
}
std::optional<SurfaceFeature> MeasuringImpl::get_feature(size_t face_idx, const Vec3d& point, const Transform3d &world_tran)
{
if (face_idx >= m_face_to_plane.size())
return std::optional<SurfaceFeature>();
const PlaneData& plane = m_planes[m_face_to_plane[face_idx]];
if (! plane.features_extracted)
extract_features(m_face_to_plane[face_idx]);
size_t closest_feature_idx = size_t(-1);
double min_dist = std::numeric_limits<double>::max();
MeasurementResult res;
SurfaceFeature point_sf(point);
assert(plane.surface_features.empty() || plane.surface_features.back().get_type() == SurfaceFeatureType::Plane);
for (size_t i=0; i<plane.surface_features.size() - 1; ++i) {
// The -1 is there to prevent measuring distance to the plane itself,
// which is needless and relatively expensive.
res = get_measurement(plane.surface_features[i], point_sf);
if (res.distance_strict) { // TODO: this should become an assert after all combinations are implemented.
double dist = res.distance_strict->dist;
if (dist < feature_hover_limit && dist < min_dist) {
min_dist = std::min(dist, min_dist);
closest_feature_idx = i;
}
}
}
if (closest_feature_idx != size_t(-1)) {
const SurfaceFeature& f = plane.surface_features[closest_feature_idx];
if (f.get_type() == SurfaceFeatureType::Edge) {
// If this is an edge, check if we are not close to the endpoint. If so,
// we will include the endpoint as well. Close = 10% of the lenghth of
// the edge, clamped between 0.025 and 0.5 mm.
const auto& [sp, ep] = f.get_edge();
double len_sq = (ep-sp).squaredNorm();
double limit_sq = std::max(0.025*0.025, std::min(0.5*0.5, 0.1 * 0.1 * len_sq));
if ((point - sp).squaredNorm() < limit_sq) {
SurfaceFeature local_f(sp);
local_f.origin_surface_feature = std::make_shared<SurfaceFeature>(local_f);
local_f.translate(world_tran);
return std::make_optional(local_f);
}
if ((point - ep).squaredNorm() < limit_sq) {
SurfaceFeature local_f(ep);
local_f.origin_surface_feature = std::make_shared<SurfaceFeature>(local_f);
local_f.translate(world_tran);
return std::make_optional(local_f);
}
}
SurfaceFeature f_tran(f);
f_tran.origin_surface_feature = std::make_shared<SurfaceFeature>(f);
f_tran.translate(world_tran);
return std::make_optional(f_tran);
}
// Nothing detected, return the plane as a whole.
assert(plane.surface_features.back().get_type() == SurfaceFeatureType::Plane);
auto cur_plane = const_cast<PlaneData*>(&plane);
SurfaceFeature f_tran(cur_plane->surface_features.back());
f_tran.origin_surface_feature = std::make_shared<SurfaceFeature>(cur_plane->surface_features.back());
f_tran.translate(world_tran);
return std::make_optional(f_tran);
}
int MeasuringImpl::get_num_of_planes() const
{
return (m_planes.size());
}
const std::vector<int>& MeasuringImpl::get_plane_triangle_indices(int idx) const
{
assert(idx >= 0 && idx < int(m_planes.size()));
return m_planes[idx].facets;
}
std::vector<int>* MeasuringImpl::get_plane_tri_indices(int idx)
{
assert(idx >= 0 && idx < int(m_planes.size()));
return &m_planes[idx].facets;
}
const std::vector<SurfaceFeature>& MeasuringImpl::get_plane_features(unsigned int plane_id)
{
assert(plane_id < m_planes.size());
if (! m_planes[plane_id].features_extracted)
extract_features(plane_id);
return m_planes[plane_id].surface_features;
}
std::vector<SurfaceFeature>* MeasuringImpl::get_plane_features_pointer(unsigned int plane_id) {
assert(plane_id < m_planes.size());
if (!m_planes[plane_id].features_extracted)
extract_features(plane_id);
return &m_planes[plane_id].surface_features;
}
const indexed_triangle_set& MeasuringImpl::get_its() const
{
return this->m_its;
}
Measuring::Measuring(const indexed_triangle_set& its)
: priv{std::make_unique<MeasuringImpl>(its)}
{}
Measuring::~Measuring() {}
std::optional<SurfaceFeature> Measuring::get_feature(size_t face_idx, const Vec3d &point, const Transform3d &world_tran) const {
return priv->get_feature(face_idx, point,world_tran);
