1974 lines
103 KiB
C++
1974 lines
103 KiB
C++
#include "PerimeterGenerator.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "ShortestPath.hpp"
|
|
#include "VariableWidth.hpp"
|
|
#include "CurveAnalyzer.hpp"
|
|
#include "Clipper2Utils.hpp"
|
|
#include "Arachne/WallToolPaths.hpp"
|
|
#include "Line.hpp"
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include "libslic3r/AABBTreeLines.hpp"
|
|
static const int overhang_sampling_number = 6;
|
|
static const double narrow_loop_length_threshold = 10;
|
|
static const double min_degree_gap = 0.1;
|
|
static const int max_overhang_degree = overhang_sampling_number - 1;
|
|
static const std::vector<double> non_uniform_degree_map = { 0, 10, 25, 50, 75, 100};
|
|
//BBS: when the width of expolygon is smaller than
|
|
//ext_perimeter_width + ext_perimeter_spacing * (1 - SMALLER_EXT_INSET_OVERLAP_TOLERANCE),
|
|
//we think it's small detail area and will generate smaller line width for it
|
|
static constexpr double SMALLER_EXT_INSET_OVERLAP_TOLERANCE = 0.22;
|
|
|
|
namespace Slic3r {
|
|
|
|
// Produces a random value between 0 and 1. Thread-safe.
|
|
static double random_value() {
|
|
thread_local std::random_device rd;
|
|
// Hash thread ID for random number seed if no hardware rng seed is available
|
|
thread_local std::mt19937 gen(rd.entropy() > 0 ? rd() : std::hash<std::thread::id>()(std::this_thread::get_id()));
|
|
thread_local std::uniform_real_distribution<double> dist(0.0, 1.0);
|
|
return dist(gen);
|
|
}
|
|
|
|
// Hierarchy of perimeters.
|
|
class PerimeterGeneratorLoop {
|
|
public:
|
|
// Polygon of this contour.
|
|
Polygon polygon;
|
|
// Is it a contour or a hole?
|
|
// Contours are CCW oriented, holes are CW oriented.
|
|
bool is_contour;
|
|
// BBS: is perimeter using smaller width
|
|
bool is_smaller_width_perimeter;
|
|
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
|
|
unsigned short depth;
|
|
// Should this contur be fuzzyfied on path generation?
|
|
bool fuzzify;
|
|
// Children contour, may be both CCW and CW oriented (outer contours or holes).
|
|
std::vector<PerimeterGeneratorLoop> children;
|
|
|
|
PerimeterGeneratorLoop(const Polygon &polygon, unsigned short depth, bool is_contour, bool fuzzify, bool is_small_width_perimeter = false) :
|
|
polygon(polygon), is_contour(is_contour), is_smaller_width_perimeter(is_small_width_perimeter), depth(depth), fuzzify(fuzzify) {}
|
|
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
|
|
bool is_external() const { return this->depth == 0; }
|
|
// An island, which may have holes, but it does not have another internal island.
|
|
bool is_internal_contour() const;
|
|
};
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuzzy_skin_point_distance)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_distance * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_distance / 2.;
|
|
double dist_left_over = random_value() * (min_dist_between_points / 2.); // the distance to be traversed on the line before making the first new point
|
|
Point* p0 = &poly.points.back();
|
|
Points out;
|
|
out.reserve(poly.points.size());
|
|
for (Point &p1 : poly.points)
|
|
{ // 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1 - *p0).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
double p0pa_dist = dist_left_over;
|
|
for (; p0pa_dist < p0p1_size;
|
|
p0pa_dist += min_dist_between_points + random_value() * range_random_point_dist)
|
|
{
|
|
double r = random_value() * (fuzzy_skin_thickness * 2.) - fuzzy_skin_thickness;
|
|
out.emplace_back(*p0 + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>());
|
|
}
|
|
dist_left_over = p0p1_size - p0pa_dist;
|
|
p0 = &p1;
|
|
}
|
|
while (out.size() < 3) {
|
|
size_t point_idx = poly.size() - 2;
|
|
out.emplace_back(poly[point_idx]);
|
|
if (point_idx == 0)
|
|
break;
|
|
-- point_idx;
|
|
}
|
|
if (out.size() >= 3)
|
|
poly.points = std::move(out);
|
|
}
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_extrusion_line(Arachne::ExtrusionLine& ext_lines, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
|
|
auto* p0 = &ext_lines.front();
|
|
std::vector<Arachne::ExtrusionJunction> out;
|
|
out.reserve(ext_lines.size());
|
|
for (auto& p1 : ext_lines) {
|
|
if (p0->p == p1.p) { // Connect endpoints.
|
|
out.emplace_back(p1.p, p1.w, p1.perimeter_index);
|
|
continue;
|
|
}
|
|
|
|
// 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1.p - p0->p).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
// so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
|
|
double dist_last_point = dist_left_over + p0p1_size * 2.;
|
|
for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size; p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX)) {
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(p0->p + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>(), p1.w, p1.perimeter_index);
|
|
dist_last_point = p0pa_dist;
|
|
}
|
|
dist_left_over = p0p1_size - dist_last_point;
|
|
p0 = &p1;
|
|
}
|
|
|
|
while (out.size() < 3) {
|
|
size_t point_idx = ext_lines.size() - 2;
|
|
out.emplace_back(ext_lines[point_idx].p, ext_lines[point_idx].w, ext_lines[point_idx].perimeter_index);
|
|
if (point_idx == 0)
|
|
break;
|
|
--point_idx;
|
|
}
|
|
|
|
if (ext_lines.back().p == ext_lines.front().p) // Connect endpoints.
|
|
out.front().p = out.back().p;
|
|
|
|
if (out.size() >= 3)
|
|
ext_lines.junctions = std::move(out);
|
|
}
|
|
|
|
using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
|
|
|
|
static void lowpass_filter_by_paths_overhang_degree(ExtrusionPaths& paths) {
|
|
const double filter_range = scale_(6.5);
|
|
const double threshold_length = scale_(1.2);
|
|
|
|
//0.save old overhang series first which is input of filter
|
|
const int path_num = paths.size();
|
|
if (path_num < 2)
|
|
//don't need to do filting if only has one path in vector
|
|
return;
|
|
std::vector<int> old_overhang_series;
|
|
old_overhang_series.reserve(path_num);
|
|
for (int i = 0; i < path_num; i++)
|
|
old_overhang_series.push_back(paths[i].get_overhang_degree());
|
|
|
|
//1.lowpass filter
|
|
for (int i = 0; i < path_num; i++) {
|
|
double current_length = paths[i].length();
|
|
int current_overhang_degree = old_overhang_series[i];
|
|
if (current_length < threshold_length &&
|
|
(paths[i].role() == erPerimeter || paths[i].role() == erExternalPerimeter)) {
|
|
double left_total_length = (filter_range - current_length) / 2;
|
|
double right_total_length = left_total_length;
|
|
|
|
double temp_length;
|
|
int j = i - 1;
|
|
int index;
|
|
std::vector<std::pair<double, int>> neighbor_path;
|
|
while (left_total_length > 0) {
|
|
index = (j < 0) ? path_num - 1 : j;
|
|
if (paths[index].role() == erOverhangPerimeter)
|
|
break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > left_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(left_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
left_total_length -= temp_length;
|
|
j = index;
|
|
j--;
|
|
}
|
|
|
|
j = i + 1;
|
|
while (right_total_length > 0) {
|
|
index = j % path_num;
|
|
if (paths[index].role() == erOverhangPerimeter)
|
|
break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > right_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(right_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
right_total_length -= temp_length;
|
|
j++;
|
|
}
|
|
|
|
double sum = 0;
|
|
double length_sum = 0;
|
|
for (auto it = neighbor_path.begin(); it != neighbor_path.end(); it++) {
|
|
sum += (it->first * it->second);
|
|
length_sum += it->first;
|
|
}
|
|
|
|
double average_overhang = (double)(current_length * current_overhang_degree + sum) / (length_sum + current_length);
|
|
paths[i].set_overhang_degree((int)average_overhang);
|
|
}
|
|
}
|
|
|
|
//2.merge path if have same overhang degree. from back to front to avoid data copy
|
|
int last_overhang = paths[0].get_overhang_degree();
|
|
auto it = paths.begin() + 1;
|
|
while (it != paths.end())
|
|
{
|
|
if (last_overhang == it->get_overhang_degree()) {
|
|
//BBS: don't need to append duplicated points, remove the last point
|
|
if ((it-1)->polyline.last_point() == it->polyline.first_point())
|
|
(it-1)->polyline.points.pop_back();
|
|
(it-1)->polyline.append(std::move(it->polyline));
|
|
it = paths.erase(it);
|
|
} else {
|
|
last_overhang = it->get_overhang_degree();
|
|
it++;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct PolylineWithDegree
|
|
{
|
|
PolylineWithDegree(Polyline polyline, double overhang_degree) : polyline(polyline), overhang_degree(overhang_degree){};
|
|
Polyline polyline;
|
|
double overhang_degree = 0;
|
|
};
|
|
|
|
static std::deque<PolylineWithDegree> split_polyline_by_degree(const Polyline &polyline_with_insert_points, const std::deque<double> &points_overhang)
|
|
{
|
|
std::deque<PolylineWithDegree> out;
|
|
Polyline left;
|
|
Polyline right;
|
|
Polyline temp_copy = polyline_with_insert_points;
|
|
|
|
size_t poly_size = polyline_with_insert_points.size();
|
|
// BBS: merge degree in limited range
|
|
//find first degee base
|
|
double degree_base = int(points_overhang[points_overhang.size() - 1] / min_degree_gap) * min_degree_gap + min_degree_gap;
|
|
degree_base = degree_base > max_overhang_degree ? max_overhang_degree : degree_base;
|
|
double short_poly_len = 0;
|
|
for (int point_idx = points_overhang.size() - 2; point_idx > 0; --point_idx) {
|
|
|
|
double degree = points_overhang[point_idx];
|
|
|
|
if ( degree <= degree_base && degree >= degree_base - min_degree_gap )
|
|
continue;
|
|
|
|
temp_copy.split_at_index(point_idx, &left, &right);
|
|
|
|
temp_copy = std::move(left);
|
|
out.push_back(PolylineWithDegree(right, degree_base));
|
|
|
|
degree_base = int(degree / min_degree_gap) * min_degree_gap + min_degree_gap;
|
|
degree_base = degree_base > max_overhang_degree ? max_overhang_degree : degree_base;
|
|
}
|
|
|
|
if (!temp_copy.empty()) {
|
|
out.push_back(PolylineWithDegree(temp_copy, degree_base));
|
|
}
|
|
|
|
return out;
|
|
|
|
}
|
|
static void insert_point_to_line( double left_point_degree,
|
|
Point left_point,
|
|
double right_point_degree,
|
|
Point right_point,
|
|
std::deque<double> &points_overhang,
|
|
Polyline& polyline,
|
|
double mini_length)
|
|
{
|
|
Line line_temp(left_point, right_point);
|
|
double line_length = line_temp.length();
|
|
if (std::abs(left_point_degree - right_point_degree) <= 0.5 * min_degree_gap || line_length<scale_(1.5))
|
|
return;
|
|
|
|
Point middle_pt((left_point + right_point) / 2);
|
|
std::deque<double> left_points_overhang;
|
|
std::deque<double> right_points_overhang;
|
|
|
|
double middle_degree = (left_point_degree + right_point_degree) / 2;
|
|
Polyline left_polyline;
|
|
Polyline right_polyline;
|
|
|
|
insert_point_to_line(left_point_degree, left_point, middle_degree, middle_pt, left_points_overhang, left_polyline, mini_length);
|
|
insert_point_to_line(middle_degree, middle_pt, right_point_degree, right_point, right_points_overhang, right_polyline, mini_length);
|
|
|
|
if (!left_polyline.empty()) {
|
|
polyline.points.insert(polyline.points.end(), std::make_move_iterator(left_polyline.points.begin()), std::make_move_iterator(left_polyline.points.end()));
|
|
points_overhang.insert(points_overhang.end(), std::make_move_iterator(left_points_overhang.begin()), std::make_move_iterator(left_points_overhang.end()));
|
|
}
|
|
|
|
polyline.append(middle_pt);
|
|
points_overhang.emplace_back(middle_degree);
|
|
|
|
if (!right_polyline.empty()) {
|
|
polyline.points.insert(polyline.points.end(), std::make_move_iterator(right_polyline.points.begin()), std::make_move_iterator(right_polyline.points.end()));
|
|
points_overhang.insert(points_overhang.end(), std::make_move_iterator(right_points_overhang.begin()), std::make_move_iterator(right_points_overhang.end()));
|
|
}
|
|
}
|
|
|
|
class OverhangDistancer
|
|
{
|
|
std::vector<Linef> lines;
|
|
AABBTreeIndirect::Tree<2, double> tree;
|
|
|
|
public:
|
|
OverhangDistancer(const Polygons layer_polygons)
|
|
{
|
|
for (const Polygon &island : layer_polygons) {
|
|
for (const auto &line : island.lines()) {
|
|
lines.emplace_back(line.a.cast<double>(), line.b.cast<double>());
|
|
}
|
|
}
|
|
tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(lines);
|
|
}
|
|
|
|
float distance_from_perimeter(const Vec2f &point) const
|
|
{
|
|
Vec2d p = point.cast<double>();
|
|
size_t hit_idx_out{};
|
|
Vec2d hit_point_out = Vec2d::Zero();
|
|
auto distance = AABBTreeLines::squared_distance_to_indexed_lines(lines, tree, p, hit_idx_out, hit_point_out);
|
|
if (distance < 0) { return std::numeric_limits<float>::max(); }
|
|
|
|
distance = sqrt(distance);
|
|
return distance;
|
|
}
|
|
};
|
|
|
|