}
int Measuring::get_num_of_planes() const
{
return priv->get_num_of_planes();
}
const std::vector<int>& Measuring::get_plane_triangle_indices(int idx) const
{
return priv->get_plane_triangle_indices(idx);
}
const std::vector<SurfaceFeature>& Measuring::get_plane_features(unsigned int plane_id) const
{
return priv->get_plane_features(plane_id);
}
const indexed_triangle_set& Measuring::get_its() const
{
return priv->get_its();
}
const AngleAndEdges AngleAndEdges::Dummy = { 0.0, Vec3d::Zero(), { Vec3d::Zero(), Vec3d::Zero() }, { Vec3d::Zero(), Vec3d::Zero() }, 0.0, true };
static AngleAndEdges angle_edge_edge(const std::pair<Vec3d, Vec3d>& e1, const std::pair<Vec3d, Vec3d>& e2)
{
if (are_parallel(e1, e2))
return AngleAndEdges::Dummy;
Vec3d e1_unit = edge_direction(e1.first, e1.second);
Vec3d e2_unit = edge_direction(e2.first, e2.second);
// project edges on the plane defined by them
Vec3d normal = e1_unit.cross(e2_unit).normalized();
const Eigen::Hyperplane<double, 3> plane(normal, e1.first);
Vec3d e11_proj = plane.projection(e1.first);
Vec3d e12_proj = plane.projection(e1.second);
Vec3d e21_proj = plane.projection(e2.first);
Vec3d e22_proj = plane.projection(e2.second);
const bool coplanar = (e2.first - e21_proj).norm() < EPSILON && (e2.second - e22_proj).norm() < EPSILON;
// rotate the plane to become the XY plane
auto qp = Eigen::Quaternion<double>::FromTwoVectors(normal, Vec3d::UnitZ());
auto qp_inverse = qp.inverse();
const Vec3d e11_rot = qp * e11_proj;
const Vec3d e12_rot = qp * e12_proj;
const Vec3d e21_rot = qp * e21_proj;
const Vec3d e22_rot = qp * e22_proj;
// discard Z
const Vec2d e11_rot_2d = Vec2d(e11_rot.x(), e11_rot.y());
const Vec2d e12_rot_2d = Vec2d(e12_rot.x(), e12_rot.y());
const Vec2d e21_rot_2d = Vec2d(e21_rot.x(), e21_rot.y());
const Vec2d e22_rot_2d = Vec2d(e22_rot.x(), e22_rot.y());
// find intersection (arc center) of edges in XY plane
const Eigen::Hyperplane<double, 2> e1_rot_2d_line = Eigen::Hyperplane<double, 2>::Through(e11_rot_2d, e12_rot_2d);
const Eigen::Hyperplane<double, 2> e2_rot_2d_line = Eigen::Hyperplane<double, 2>::Through(e21_rot_2d, e22_rot_2d);
const Vec2d center_rot_2d = e1_rot_2d_line.intersection(e2_rot_2d_line);
// arc center in original coordinate
const Vec3d center = qp_inverse * Vec3d(center_rot_2d.x(), center_rot_2d.y(), e11_rot.z());
// ensure the edges are pointing away from the center
std::pair<Vec3d, Vec3d> out_e1 = e1;
std::pair<Vec3d, Vec3d> out_e2 = e2;
if ((center_rot_2d - e11_rot_2d).squaredNorm() > (center_rot_2d - e12_rot_2d).squaredNorm()) {
std::swap(e11_proj, e12_proj);
std::swap(out_e1.first, out_e1.second);
e1_unit = -e1_unit;
}
if ((center_rot_2d - e21_rot_2d).squaredNorm() > (center_rot_2d - e22_rot_2d).squaredNorm()) {
std::swap(e21_proj, e22_proj);
std::swap(out_e2.first, out_e2.second);
e2_unit = -e2_unit;
}
// arc angle
const double angle = std::acos(std::clamp(e1_unit.dot(e2_unit), -1.0, 1.0));
// arc radius
const Vec3d e1_proj_mid = 0.5 * (e11_proj + e12_proj);
const Vec3d e2_proj_mid = 0.5 * (e21_proj + e22_proj);
const double radius = std::min((center - e1_proj_mid).norm(), (center - e2_proj_mid).norm());
return { angle, center, out_e1, out_e2, radius, coplanar };
}
static AngleAndEdges angle_edge_plane(const std::pair<Vec3d, Vec3d>& e, const std::tuple<int, Vec3d, Vec3d>& p)
{
const auto& [idx, normal, origin] = p;
Vec3d e1e2_unit = edge_direction(e);
if (are_perpendicular(e1e2_unit, normal))
return AngleAndEdges::Dummy;
// ensure the edge is pointing away from the intersection
// 1st calculate instersection between edge and plane
const Eigen::Hyperplane<double, 3> plane(normal, origin);
const Eigen::ParametrizedLine<double, 3> line = Eigen::ParametrizedLine<double, 3>::Through(e.first, e.second);
const Vec3d inters = line.intersectionPoint(plane);
// then verify edge direction and revert it, if needed
Vec3d e1 = e.first;
Vec3d e2 = e.second;
if ((e1 - inters).squaredNorm() > (e2 - inters).squaredNorm()) {
std::swap(e1, e2);
e1e2_unit = -e1e2_unit;
}
if (are_parallel(e1e2_unit, normal)) {
const std::array<Vec3d, 3> basis = orthonormal_basis(e1e2_unit);
const double radius = (0.5 * (e1 + e2) - inters).norm();
const Vec3d edge_on_plane_dir = (basis[1].dot(origin - inters) >= 0.0) ? basis[1] : -basis[1];
std::pair<Vec3d, Vec3d> edge_on_plane = std::make_pair(inters, inters + radius * edge_on_plane_dir);
if (!inters.isApprox(e1)) {
edge_on_plane.first += radius * edge_on_plane_dir;
edge_on_plane.second += radius * edge_on_plane_dir;
}
return AngleAndEdges(0.5 * double(PI), inters, std::make_pair(e1, e2), edge_on_plane, radius, inters.isApprox(e1));
}
const Vec3d e1e2 = e2 - e1;
const double e1e2_len = e1e2.norm();
// calculate 2nd edge (on the plane)
const Vec3d temp = normal.cross(e1e2);
const Vec3d edge_on_plane_unit = normal.cross(temp).normalized();
std::pair<Vec3d, Vec3d> edge_on_plane = { origin, origin + e1e2_len * edge_on_plane_unit };
// ensure the 2nd edge is pointing in the correct direction
const Vec3d test_edge = (edge_on_plane.second - edge_on_plane.first).cross(e1e2);
if (test_edge.dot(temp) < 0.0)
edge_on_plane = { origin, origin - e1e2_len * edge_on_plane_unit };
AngleAndEdges ret = angle_edge_edge({ e1, e2 }, edge_on_plane);
ret.radius = (inters - 0.5 * (e1 + e2)).norm();
return ret;
}
static AngleAndEdges angle_plane_plane(const std::tuple<int, Vec3d, Vec3d>& p1, const std::tuple<int, Vec3d, Vec3d>& p2)
{
const auto& [idx1, normal1, origin1] = p1;
const auto& [idx2, normal2, origin2] = p2;
// are planes parallel ?
if (are_parallel(normal1, normal2))
return AngleAndEdges::Dummy;
auto intersection_plane_plane = [](const Vec3d& n1, const Vec3d& o1, const Vec3d& n2, const Vec3d& o2) {
Eigen::MatrixXd m(2, 3);
m << n1.x(), n1.y(), n1.z(), n2.x(), n2.y(), n2.z();
Eigen::VectorXd b(2);
b << o1.dot(n1), o2.dot(n2);
Eigen::VectorXd x = m.colPivHouseholderQr().solve(b);
return std::make_pair(n1.cross(n2).normalized(), Vec3d(x(0), x(1), x(2)));
};
// Calculate intersection line between planes
const auto [intersection_line_direction, intersection_line_origin] = intersection_plane_plane(normal1, origin1, normal2, origin2);
// Project planes' origin on intersection line
const Eigen::ParametrizedLine<double, 3> intersection_line = Eigen::ParametrizedLine<double, 3>(intersection_line_origin, intersection_line_direction);
const Vec3d origin1_proj = intersection_line.projection(origin1);
const Vec3d origin2_proj = intersection_line.projection(origin2);
// Calculate edges on planes
const Vec3d edge_on_plane1_unit = (origin1 - origin1_proj).normalized();
const Vec3d edge_on_plane2_unit = (origin2 - origin2_proj).normalized();
const double radius = std::max(10.0, std::max((origin1 - origin1_proj).norm(), (origin2 - origin2_proj).norm()));
const std::pair<Vec3d, Vec3d> edge_on_plane1 = { origin1_proj + radius * edge_on_plane1_unit, origin1_proj + 2.0 * radius * edge_on_plane1_unit };
const std::pair<Vec3d, Vec3d> edge_on_plane2 = { origin2_proj + radius * edge_on_plane2_unit, origin2_proj + 2.0 * radius * edge_on_plane2_unit };
AngleAndEdges ret = angle_edge_edge(edge_on_plane1, edge_on_plane2);
ret.radius = radius;
return ret;
}
MeasurementResult get_measurement(const SurfaceFeature &a, const SurfaceFeature &b, bool deal_circle_result)
{
assert(a.get_type() != SurfaceFeatureType::Undef && b.get_type() != SurfaceFeatureType::Undef);
const bool swap = int(a.get_type()) > int(b.get_type());
const SurfaceFeature& f1 = swap ? b : a;
const SurfaceFeature& f2 = swap ? a : b;
MeasurementResult result;
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
if (f1.get_type() == SurfaceFeatureType::Point) {
if (f2.get_type() == SurfaceFeatureType::Point) {
Vec3d diff = (f2.get_point() - f1.get_point());
result.distance_strict = std::make_optional(DistAndPoints{diff.norm(), f1.get_point(), f2.get_point()});