static std::deque<PolylineWithDegree> detect_overahng_degree(Polygons lower_polygons,
|
|
Polylines middle_overhang_polyines,
|
|
const double &lower_bound,
|
|
const double &upper_bound,
|
|
Polylines &too_short_polylines)
|
|
{
|
|
// BBS: collect lower_polygons points
|
|
//Polylines;
|
|
Points lower_polygon_points;
|
|
std::vector<size_t> polygons_bound;
|
|
|
|
std::unique_ptr<OverhangDistancer> prev_layer_distancer;
|
|
prev_layer_distancer = std::make_unique<OverhangDistancer>(lower_polygons);
|
|
std::deque<PolylineWithDegree> out;
|
|
std::deque<double> points_overhang;
|
|
//BBS: get overhang degree and split path
|
|
for (size_t polyline_idx = 0; polyline_idx < middle_overhang_polyines.size(); ++polyline_idx) {
|
|
//filter too short polyline
|
|
Polyline middle_poly = middle_overhang_polyines[polyline_idx];
|
|
if (middle_poly.length() < scale_(1.0)) {
|
|
too_short_polylines.push_back(middle_poly);
|
|
continue;
|
|
}
|
|
|
|
Polyline polyline_with_insert_points;
|
|
points_overhang.clear();
|
|
double last_terraced_overhang = 0;
|
|
// BBS : calculate overhang dist
|
|
for (size_t point_idx = 0; point_idx < middle_poly.points.size(); ++point_idx) {
|
|
Point pt = middle_poly.points[point_idx];
|
|
|
|
float overhang_dist = prev_layer_distancer->distance_from_perimeter(pt.cast<float>());
|
|
overhang_dist = overhang_dist > upper_bound ? upper_bound : overhang_dist;
|
|
// BBS : calculate overhang degree -- overhang length / width
|
|
double this_degree = (overhang_dist - lower_bound) / (upper_bound - lower_bound) *100;
|
|
// BBS: covert to terraced overhang
|
|
double terraced_overhang = 0;
|
|
if (this_degree >= 100)
|
|
terraced_overhang = max_overhang_degree;
|
|
else if (this_degree > EPSILON * 100) {
|
|
int upper_bound_idx = std::upper_bound(non_uniform_degree_map.begin(), non_uniform_degree_map.end(), this_degree) - non_uniform_degree_map.begin();
|
|
int lower_bound_idx = upper_bound_idx - 1;
|
|
|
|
if (this_degree == non_uniform_degree_map[lower_bound_idx])
|
|
terraced_overhang = lower_bound_idx;
|
|
else {
|
|
double t = (this_degree - non_uniform_degree_map[lower_bound_idx]) / (non_uniform_degree_map[upper_bound_idx] - non_uniform_degree_map[lower_bound_idx]);
|
|
terraced_overhang = (1.0 - t) * lower_bound_idx + t * upper_bound_idx;
|
|
}
|
|
}
|
|
|
|
// BBS: intert points
|
|
if (point_idx > 0) {
|
|
insert_point_to_line(last_terraced_overhang, middle_poly.points[point_idx - 1], terraced_overhang, pt, points_overhang, polyline_with_insert_points,
|
|
upper_bound - lower_bound);
|
|
}
|
|
points_overhang.push_back(terraced_overhang);
|
|
|
|
polyline_with_insert_points.append(pt);
|
|
last_terraced_overhang = terraced_overhang;
|
|
|
|
}
|
|
|
|
// BBS : split path by degree
|
|
std::deque<PolylineWithDegree> polyline_with_merged_degree = split_polyline_by_degree(polyline_with_insert_points, points_overhang);
|
|
out.insert(out.end(), std::make_move_iterator(polyline_with_merged_degree.begin()), std::make_move_iterator(polyline_with_merged_degree.end()));
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
std::pair<double, double> PerimeterGenerator::dist_boundary(double width)
|
|
{
|
|
std::pair<double, double> out;
|
|
float nozzle_diameter = print_config->nozzle_diameter.get_at(config->wall_filament - 1);
|
|
float start_offset = -0.5 * width;
|
|
float end_offset = 0.5 * nozzle_diameter;
|
|
double degree_0 = scale_(start_offset + 0.5 * (end_offset - start_offset) / (overhang_sampling_number - 1));
|
|
out.first = 0;
|
|
out.second = scale_(end_offset) - degree_0;
|
|
return out;
|
|
}
|
|
|
|
static void detect_bridge_wall(const PerimeterGenerator &perimeter_generator, ExtrusionPaths &paths, const Polylines &remain_polines, ExtrusionRole role, double mm3_per_mm, float width, float height)
|
|
{
|
|
for (Polyline poly : remain_polines) {
|
|
// check if the line is straight line, which mean if the wall is bridge
|
|
Line line(poly.first_point(), poly.last_point());
|
|
if (line.length() < poly.length()) {
|
|
extrusion_paths_append(paths,
|
|
std::move(poly),
|
|
overhang_sampling_number - 1,
|
|
int(0),
|
|
role,
|
|
mm3_per_mm,
|
|
width,
|
|
height);
|
|
continue;
|
|
}
|
|
// bridge wall
|
|
extrusion_paths_append(paths,
|
|
std::move(poly),
|
|
overhang_sampling_number,
|
|
int(0),
|
|
role,
|
|
mm3_per_mm,
|
|
width,
|
|
height);
|
|
}
|
|
}
|
|
|
|
|
|
static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
|
|
{
|
|
// loops is an arrayref of ::Loop objects
|
|
// turn each one into an ExtrusionLoop object
|
|
ExtrusionEntityCollection coll;
|
|
Polygon fuzzified;
|
|
for (const PerimeterGeneratorLoop &loop : loops) {
|
|
bool is_external = loop.is_external();
|
|
bool is_small_width = loop.is_smaller_width_perimeter;
|
|
|
|
ExtrusionRole role;
|
|
ExtrusionLoopRole loop_role;
|
|
role = is_external ? erExternalPerimeter : erPerimeter;
|
|
if (loop.is_internal_contour()) {
|
|
// Note that we set loop role to ContourInternalPerimeter
|
|
// also when loop is both internal and external (i.e.
|
|
// there's only one contour loop).
|
|
loop_role = elrContourInternalPerimeter;
|
|
} else {
|
|
loop_role = loop.is_contour? elrDefault: elrPerimeterHole;
|
|
}
|
|
|
|
// detect overhanging/bridging perimeters
|
|
ExtrusionPaths paths;
|
|
|
|
// BBS: get lower polygons series, width, mm3_per_mm
|
|
const std::vector<Polygons> *lower_polygons_series;
|
|
const std::pair<double, double> *overhang_dist_boundary;
|
|
double extrusion_mm3_per_mm;
|
|
double extrusion_width;
|
|
if (is_external) {
|
|
if (is_small_width) {
|
|
//BBS: smaller width external perimeter
|
|
lower_polygons_series = &perimeter_generator.m_smaller_external_lower_polygons_series;
|
|
overhang_dist_boundary = &perimeter_generator.m_smaller_external_overhang_dist_boundary;
|
|
extrusion_mm3_per_mm = perimeter_generator.smaller_width_ext_mm3_per_mm();
|
|
extrusion_width = perimeter_generator.smaller_ext_perimeter_flow.width();
|
|
} else {
|
|
//BBS: normal external perimeter
|
|
lower_polygons_series = &perimeter_generator.m_external_lower_polygons_series;
|
|
overhang_dist_boundary = &perimeter_generator.m_external_overhang_dist_boundary;
|
|
extrusion_mm3_per_mm = perimeter_generator.ext_mm3_per_mm();
|
|
extrusion_width = perimeter_generator.ext_perimeter_flow.width();
|
|
}
|
|
} else {
|
|
//BBS: normal perimeter
|
|
lower_polygons_series = &perimeter_generator.m_lower_polygons_series;
|
|
overhang_dist_boundary = &perimeter_generator.m_lower_overhang_dist_boundary;
|
|
extrusion_mm3_per_mm = perimeter_generator.mm3_per_mm();
|
|
extrusion_width = perimeter_generator.perimeter_flow.width();
|
|
}
|
|
|
|
|
|
const Polygon &polygon = loop.fuzzify ? fuzzified : loop.polygon;
|
|
if (loop.fuzzify) {
|
|
fuzzified = loop.polygon;
|
|
fuzzy_polygon(fuzzified, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_distance.value));
|
|
}
|
|
if (perimeter_generator.config->detect_overhang_wall && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers) {
|
|
// get non 100% overhang paths by intersecting this loop with the grown lower slices
|
|
// prepare grown lower layer slices for overhang detection
|
|
BoundingBox bbox(polygon.points);
|
|
bbox.offset(SCALED_EPSILON);
|
|
|
|
Polylines remain_polines;
|
|
|
|
//BBS: don't calculate overhang degree when enable fuzzy skin. It's unmeaning
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(lower_polygons_series->back(), bbox);