result.distance_xyz = diff;
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Edge) {
const auto [s,e] = f2.get_edge();
const Eigen::ParametrizedLine<double, 3> line(s, (e-s).normalized());
const double dist_inf = line.distance(f1.get_point());
const Vec3d proj = line.projection(f1.get_point());
const double len_sq = (e-s).squaredNorm();
const double dist_start_sq = (proj-s).squaredNorm();
const double dist_end_sq = (proj-e).squaredNorm();
if (dist_start_sq < len_sq && dist_end_sq < len_sq) {
// projection falls on the line - the strict distance is the same as infinite
result.distance_strict = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj});
} else { // the result is the closer of the endpoints
const bool s_is_closer = dist_start_sq < dist_end_sq;
result.distance_strict = std::make_optional(DistAndPoints{std::sqrt(std::min(dist_start_sq, dist_end_sq) + sqr(dist_inf)), f1.get_point(), s_is_closer ? s : e});
}
result.distance_infinite = std::make_optional(DistAndPoints{dist_inf, f1.get_point(), proj});
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Circle) {
// Find a plane containing normal, center and the point.
const auto [c, radius, n] = f2.get_circle();
const Eigen::Hyperplane<double, 3> circle_plane(n, c);
const Vec3d proj = circle_plane.projection(f1.get_point());
if (proj.isApprox(c)) {
const Vec3d p_on_circle = c + radius * get_orthogonal(n, true);
result.distance_strict = std::make_optional(DistAndPoints{ radius, c, p_on_circle });
}
else {
if (deal_circle_result == false) {
const Eigen::Hyperplane<double, 3> circle_plane(n, c);
const Vec3d proj = circle_plane.projection(f1.get_point());
const double dist = std::sqrt(std::pow((proj - c).norm() - radius, 2.) + (f1.get_point() - proj).squaredNorm());
const Vec3d p_on_circle = c + radius * (proj - c).normalized();
result.distance_strict = std::make_optional(DistAndPoints{dist, f1.get_point(), p_on_circle});
}
else {
const double dist = (f1.get_point() - c).norm();
result.distance_strict = std::make_optional(DistAndPoints{dist, f1.get_point(), c});
}
}
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Plane) {
const auto [idx, normal, pt] = f2.get_plane();
Eigen::Hyperplane<double, 3> plane(normal, pt);
result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(f1.get_point()), f1.get_point(), plane.projection(f1.get_point())}); // TODO
// TODO: result.distance_strict =
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
}
else if (f1.get_type() == SurfaceFeatureType::Edge) {
if (f2.get_type() == SurfaceFeatureType::Edge) {
std::vector<DistAndPoints> distances;
auto add_point_edge_distance = [&distances](const Vec3d& v, const std::pair<Vec3d, Vec3d>& e) {
const MeasurementResult res = get_measurement(SurfaceFeature(v), SurfaceFeature(SurfaceFeatureType::Edge, e.first, e.second));
double distance = res.distance_strict->dist;
Vec3d v2 = res.distance_strict->to;
const Vec3d e1e2 = e.second - e.first;
const Vec3d e1v2 = v2 - e.first;
if (e1v2.dot(e1e2) >= 0.0 && e1v2.norm() < e1e2.norm())
distances.emplace_back(distance, v, v2);
};
std::pair<Vec3d, Vec3d> e1 = f1.get_edge();
std::pair<Vec3d, Vec3d> e2 = f2.get_edge();
distances.emplace_back((e2.first - e1.first).norm(), e1.first, e2.first);
distances.emplace_back((e2.second - e1.first).norm(), e1.first, e2.second);
distances.emplace_back((e2.first - e1.second).norm(), e1.second, e2.first);
distances.emplace_back((e2.second - e1.second).norm(), e1.second, e2.second);
add_point_edge_distance(e1.first, e2);
add_point_edge_distance(e1.second, e2);
add_point_edge_distance(e2.first, e1);
add_point_edge_distance(e2.second, e1);
auto it = std::min_element(distances.begin(), distances.end(),
[](const DistAndPoints& item1, const DistAndPoints& item2) {
return item1.dist < item2.dist;
});
result.distance_infinite = std::make_optional(*it);
result.angle = angle_edge_edge(f1.get_edge(), f2.get_edge());