|
|
|
|
Polylines inside_polines = intersection_pl({polygon}, lower_polygons_series_clipped);
|
|
|
|
|
|
remain_polines = diff_pl({polygon}, lower_polygons_series_clipped);
|
|
|
|
bool detect_overhang_degree = perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None;
|
|
|
|
if (!detect_overhang_degree) {
|
|
if (!inside_polines.empty())
|
|
extrusion_paths_append(
|
|
paths,
|
|
std::move(inside_polines),
|
|
0,
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float)perimeter_generator.layer_height);
|
|
} else {
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(lower_polygons_series->front(), bbox);
|
|
|
|
Polylines middle_overhang_polyines = diff_pl({inside_polines}, lower_polygons_series_clipped);
|
|
//BBS: add zero_degree_path
|
|
Polylines zero_degree_polines = intersection_pl({inside_polines}, lower_polygons_series_clipped);
|
|
if (!zero_degree_polines.empty())
|
|
extrusion_paths_append(
|
|
paths,
|
|
std::move(zero_degree_polines),
|
|
0,
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float)perimeter_generator.layer_height);
|
|
//BBS: detect middle line overhang
|
|
if (!middle_overhang_polyines.empty()) {
|
|
Polylines too_short_polylines;
|
|
std::deque<PolylineWithDegree> polylines_degree_collection = detect_overahng_degree(lower_polygons_series->front(),
|
|
middle_overhang_polyines,
|
|
overhang_dist_boundary->first,
|
|
overhang_dist_boundary->second,
|
|
too_short_polylines);
|
|
if (!too_short_polylines.empty())
|
|
extrusion_paths_append(paths,
|
|
std::move(too_short_polylines),
|
|
0,
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float) perimeter_generator.layer_height);
|
|
// BBS: add path with overhang degree
|
|
for (PolylineWithDegree polylines_collection : polylines_degree_collection) {
|
|
extrusion_paths_append(paths,
|
|
std::move(polylines_collection.polyline),
|
|
polylines_collection.overhang_degree,
|
|
int(0),
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width, (float) perimeter_generator.layer_height);
|
|
}
|
|
}
|
|
|
|
}
|
|
// get 100% overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
if (remain_polines.size() != 0) {
|
|
if (!((perimeter_generator.object_config->enable_support || perimeter_generator.object_config->enforce_support_layers > 0)
|
|
&& perimeter_generator.object_config->support_top_z_distance.value == 0)) {
|
|
//detect if the overhang perimeter is bridge
|
|
detect_bridge_wall(perimeter_generator,
|
|
paths,
|
|
remain_polines,
|
|
erOverhangPerimeter,
|
|
perimeter_generator.mm3_per_mm_overhang(),
|
|
perimeter_generator.overhang_flow.width(),
|
|
perimeter_generator.overhang_flow.height());
|
|
} else {
|
|
detect_bridge_wall( perimeter_generator,
|
|
paths,
|
|
remain_polines,
|
|
role,
|
|
extrusion_mm3_per_mm,
|
|
extrusion_width,
|
|
(float)perimeter_generator.layer_height);
|
|
}
|
|
|
|
}
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
chain_and_reorder_extrusion_paths(paths, &paths.front().first_point());
|
|
} else {
|
|
ExtrusionPath path(role);
|
|
//BBS.
|
|
path.polyline = polygon.split_at_first_point();
|
|
path.overhang_degree = 0;
|
|
path.curve_degree = 0;
|
|
path.mm3_per_mm = extrusion_mm3_per_mm;
|
|
path.width = extrusion_width;
|
|
path.height = (float)perimeter_generator.layer_height;
|
|
paths.emplace_back(std::move(path));
|
|
}
|
|
|
|
coll.append(ExtrusionLoop(std::move(paths), loop_role));
|
|
}
|
|
|
|
// Append thin walls to the nearest-neighbor search (only for first iteration)
|
|
if (! thin_walls.empty()) {
|
|
variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow, coll.entities);
|
|
thin_walls.clear();
|
|
}
|
|
|
|
// Traverse children and build the final collection.
|
|
Point zero_point(0, 0);
|
|
std::vector<std::pair<size_t, bool>> chain = chain_extrusion_entities(coll.entities, &zero_point);
|
|
ExtrusionEntityCollection out;
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
assert(coll.entities[idx.first] != nullptr);
|
|
if (idx.first >= loops.size()) {
|
|
// This is a thin wall.
|
|
out.entities.reserve(out.entities.size() + 1);
|
|
out.entities.emplace_back(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (idx.second)
|
|
out.entities.back()->reverse();
|
|
} else {
|
|
const PerimeterGeneratorLoop &loop = loops[idx.first];
|
|
assert(thin_walls.empty());
|
|
ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls);
|
|
out.entities.reserve(out.entities.size() + children.entities.size() + 1);
|
|
ExtrusionLoop *eloop = static_cast<ExtrusionLoop*>(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (loop.is_contour) {
|
|
eloop->make_counter_clockwise();
|
|
out.append(std::move(children.entities));
|
|
out.entities.emplace_back(eloop);
|
|
} else {
|
|
eloop->make_clockwise();
|
|
out.entities.emplace_back(eloop);
|
|
out.append(std::move(children.entities));
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static ClipperLib_Z::Paths clip_extrusion(const ClipperLib_Z::Path& subject, const ClipperLib_Z::Paths& clip, ClipperLib_Z::ClipType clipType)
|
|
{
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot,
|
|
const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) {
|
|
// The clipping contour may be simplified by clipping it with a bounding box of "subject" path.
|
|
// The clipping function used may produce self intersections outside of the "subject" bounding box. Such self intersections are
|
|
// harmless to the result of the clipping operation,
|
|
// Both ends of each edge belong to the same source: Either they are from subject or from clipping path.
|
|
assert(e1bot.z() >= 0 && e1top.z() >= 0);
|
|
assert(e2bot.z() >= 0 && e2top.z() >= 0);
|
|
assert((e1bot.z() == 0) == (e1top.z() == 0));
|
|
assert((e2bot.z() == 0) == (e2top.z() == 0));
|
|
|
|
// Start & end points of the clipped polyline (extrusion path with a non-zero width).
|
|
ClipperLib_Z::IntPoint start = e1bot;
|
|
ClipperLib_Z::IntPoint end = e1top;
|
|
if (start.z() <= 0 && end.z() <= 0) {
|
|
start = e2bot;
|
|
end = e2top;
|
|
}
|
|
|
|
if (start.z() <= 0 && end.z() <= 0) {
|
|
// Self intersection on the source contour.
|
|
assert(start.z() == 0 && end.z() == 0);
|
|
pt.z() = 0;
|
|
}
|
|
else {
|
|
// Interpolate extrusion line width.
|
|
assert(start.z() > 0 && end.z() > 0);
|
|
|
|
double length_sqr = (end - start).cast<double>().squaredNorm();
|
|
double dist_sqr = (pt - start).cast<double>().squaredNorm();
|
|
double t = std::sqrt(dist_sqr / length_sqr);
|
|
|
|
pt.z() = start.z() + coord_t((end.z() - start.z()) * t);
|
|
}
|
|
});
|
|
|
|
clipper.AddPath(subject, ClipperLib_Z::ptSubject, false);
|
|
clipper.AddPaths(clip, ClipperLib_Z::ptClip, true);
|
|
|
|
ClipperLib_Z::PolyTree clipped_polytree;
|
|
ClipperLib_Z::Paths clipped_paths;
|
|
clipper.Execute(clipType, clipped_polytree, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
|
|
ClipperLib_Z::PolyTreeToPaths(clipped_polytree, clipped_paths);
|
|
|
|
// Clipped path could contain vertices from the clip with a Z coordinate equal to zero.
|
|
// For those vertices, we must assign value based on the subject.
|
|
// This happens only in sporadic cases.
|
|
for (ClipperLib_Z::Path& path : clipped_paths)
|
|
for (ClipperLib_Z::IntPoint& c_pt : path)
|
|
if (c_pt.z() == 0) {
|
|
// Now we must find the corresponding line on with this point is located and compute line width (Z coordinate).
|
|
if (subject.size() <= 2)
|
|
continue;
|
|
|
|
const Point pt(c_pt.x(), c_pt.y());
|
|
Point projected_pt_min;
|
|
auto it_min = subject.begin();
|
|
auto dist_sqr_min = std::numeric_limits<double>::max();
|
|
Point prev(subject.front().x(), subject.front().y());
|
|
for (auto it = std::next(subject.begin()); it != subject.end(); ++it) {
|
|
Point curr(it->x(), it->y());
|
|
Point projected_pt = pt.projection_onto(Line(prev, curr));
|
|
if (double dist_sqr = (projected_pt - pt).cast<double>().squaredNorm(); dist_sqr < dist_sqr_min) {
|
|
dist_sqr_min = dist_sqr;
|
|
projected_pt_min = projected_pt;
|
|
it_min = std::prev(it);
|
|
}
|
|
prev = curr;
|
|
}
|
|
|
|
assert(dist_sqr_min <= SCALED_EPSILON);
|
|
assert(std::next(it_min) != subject.end());
|
|
|
|
const Point pt_a(it_min->x(), it_min->y());
|
|
const Point pt_b(std::next(it_min)->x(), std::next(it_min)->y());
|
|
const double line_len = (pt_b - pt_a).cast<double>().norm();
|
|
const double dist = (projected_pt_min - pt_a).cast<double>().norm();
|
|
c_pt.z() = coord_t(double(it_min->z()) + (dist / line_len) * double(std::next(it_min)->z() - it_min->z()));
|
|
}
|
|
|
|
assert([&clipped_paths = std::as_const(clipped_paths)]() -> bool {
|
|
for (const ClipperLib_Z::Path& path : clipped_paths)
|
|
for (const ClipperLib_Z::IntPoint& pt : path)
|
|
if (pt.z() <= 0)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
return clipped_paths;
|
|
}
|
|
|
|
struct PerimeterGeneratorArachneExtrusion
|
|
{
|
|
Arachne::ExtrusionLine* extrusion = nullptr;
|
|
// Indicates if closed ExtrusionLine is a contour or a hole. Used it only when ExtrusionLine is a closed loop.
|
|
bool is_contour = false;
|
|
// Should this extrusion be fuzzyfied on path generation?
|
|
bool fuzzify = false;
|
|
};
|
|
|
|
|
|
static void smooth_overhang_level(ExtrusionPaths &paths)
|
|
{
|
|
const double threshold_length = scale_(0.8);
|
|
const double filter_range = scale_(6.5);
|
|
|
|
// 0.save old overhang series first which is input of filter
|
|
const int path_num = paths.size();
|
|
if (path_num < 2)
|
|
// don't need to do filting if only has one path in vector
|
|
return;
|
|
std::vector<int> old_overhang_series;
|
|
old_overhang_series.reserve(path_num);
|
|
for (int i = 0; i < path_num; i++) old_overhang_series.push_back(paths[i].get_overhang_degree());
|
|
|
|
for (int i = 0; i < path_num;) {
|
|
if ((paths[i].role() != erPerimeter && paths[i].role() != erExternalPerimeter)) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
double current_length = paths[i].length();
|
|
int current_overhang_degree = old_overhang_series[i];
|
|
double total_lens = current_length;
|
|
int pt = i + 1;
|
|
|
|
for (; pt < path_num; pt++) {
|
|
if (paths[pt].get_overhang_degree() != current_overhang_degree || (paths[pt].role() != erPerimeter && paths[pt].role() != erExternalPerimeter)) {
|
|
break;
|
|
}
|
|
total_lens += paths[pt].length();
|
|
}
|
|
|
|
if (total_lens < threshold_length) {
|
|
double left_total_length = (filter_range - total_lens) / 2;
|
|
double right_total_length = left_total_length;
|
|
|
|
double temp_length;
|
|
int j = i - 1;
|
|
int index;
|
|
std::vector<std::pair<double, int>> neighbor_path;
|
|
while (left_total_length > 0) {
|
|
index = (j < 0) ? path_num - 1 : j;
|
|
if (paths[index].role() == erOverhangPerimeter) break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > left_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(left_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
left_total_length -= temp_length;
|
|
j = index;
|
|
j--;
|
|
}
|
|
|
|
j = pt;
|
|
while (right_total_length > 0) {
|
|
index = j % path_num;
|
|
if (paths[index].role() == erOverhangPerimeter) break;
|
|
temp_length = paths[index].length();
|
|
if (temp_length > right_total_length)
|
|
neighbor_path.emplace_back(std::pair<double, int>(right_total_length, old_overhang_series[index]));
|
|
else
|
|
neighbor_path.emplace_back(std::pair<double, int>(temp_length, old_overhang_series[index]));
|
|
right_total_length -= temp_length;
|
|
j++;
|
|
}
|
|
|
|
double sum = 0;
|
|
double length_sum = 0;
|
|
for (auto it = neighbor_path.begin(); it != neighbor_path.end(); it++) {
|
|
sum += (it->first * it->second);
|
|
length_sum += it->first;
|
|
}
|
|
|
|
double average_overhang = (double) (total_lens * current_overhang_degree + sum) / (length_sum + total_lens);
|
|
|
|
for (int idx=i; idx<pt;idx++)
|
|
paths[idx].set_overhang_degree((int) average_overhang);
|
|
}
|
|
|
|
i = pt;
|
|
}
|
|
}
|
|
|
|
static void detect_brigde_wall_arachne(const PerimeterGenerator &perimeter_generator, ExtrusionPaths &paths, const ClipperLib_Z::Paths &path_overhang, const ExtrusionRole role, const Flow &flow)
|
|
{
|
|
for (ClipperLib_Z::Path path : path_overhang) {
|
|
// check if the line is straight line, which mean if the wall is bridge
|
|
ThickPolyline thick_polyline = Arachne::to_thick_polyline(path);
|
|
|
|
Line line(thick_polyline.front(), thick_polyline.back());
|
|
if (line.length() < thick_polyline.length()) {
|
|
extrusion_path_append(paths,
|
|
std::move(thick_polyline),
|
|
role,
|
|
flow,
|
|
overhang_sampling_number - 1);
|
|
continue;
|
|
}
|
|
|
|
extrusion_path_append(paths,
|
|
std::move(thick_polyline),
|
|
role,
|
|
flow,
|
|
overhang_sampling_number);
|
|
}
|
|
}
|
|
|
|
static ExtrusionEntityCollection traverse_extrusions(const PerimeterGenerator& perimeter_generator, std::vector<PerimeterGeneratorArachneExtrusion>& pg_extrusions)
|
|
{
|
|
ExtrusionEntityCollection extrusion_coll;
|
|
for (PerimeterGeneratorArachneExtrusion& pg_extrusion : pg_extrusions) {
|
|
Arachne::ExtrusionLine* extrusion = pg_extrusion.extrusion;
|
|
if (extrusion->empty())
|
|
continue;
|
|
|
|
const bool is_external = extrusion->inset_idx == 0;
|
|
ExtrusionRole role = is_external ? erExternalPerimeter : erPerimeter;
|
|
|
|
if (pg_extrusion.fuzzify)
|
|
fuzzy_extrusion_line(*extrusion, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_distance.value));
|
|
|
|
ExtrusionPaths paths;
|
|
// detect overhanging/bridging perimeters
|
|
if (perimeter_generator.config->detect_overhang_wall && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers) {
|
|
ClipperLib_Z::Path extrusion_path;
|
|
extrusion_path.reserve(extrusion->size());
|
|
BoundingBox extrusion_path_bbox;
|
|
for (const Arachne::ExtrusionJunction &ej : extrusion->junctions) {
|
|
extrusion_path.emplace_back(ej.p.x(), ej.p.y(), ej.w);
|
|
extrusion_path_bbox.merge(Point(ej.p.x(), ej.p.y()));
|
|
}
|
|
|
|
ClipperLib_Z::Paths lower_slices_paths;
|
|
{
|
|
lower_slices_paths.reserve(perimeter_generator.lower_slices_polygons().size());
|
|
Points clipped;
|
|
extrusion_path_bbox.offset(SCALED_EPSILON);
|
|
for (const Polygon &poly : perimeter_generator.lower_slices_polygons()) {
|
|
clipped.clear();
|
|
ClipperUtils::clip_clipper_polygon_with_subject_bbox(poly.points, extrusion_path_bbox, clipped);
|
|
if (!clipped.empty()) {
|
|
lower_slices_paths.emplace_back();
|
|
ClipperLib_Z::Path &out = lower_slices_paths.back();
|
|
out.reserve(clipped.size());
|
|
for (const Point &pt : clipped)
|
|
out.emplace_back(pt.x(), pt.y(), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