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Circle) {
const std::pair<Vec3d, Vec3d> e = f1.get_edge();
const auto &[center, radius, normal] = f2.get_circle();
const Vec3d e1e2 = (e.second - e.first);
const Vec3d e1e2_unit = e1e2.normalized();
std::vector<DistAndPoints> distances;
distances.emplace_back(*get_measurement(SurfaceFeature(e.first), f2).distance_strict);
distances.emplace_back(*get_measurement(SurfaceFeature(e.second), f2).distance_strict);
const Eigen::Hyperplane<double, 3> plane(e1e2_unit, center);
const Eigen::ParametrizedLine<double, 3> line = Eigen::ParametrizedLine<double, 3>::Through(e.first, e.second);
const Vec3d inter = line.intersectionPoint(plane);
const Vec3d e1inter = inter - e.first;
if (e1inter.dot(e1e2) >= 0.0 && e1inter.norm() < e1e2.norm()) distances.emplace_back(*get_measurement(SurfaceFeature(inter), f2).distance_strict);
auto it = std::min_element(distances.begin(), distances.end(), [](const DistAndPoints &item1, const DistAndPoints &item2) { return item1.dist < item2.dist; });
if (deal_circle_result == false) {
result.distance_infinite = std::make_optional(DistAndPoints{it->dist, it->from, it->to});
}
else{
const double dist = (it->from - center).norm();
result.distance_infinite = std::make_optional(DistAndPoints{dist, it->from, center});
}
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Plane) {
const auto [from, to] = f1.get_edge();
const auto [idx, normal, origin] = f2.get_plane();
const Vec3d edge_unit = (to - from).normalized();
if (are_perpendicular(edge_unit, normal)) {
std::vector<DistAndPoints> distances;
const Eigen::Hyperplane<double, 3> plane(normal, origin);
distances.push_back(DistAndPoints{ plane.absDistance(from), from, plane.projection(from) });
distances.push_back(DistAndPoints{ plane.absDistance(to), to, plane.projection(to) });
auto it = std::min_element(distances.begin(), distances.end(),
[](const DistAndPoints& item1, const DistAndPoints& item2) {
return item1.dist < item2.dist;
});
result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to });
}
else {
auto plane_features = f2.world_plane_features;
std::vector<DistAndPoints> distances;
for (const SurfaceFeature& sf : *plane_features) {
if (sf.get_type() == SurfaceFeatureType::Edge) {
const auto m = get_measurement(sf, f1);
if (!m.distance_infinite.has_value()) {
distances.clear();
break;
}
else
distances.push_back(*m.distance_infinite);
}
}
if (!distances.empty()) {
auto it = std::min_element(distances.begin(), distances.end(),
[](const DistAndPoints& item1, const DistAndPoints& item2) {
return item1.dist < item2.dist;
});
result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to });
}
}
result.angle = angle_edge_plane(f1.get_edge(), f2.get_plane());
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
} else if (f1.get_type() == SurfaceFeatureType::Circle) {
if (f2.get_type() == SurfaceFeatureType::Circle) {
const auto [c0, r0, n0] = f1.get_circle();
const auto [c1, r1, n1] = f2.get_circle();
// The following code is an adaptation of the algorithm found in:
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/DistCircle3Circle3.h
// and described in:
// https://www.geometrictools.com/Documentation/DistanceToCircle3.pdf
struct ClosestInfo
{
double sqrDistance{ 0.0 };
Vec3d circle0Closest{ Vec3d::Zero() };
Vec3d circle1Closest{ Vec3d::Zero() };
inline bool operator < (const ClosestInfo& other) const { return sqrDistance < other.sqrDistance; }
};
std::array<ClosestInfo, 16> candidates{};
const double zero = 0.0;
const Vec3d D = c1 - c0;
if (!are_parallel(n0, n1)) {
// Get parameters for constructing the degree-8 polynomial phi.
const double one = 1.0;
const double two = 2.0;
const double r0sqr = sqr(r0);
const double r1sqr = sqr(r1);
// Compute U1 and V1 for the plane of circle1.
const std::array<Vec3d, 3> basis = orthonormal_basis(n1);
const Vec3d U1 = basis[0];
const Vec3d V1 = basis[1];
// Construct the polynomial phi(cos(theta)).