ExtrusionPaths temp_paths;
|
|
// get non-overhang paths by intersecting this loop with the grown lower slices
|
|
extrusion_paths_append(temp_paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctIntersection), role,
|
|
is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
|
|
|
|
if (perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None) {
|
|
|
|
Flow flow = is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow;
|
|
std::map<double, std::vector<Polygons>> clipper_serise;
|
|
|
|
std::map<double,ExtrusionPaths> recognization_paths;
|
|
for (const ExtrusionPath &path : temp_paths) {
|
|
if (recognization_paths.count(path.width))
|
|
recognization_paths[path.width].emplace_back(std::move(path));
|
|
else
|
|
recognization_paths.insert(std::pair<double, ExtrusionPaths>(path.width, {std::move(path)}));
|
|
}
|
|
|
|
for (const auto &it : recognization_paths) {
|
|
Polylines be_clipped;
|
|
|
|
for (const ExtrusionPath &p : it.second) {
|
|
be_clipped.emplace_back(std::move(p.polyline));
|
|
}
|
|
|
|
BoundingBox extrusion_bboxs = get_extents(be_clipped);
|
|
//ExPolygons lower_slcier_chopped = *perimeter_generator.lower_slices;
|
|
Polygons lower_slcier_chopped=ClipperUtils::clip_clipper_polygons_with_subject_bbox(*perimeter_generator.lower_slices, extrusion_bboxs, true);
|
|
|
|
double start_pos = -it.first * 0.5;
|
|
double end_pos = 0.5 * it.first;
|
|
|
|
Polylines remain_polylines;
|
|
std::vector<Polygons> degree_polygons;
|
|
for (int j = 0; j < overhang_sampling_number; j++) {
|
|
Polygons limiton_polygons = offset(lower_slcier_chopped, float(scale_(start_pos + (j + 0.5) * (end_pos - start_pos) / (overhang_sampling_number - 1))));
|
|
|
|
Polylines inside_polines = j == 0 ? intersection_pl(be_clipped, limiton_polygons) : intersection_pl(remain_polylines, limiton_polygons);
|
|
|
|
remain_polylines = j == 0 ? diff_pl(be_clipped, limiton_polygons) : diff_pl(remain_polylines, limiton_polygons);
|
|
|
|
extrusion_paths_append(paths, std::move(inside_polines), j, int(0), role, it.second.front().mm3_per_mm, it.second.front().width, it.second.front().height);
|
|
|
|
if (remain_polylines.size() == 0) break;
|
|
}
|
|
|
|
if (remain_polylines.size() != 0) {
|
|
extrusion_paths_append(paths, std::move(remain_polylines), overhang_sampling_number - 1, int(0), erOverhangPerimeter, it.second.front().mm3_per_mm, it.second.front().width, it.second.front().height);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
paths = std::move(temp_paths);
|
|
|
|
}
|
|
// get overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
// detect if the overhang perimeter is bridge
|
|
ClipperLib_Z::Paths path_overhang = clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctDifference);
|
|
|
|
bool zero_z_support = (perimeter_generator.object_config->enable_support || perimeter_generator.object_config->enforce_support_layers > 0) && perimeter_generator.object_config->support_top_z_distance.value == 0;
|
|
|
|
if(zero_z_support)
|
|
detect_brigde_wall_arachne(perimeter_generator, paths, path_overhang, role, is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
|
|
else
|
|
detect_brigde_wall_arachne(perimeter_generator, paths, path_overhang, erOverhangPerimeter, perimeter_generator.overhang_flow);
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
// Arachne sometimes creates extrusion with zero-length (just two same endpoints);
|
|
if (!paths.empty()) {
|
|
Point start_point = paths.front().first_point();
|
|
if (!extrusion->is_closed) {
|
|
// Especially for open extrusion, we need to select a starting point that is at the start
|
|
// or the end of the extrusions to make one continuous line. Also, we prefer a non-overhang
|
|
// starting point.
|
|
struct PointInfo
|
|
{
|
|
size_t occurrence = 0;
|
|
bool is_overhang = false;
|
|
};
|
|
std::unordered_map<Point, PointInfo, PointHash> point_occurrence;
|
|
for (const ExtrusionPath& path : paths) {
|
|
++point_occurrence[path.polyline.first_point()].occurrence;
|
|
++point_occurrence[path.polyline.last_point()].occurrence;
|
|
if (path.role() == erOverhangPerimeter) {
|
|
point_occurrence[path.polyline.first_point()].is_overhang = true;
|
|
point_occurrence[path.polyline.last_point()].is_overhang = true;
|
|
}
|
|
}
|
|
|
|
// Prefer non-overhang point as a starting point.
|
|
for (const std::pair<Point, PointInfo> pt : point_occurrence)
|
|
if (pt.second.occurrence == 1) {
|
|
start_point = pt.first;
|
|
if (!pt.second.is_overhang) {
|
|
start_point = pt.first;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
chain_and_reorder_extrusion_paths(paths, &start_point);
|
|
|
|
if (perimeter_generator.config->enable_overhang_speed && perimeter_generator.config->fuzzy_skin == FuzzySkinType::None) {
|
|
// BBS: filter the speed
|
|
smooth_overhang_level(paths);
|
|
}
|
|
|
|
}
|
|
} else {
|
|
extrusion_paths_append(paths, *extrusion, role, is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
|
|
}
|
|
|
|
// Append paths to collection.
|
|
if (!paths.empty()) {
|
|
if (extrusion->is_closed) {
|
|
ExtrusionLoop extrusion_loop(std::move(paths), extrusion->is_contour()? elrDefault : elrPerimeterHole);
|
|
// Restore the orientation of the extrusion loop.
|
|
if (pg_extrusion.is_contour)
|
|
extrusion_loop.make_counter_clockwise();
|
|
else
|
|
extrusion_loop.make_clockwise();
|
|
|
|
for (auto it = std::next(extrusion_loop.paths.begin()); it != extrusion_loop.paths.end(); ++it) {
|
|
assert(it->polyline.points.size() >= 2);
|
|
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
|
|
}
|
|
assert(extrusion_loop.paths.front().first_point() == extrusion_loop.paths.back().last_point());
|
|
|
|
extrusion_coll.append(std::move(extrusion_loop));
|
|
}
|
|
else {
|
|
// Because we are processing one ExtrusionLine all ExtrusionPaths should form one connected path.
|
|
// But there is possibility that due to numerical issue there is poss
|
|
assert([&paths = std::as_const(paths)]() -> bool {
|
|
for (auto it = std::next(paths.begin()); it != paths.end(); ++it)
|
|
if (std::prev(it)->polyline.last_point() != it->polyline.first_point())
|
|
return false;
|
|
return true;
|
|
}());
|
|
ExtrusionMultiPath multi_path;
|
|
multi_path.paths.emplace_back(std::move(paths.front()));
|
|
|
|
for (auto it_path = std::next(paths.begin()); it_path != paths.end(); ++it_path) {
|
|
if (multi_path.paths.back().last_point() != it_path->first_point()) {
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
multi_path = ExtrusionMultiPath();
|
|
}
|
|
multi_path.paths.emplace_back(std::move(*it_path));
|
|
}
|
|
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return extrusion_coll;
|
|
}
|
|
|
|
|
|
|
|
void PerimeterGenerator::process_classic()
|
|
{
|
|
// other perimeters
|
|
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
|
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
|
|
|
|
// overhang perimeters
|
|
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
|
|
|
// solid infill
|
|
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
|
|
|
// Calculate the minimum required spacing between two adjacent traces.