const Vec3d N0xD = n0.cross(D);
const Vec3d N0xU1 = n0.cross(U1);
const Vec3d N0xV1 = n0.cross(V1);
const double a0 = r1 * D.dot(U1);
const double a1 = r1 * D.dot(V1);
const double a2 = N0xD.dot(N0xD);
const double a3 = r1 * N0xD.dot(N0xU1);
const double a4 = r1 * N0xD.dot(N0xV1);
const double a5 = r1sqr * N0xU1.dot(N0xU1);
const double a6 = r1sqr * N0xU1.dot(N0xV1);
const double a7 = r1sqr * N0xV1.dot(N0xV1);
Polynomial1 p0{ a2 + a7, two * a3, a5 - a7 };
Polynomial1 p1{ two * a4, two * a6 };
Polynomial1 p2{ zero, a1 };
Polynomial1 p3{ -a0 };
Polynomial1 p4{ -a6, a4, two * a6 };
Polynomial1 p5{ -a3, a7 - a5 };
Polynomial1 tmp0{ one, zero, -one };
Polynomial1 tmp1 = p2 * p2 + tmp0 * p3 * p3;
Polynomial1 tmp2 = two * p2 * p3;
Polynomial1 tmp3 = p4 * p4 + tmp0 * p5 * p5;
Polynomial1 tmp4 = two * p4 * p5;
Polynomial1 p6 = p0 * tmp1 + tmp0 * p1 * tmp2 - r0sqr * tmp3;
Polynomial1 p7 = p0 * tmp2 + p1 * tmp1 - r0sqr * tmp4;
// Parameters for polynomial root finding. The roots[] array
// stores the roots. We need only the unique ones, which is
// the responsibility of the set uniqueRoots. The pairs[]
// array stores the (cosine,sine) information mentioned in the
// PDF. TODO: Choose the maximum number of iterations for root
// finding based on specific polynomial data?
const uint32_t maxIterations = 128;
int32_t degree = 0;
size_t numRoots = 0;
std::array<double, 8> roots{};
std::set<double> uniqueRoots{};
size_t numPairs = 0;
std::array<std::pair<double, double>, 16> pairs{};
double temp = zero;
double sn = zero;
if (p7.GetDegree() > 0 || p7[0] != zero) {
// H(cs,sn) = p6(cs) + sn * p7(cs)
Polynomial1 phi = p6 * p6 - tmp0 * p7 * p7;
degree = static_cast<int32_t>(phi.GetDegree());
assert(degree > 0);
numRoots = RootsPolynomial::Find(degree, &phi[0], maxIterations, roots.data());
for (size_t i = 0; i < numRoots; ++i) {
uniqueRoots.insert(roots[i]);
}
for (auto const& cs : uniqueRoots) {
if (std::fabs(cs) <= one) {
temp = p7(cs);
if (temp != zero) {
sn = -p6(cs) / temp;
pairs[numPairs++] = std::make_pair(cs, sn);
}
else {
temp = std::max(one - sqr(cs), zero);
sn = std::sqrt(temp);
pairs[numPairs++] = std::make_pair(cs, sn);
if (sn != zero)
pairs[numPairs++] = std::make_pair(cs, -sn);
}
}
}
}
else {
// H(cs,sn) = p6(cs)
degree = static_cast<int32_t>(p6.GetDegree());
assert(degree > 0);
numRoots = RootsPolynomial::Find(degree, &p6[0], maxIterations, roots.data());
for (size_t i = 0; i < numRoots; ++i) {
uniqueRoots.insert(roots[i]);
}
for (auto const& cs : uniqueRoots) {
if (std::fabs(cs) <= one) {
temp = std::max(one - sqr(cs), zero);
sn = std::sqrt(temp);
pairs[numPairs++] = std::make_pair(cs, sn);
if (sn != zero)
pairs[numPairs++] = std::make_pair(cs, -sn);
}
}
}
for (size_t i = 0; i < numPairs; ++i) {
ClosestInfo& info = candidates[i];
Vec3d delta = D + r1 * (pairs[i].first * U1 + pairs[i].second * V1);
info.circle1Closest = c0 + delta;
const double N0dDelta = n0.dot(delta);
const double lenN0xDelta = n0.cross(delta).norm();
if (lenN0xDelta > 0.0) {
const double diff = lenN0xDelta - r0;
info.sqrDistance = sqr(N0dDelta) + sqr(diff);
delta -= N0dDelta * n0;
delta.normalize();
info.circle0Closest = c0 + r0 * delta;
}
else {
const Vec3d r0U0 = r0 * get_orthogonal(n0, true);
const Vec3d diff = delta - r0U0;
info.sqrDistance = diff.dot(diff);
info.circle0Closest = c0 + r0U0;
}
}
std::sort(candidates.begin(), candidates.begin() + numPairs);
}
else {
ClosestInfo& info = candidates[0];
const double N0dD = n0.dot(D);
const Vec3d normProj = N0dD * n0;
const Vec3d compProj = D - normProj;
Vec3d U = compProj;
const double d = U.norm();
U.normalize();
// The configuration is determined by the relative location of the
// intervals of projection of the circles on to the D-line.