|
|
// This should be equal to the nominal flow spacing but we experiment
|
|
// with some tolerance in order to avoid triggering medial axis when
|
|
// some squishing might work. Loops are still spaced by the entire
|
|
// flow spacing; this only applies to collapsing parts.
|
|
// For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
|
|
// external loops (which is the correct way) instead of using ext_perimeter_spacing2
|
|
// which is the spacing between external and internal, which is not correct
|
|
// and would make the collapsing (thus the details resolution) dependent on
|
|
// internal flow which is unrelated.
|
|
coord_t min_spacing = coord_t(perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
coord_t ext_min_spacing = coord_t(ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
bool has_gap_fill = this->config->gap_infill_speed.value > 0;
|
|
|
|
// BBS: this flow is for smaller external perimeter for small area
|
|
coord_t ext_min_spacing_smaller = coord_t(ext_perimeter_spacing * (1 - SMALLER_EXT_INSET_OVERLAP_TOLERANCE));
|
|
this->smaller_ext_perimeter_flow = this->ext_perimeter_flow;
|
|
// BBS: to be checked
|
|
this->smaller_ext_perimeter_flow = this->smaller_ext_perimeter_flow.with_width(SCALING_FACTOR *
|
|
(ext_perimeter_width - 0.5 * SMALLER_EXT_INSET_OVERLAP_TOLERANCE * ext_perimeter_spacing));
|
|
m_ext_mm3_per_mm_smaller_width = this->smaller_ext_perimeter_flow.mm3_per_mm();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
m_lower_polygons_series = generate_lower_polygons_series(this->perimeter_flow.width());
|
|
m_lower_overhang_dist_boundary = dist_boundary(this->perimeter_flow.width());
|
|
if (ext_perimeter_width == perimeter_width){
|
|
m_external_lower_polygons_series = m_lower_polygons_series;
|
|
m_external_overhang_dist_boundary=m_lower_overhang_dist_boundary;
|
|
} else {
|
|
m_external_lower_polygons_series = generate_lower_polygons_series(this->ext_perimeter_flow.width());
|
|
m_external_overhang_dist_boundary = dist_boundary(this->ext_perimeter_flow.width());
|
|
}
|
|
m_smaller_external_lower_polygons_series = generate_lower_polygons_series(this->smaller_ext_perimeter_flow.width());
|
|
m_smaller_external_overhang_dist_boundary = dist_boundary(this->smaller_ext_perimeter_flow.width());
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
|
|
// BBS: don't simplify too much which influence arc fitting when export gcode if arc_fitting is enabled
|
|
double surface_simplify_resolution = (print_config->enable_arc_fitting && this->config->fuzzy_skin == FuzzySkinType::None) ? 0.2 * m_scaled_resolution : m_scaled_resolution;
|
|
//BBS: reorder the surface to reduce the travel time
|
|
ExPolygons surface_exp;
|
|
for (const Surface &surface : this->slices->surfaces)
|
|
surface_exp.push_back(surface.expolygon);
|
|
std::vector<size_t> surface_order = chain_expolygons(surface_exp);
|
|
for (size_t order_idx = 0; order_idx < surface_order.size(); order_idx++) {
|
|
const Surface &surface = this->slices->surfaces[surface_order[order_idx]];
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = this->config->wall_loops + surface.extra_perimeters - 1; // 0-indexed loops
|
|
//BBS: set the topmost and bottom most layer to be one wall
|
|
if (loop_number > 0 && ((this->object_config->top_one_wall_type != TopOneWallType::None && this->upper_slices == nullptr) || (this->object_config->only_one_wall_first_layer && layer_id == 0)))
|
|
loop_number = 0;
|
|
|
|
ExPolygons last = union_ex(surface.expolygon.simplify_p(surface_simplify_resolution));
|
|
ExPolygons gaps;
|
|
ExPolygons top_fills;
|
|
ExPolygons fill_clip;
|
|
if (loop_number >= 0) {
|
|
// In case no perimeters are to be generated, loop_number will equal to -1.
|
|
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
|
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
|
ThickPolylines thin_walls;
|
|
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
|
for (int i = 0;; ++ i) { // outer loop is 0
|
|
// Calculate next onion shell of perimeters.
|
|
ExPolygons offsets;
|
|
ExPolygons offsets_with_smaller_width;
|
|
if (i == 0) {
|
|
// look for thin walls
|
|
if (this->config->detect_thin_wall) {
|
|
// the minimum thickness of a single loop is:
|
|
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
|
offsets = offset2_ex(last,
|
|
-float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
|
|
+float(ext_min_spacing / 2. - 1));
|
|
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
|
// (actually, something larger than that still may exist due to mitering or other causes)
|
|
coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter() / 3));
|
|
ExPolygons expp = opening_ex(
|
|
// medial axis requires non-overlapping geometry
|
|
diff_ex(last, offset(offsets, float(ext_perimeter_width / 2.) + ClipperSafetyOffset)),
|
|
float(min_width / 2.));
|
|
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
|
for (ExPolygon &ex : expp)
|
|
ex.medial_axis(min_width, ext_perimeter_width + ext_perimeter_spacing2, &thin_walls);
|
|
} else {
|
|
coord_t ext_perimeter_smaller_width = this->smaller_ext_perimeter_flow.scaled_width();
|
|
for (const ExPolygon& expolygon : last) {
|
|
// BBS: judge whether it's narrow but not too long island which is hard to place two line
|
|
ExPolygons expolys;
|
|
expolys.push_back(expolygon);
|
|
ExPolygons offset_result = offset2_ex(expolys,
|
|
-float(ext_perimeter_width / 2. + ext_min_spacing_smaller / 2.),
|
|
+float(ext_min_spacing_smaller / 2.));
|
|
if (offset_result.empty() &&
|
|
expolygon.area() < (double)(ext_perimeter_width + ext_min_spacing_smaller) * scale_(narrow_loop_length_threshold)) {
|
|
// BBS: for narrow external loop, use smaller line width
|
|
ExPolygons temp_result = offset_ex(expolygon, -float(ext_perimeter_smaller_width / 2.));
|
|
offsets_with_smaller_width.insert(offsets_with_smaller_width.end(), temp_result.begin(), temp_result.end());
|
|
}
|
|
else {
|
|
//BBS: for not narrow loop, use normal external perimeter line width
|
|
ExPolygons temp_result = offset_ex(expolygon, -float(ext_perimeter_width / 2.));
|
|
offsets.insert(offsets.end(), temp_result.begin(), temp_result.end());
|
|
}
|
|
}
|
|
}
|
|
if (m_spiral_vase && (offsets.size() > 1 || offsets_with_smaller_width.size() > 1)) {
|
|
// Remove all but the largest area polygon.
|
|
keep_largest_contour_only(offsets);
|
|
//BBS
|
|
if (offsets.empty())
|
|
//BBS: only have small width loop, then keep the largest in spiral vase mode
|
|
keep_largest_contour_only(offsets_with_smaller_width);
|
|
else
|
|
//BBS: have large area, clean the small width loop
|
|
offsets_with_smaller_width.clear();
|
|
}
|
|
} else {
|
|
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
|
// from the line width of the infill?
|
|
coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
//BBS
|
|
//offsets = this->config->thin_walls ?
|
|
// This path will ensure, that the perimeters do not overfill, as in
|
|
// prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
|
|
// excessively, creating gaps, which then need to be filled in by the not very
|
|
// reliable gap fill algorithm.
|
|
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
|
|
// the original.