// Circle0 projects to [-r0,r0] and circle1 projects to
// [d-r1,d+r1].
const double dmr1 = d - r1;
double distance;
if (dmr1 >= r0) {
// d >= r0 + r1
// The circles are separated (d > r0 + r1) or tangent with one
// outside the other (d = r0 + r1).
distance = dmr1 - r0;
info.circle0Closest = c0 + r0 * U;
info.circle1Closest = c1 - r1 * U;
}
else {
// d < r0 + r1
// The cases implicitly use the knowledge that d >= 0.
const double dpr1 = d + r1;
if (dpr1 <= r0) {
// Circle1 is inside circle0.
distance = r0 - dpr1;
if (d > 0.0) {
info.circle0Closest = c0 + r0 * U;
info.circle1Closest = c1 + r1 * U;
}
else {
// The circles are concentric, so U = (0,0,0).
// Construct a vector perpendicular to N0 to use for
// closest points.
U = get_orthogonal(n0, true);
info.circle0Closest = c0 + r0 * U;
info.circle1Closest = c1 + r1 * U;
}
}
else if (dmr1 <= -r0) {
// Circle0 is inside circle1.
distance = -r0 - dmr1;
if (d > 0.0) {
info.circle0Closest = c0 - r0 * U;
info.circle1Closest = c1 - r1 * U;
}
else {
// The circles are concentric, so U = (0,0,0).
// Construct a vector perpendicular to N0 to use for
// closest points.
U = get_orthogonal(n0, true);
info.circle0Closest = c0 + r0 * U;
info.circle1Closest = c1 + r1 * U;
}
}
else {
distance = (c1 - c0).norm();
info.circle0Closest = c0;
info.circle1Closest = c1;
}
}
info.sqrDistance = distance * distance;
}
if (deal_circle_result == false) {
result.distance_infinite = std::make_optional(
DistAndPoints{std::sqrt(candidates[0].sqrDistance), candidates[0].circle0Closest, candidates[0].circle1Closest}); // TODO
} else {
const double dist = (c0 - c1).norm();
result.distance_strict = std::make_optional(DistAndPoints{dist, c0, c1});
}
///////////////////////////////////////////////////////////////////////////
} else if (f2.get_type() == SurfaceFeatureType::Plane) {
const auto [center, radius, normal1] = f1.get_circle();
const auto [idx2, normal2, origin2] = f2.get_plane();
const bool coplanar = are_parallel(normal1, normal2) && Eigen::Hyperplane<double, 3>(normal1, center).absDistance(origin2) < EPSILON;
if (!coplanar) {
auto plane_features = f2.world_plane_features;
std::vector<DistAndPoints> distances;
for (const SurfaceFeature& sf : *plane_features) {
if (sf.get_type() == SurfaceFeatureType::Edge) {
const auto m = get_measurement(sf, f1);
if (!m.distance_infinite.has_value()) {
distances.clear();
break;
}
else
distances.push_back(*m.distance_infinite);
}
}
if (!distances.empty()) {
auto it = std::min_element(distances.begin(), distances.end(),
[](const DistAndPoints& item1, const DistAndPoints& item2) {
return item1.dist < item2.dist;
});
result.distance_infinite = std::make_optional(DistAndPoints{ it->dist, it->from, it->to });
}
else {
const Eigen::Hyperplane<double, 3> plane(normal2, origin2);
result.distance_infinite = std::make_optional(DistAndPoints{plane.absDistance(center), center, plane.projection(center)});
}
}
else {
result.distance_strict = std::make_optional(DistAndPoints{0, center, origin2});
}
}
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
} else if (f1.get_type() == SurfaceFeatureType::Plane) {
const auto [idx1, normal1, pt1] = f1.get_plane();
const auto [idx2, normal2, pt2] = f2.get_plane();
if (are_parallel(normal1, normal2)) {
// The planes are parallel, calculate distance.
const Eigen::Hyperplane<double, 3> plane(normal2, pt2);
result.distance_infinite = std::make_optional(DistAndPoints{ plane.absDistance(pt1), pt1, plane.projection(pt1) });
}
else
result.angle = angle_plane_plane(f1.get_plane(), f2.get_plane());
}
if (swap) {
auto swap_dist_and_points = [](DistAndPoints& dp) {
auto back = dp.to;
dp.to = dp.from;
dp.from = back;
};
if (result.distance_infinite.has_value()) {
swap_dist_and_points(*result.distance_infinite);
}
if (result.distance_strict.has_value()) {
swap_dist_and_points(*result.distance_strict);
}
}
return result;
}
bool can_set_xyz_distance(const SurfaceFeature &a, const SurfaceFeature &b) {
const bool swap = int(a.get_type()) > int(b.get_type());
const SurfaceFeature &f1 = swap ? b : a;
const SurfaceFeature &f2 = swap ? a : b;
if (f1.get_type() == SurfaceFeatureType::Point){
if (f2.get_type() == SurfaceFeatureType::Point) {
return true;
}
}
else if (f1.get_type() == SurfaceFeatureType::Circle) {
if (f2.get_type() == SurfaceFeatureType::Circle) {
return true;
}
}
return false;
}
AssemblyAction get_assembly_action(const SurfaceFeature& a, const SurfaceFeature& b)
{
AssemblyAction action;
const SurfaceFeature &f1 = a;
const SurfaceFeature &f2 = b;
if (f1.get_type() == SurfaceFeatureType::Plane) {
action.can_set_feature_1_reverse_rotation = true;
if (f2.get_type() == SurfaceFeatureType::Plane) {
const auto [idx1, normal1, pt1] = f1.get_plane();
const auto [idx2, normal2, pt2] = f2.get_plane();
action.can_set_to_center_coincidence = true;
action.can_set_feature_2_reverse_rotation = true;
if (are_parallel(normal1, normal2)) {
action.can_set_to_parallel = false;
action.has_parallel_distance = true;
action.can_around_center_of_faces = true;
Vec3d proj_pt2;
Measure::get_point_projection_to_plane(pt2, pt1, normal1, proj_pt2);
action.parallel_distance = (pt2 - proj_pt2).norm();
if ((pt2 - proj_pt2).dot(normal1) < 0) {
action.parallel_distance = -action.parallel_distance;
}
action.angle_radian = 0;
} else {
action.can_set_to_parallel = true;
action.has_parallel_distance = false;
action.can_around_center_of_faces = false;
action.parallel_distance = 0;
action.angle_radian = std::acos(std::clamp(normal2.dot(-normal1), -1.0, 1.0));
}
}
}
return action;
}
void SurfaceFeature::translate(const Vec3d& displacement) {
switch (get_type()) {
case Measure::SurfaceFeatureType::Point: {
m_pt1 = m_pt1 + displacement;
break;
}
case Measure::SurfaceFeatureType::Edge: {
m_pt1 = m_pt1 + displacement;
m_pt2 = m_pt2 + displacement;
if (m_pt3.has_value()) { //extra_point()
m_pt3 = *m_pt3 + displacement;
}
break;
}
case Measure::SurfaceFeatureType::Plane: {
//m_pt1 is normal;
m_pt2 = m_pt2 + displacement;
break;
}
case Measure::SurfaceFeatureType::Circle: {
m_pt1 = m_pt1 + displacement;
// m_pt2 is normal;
break;
}
default: break;
}
}
void SurfaceFeature::translate(const Transform3d &tran)
{
switch (get_type()) {
case Measure::SurfaceFeatureType::Point: {
m_pt1 = tran * m_pt1;
break;
}
case Measure::SurfaceFeatureType::Edge: {
m_pt1 = tran * m_pt1;
m_pt2 = tran * m_pt2;
if (m_pt3.has_value()) { // extra_point()
m_pt3 = tran * *m_pt3;
}
break;
}
case Measure::SurfaceFeatureType::Plane: {
// m_pt1 is normal;
Vec3d temp_pt1 = m_pt2 + m_pt1;
temp_pt1 = tran * temp_pt1;
m_pt2 = tran * m_pt2;
m_pt1 = (temp_pt1 - m_pt2).normalized();
break;
}
case Measure::SurfaceFeatureType::Circle: {
// m_pt1 is center;
// m_pt2 is normal;
auto local_normal = m_pt2;
auto local_center = m_pt1;
Vec3d temp_pt2 = local_normal + local_center;
temp_pt2 = tran * temp_pt2;
m_pt1 = tran * m_pt1;
auto world_center = m_pt1;
m_pt2 = (temp_pt2 - m_pt1).normalized();
auto calc_world_radius = [&local_center, &local_normal, &tran, &world_center](const Vec3d &pt, double &value) {
Vec3d intersection_pt;
get_point_projection_to_plane(pt, local_center, local_normal, intersection_pt);
auto local_radius_pt = (intersection_pt - local_center).normalized() * value + local_center;
auto radius_pt = tran * local_radius_pt;
value = (radius_pt - world_center).norm();
};
//m_value is radius
auto new_pt = get_one_point_in_plane(local_center, local_normal);
calc_world_radius(new_pt, m_value);
break;
}
default: break;
}
}
}//namespace Measure
} // namespace Slic3r