|
|
//offset2_ex(last,
|
|
// - float(distance + min_spacing / 2. - 1.),
|
|
// float(min_spacing / 2. - 1.)) :
|
|
// If "detect thin walls" is not enabled, this paths will be entered, which
|
|
// leads to overflows, as in prusa3d/Slic3r GH #32
|
|
//offset_ex(last, - float(distance));
|
|
|
|
//BBS: For internal perimeter, we should "enable" thin wall strategy in which offset2 is used to
|
|
// remove too closed line, so that gap fill can be used for such internal narrow area in following
|
|
// handling.
|
|
offsets = offset2_ex(last,
|
|
-float(distance + min_spacing / 2. - 1.),
|
|
float(min_spacing / 2. - 1.));
|
|
// look for gaps
|
|
if (has_gap_fill)
|
|
// not using safety offset here would "detect" very narrow gaps
|
|
// (but still long enough to escape the area threshold) that gap fill
|
|
// won't be able to fill but we'd still remove from infill area
|
|
append(gaps, diff_ex(
|
|
offset(last, - float(0.5 * distance)),
|
|
offset(offsets, float(0.5 * distance + 10)))); // safety offset
|
|
}
|
|
if (offsets.empty() && offsets_with_smaller_width.empty()) {
|
|
// Store the number of loops actually generated.
|
|
loop_number = i - 1;
|
|
// No region left to be filled in.
|
|
last.clear();
|
|
break;
|
|
} else if (i > loop_number) {
|
|
// If i > loop_number, we were looking just for gaps.
|
|
break;
|
|
}
|
|
{
|
|
const bool fuzzify_contours = this->config->fuzzy_skin != FuzzySkinType::None && ((i == 0 && this->layer_id > 0) || this->config->fuzzy_skin == FuzzySkinType::AllWalls);
|
|
const bool fuzzify_holes = fuzzify_contours && (this->config->fuzzy_skin == FuzzySkinType::All || this->config->fuzzy_skin == FuzzySkinType::AllWalls);
|
|
for (const ExPolygon& expolygon : offsets) {
|
|
// Outer contour may overlap with an inner contour,
|
|
// inner contour may overlap with another inner contour,
|
|
// outer contour may overlap with itself.
|
|
//FIXME evaluate the overlaps, annotate each point with an overlap depth,
|
|
// compensate for the depth of intersection.
|
|
contours[i].emplace_back(expolygon.contour, i, true, fuzzify_contours);
|
|
|
|
if (!expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon& hole : expolygon.holes)
|
|
holes[i].emplace_back(hole, i, false, fuzzify_holes);
|
|
}
|
|
}
|
|
|
|
//BBS: save perimeter loop which use smaller width
|
|
if (i == 0) {
|
|
for (const ExPolygon& expolygon : offsets_with_smaller_width) {
|
|
contours[i].emplace_back(PerimeterGeneratorLoop(expolygon.contour, i, true, fuzzify_contours, true));
|
|
if (!expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon& hole : expolygon.holes)
|
|
holes[i].emplace_back(PerimeterGeneratorLoop(hole, i, false, fuzzify_contours, true));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
last = std::move(offsets);
|
|
|
|
//BBS: refer to superslicer
|
|
//store surface for top infill if only_one_wall_top
|
|
if (i == 0 && i != loop_number && this->object_config->top_one_wall_type == TopOneWallType::Alltop && this->upper_slices != NULL) {
|
|
//split the polygons with top/not_top
|
|
//get the offset from solid surface anchor
|
|
coord_t offset_top_surface = scale_(1.5 * (config->wall_loops.value == 0 ? 0. : unscaled(double(ext_perimeter_width + perimeter_spacing * int(int(config->wall_loops.value) - int(1))))));
|
|
// if possible, try to not push the extra perimeters inside the sparse infill
|
|
if (offset_top_surface > 0.9 * (config->wall_loops.value <= 1 ? 0. : (perimeter_spacing * (config->wall_loops.value - 1))))
|
|
offset_top_surface -= coord_t(0.9 * (config->wall_loops.value <= 1 ? 0. : (perimeter_spacing * (config->wall_loops.value - 1))));
|
|
else
|
|
offset_top_surface = 0;
|
|
//don't takes into account too thin areas
|
|
double min_width_top_surface = (this->object_config->top_area_threshold / 100) * std::max(double(ext_perimeter_spacing / 2 + 10), 1.0 * (double(perimeter_width)));
|
|
|
|
//BBS: get boungding box of last
|
|
BoundingBox last_box = get_extents(last);
|
|
last_box.offset(SCALED_EPSILON);
|
|
|
|
// BBS: get the Polygons upper the polygon this layer
|
|
Polygons upper_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->upper_slices, last_box);
|
|
upper_polygons_series_clipped = offset(upper_polygons_series_clipped, min_width_top_surface);
|
|
|
|
//set the clip to a virtual "second perimeter"
|
|
fill_clip = offset_ex(last, -double(ext_perimeter_spacing));
|
|
// get the real top surface
|
|
ExPolygons grown_lower_slices;
|
|
ExPolygons bridge_checker;
|
|
// BBS: check whether surface be bridge or not
|
|
if (this->lower_slices != NULL) {
|
|
// BBS: get the Polygons below the polygon this layer
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->lower_slices, last_box);
|
|
|
|
double bridge_offset = std::max(double(ext_perimeter_spacing), (double(perimeter_width)));
|
|
bridge_checker = offset_ex(diff_ex(last, lower_polygons_series_clipped, ApplySafetyOffset::Yes), 1.5 * bridge_offset);
|
|
}
|
|
ExPolygons delete_bridge = diff_ex(last, bridge_checker, ApplySafetyOffset::Yes);
|
|
|
|
ExPolygons top_polygons = diff_ex(delete_bridge, upper_polygons_series_clipped, ApplySafetyOffset::Yes);
|
|
//get the not-top surface, from the "real top" but enlarged by external_infill_margin (and the min_width_top_surface we removed a bit before)
|
|
ExPolygons temp_gap = diff_ex(top_polygons, fill_clip);
|
|
ExPolygons inner_polygons = diff_ex(last,
|
|
offset_ex(top_polygons, offset_top_surface + min_width_top_surface - double(ext_perimeter_spacing / 2)),
|
|
ApplySafetyOffset::Yes);
|
|
// get the enlarged top surface, by using inner_polygons instead of upper_slices, and clip it for it to be exactly the polygons to fill.
|
|
top_polygons = diff_ex(fill_clip, inner_polygons, ApplySafetyOffset::Yes);
|
|
// increase by half peri the inner space to fill the frontier between last and stored.
|
|
top_fills = union_ex(top_fills, top_polygons);
|
|
//set the clip to the external wall but go back inside by infill_extrusion_width/2 to be sure the extrusion won't go outside even with a 100% overlap.
|
|
double infill_spacing_unscaled = this->config->sparse_infill_line_width.value;
|
|
fill_clip = offset_ex(last, double(ext_perimeter_spacing / 2) - scale_(infill_spacing_unscaled / 2));
|
|
last = intersection_ex(inner_polygons, last);
|
|
if (has_gap_fill)
|
|
last = union_ex(last,temp_gap);
|
|
//{
|
|
// std::stringstream stri;
|
|
// stri << this->layer->id() << "_1_"<< i <<"_only_one_peri"<< ".svg";
|
|
// SVG svg(stri.str());
|
|
// svg.draw(to_polylines(top_fills), "green");
|
|
// svg.draw(to_polylines(inner_polygons), "yellow");
|
|
// svg.draw(to_polylines(top_polygons), "cyan");
|
|
// svg.draw(to_polylines(oldLast), "orange");
|
|
// svg.draw(to_polylines(last), "red");
|
|
// svg.Close();
|
|
//}
|
|
}
|
|
|
|
if (i == loop_number && (! has_gap_fill || this->config->sparse_infill_density.value == 0)) {
|
|
// The last run of this loop is executed to collect gaps for gap fill.
|
|
// As the gap fill is either disabled or not
|
|
break;
|
|
}
|
|
}
|
|
|
|
// nest loops: holes first
|
|
for (int d = 0; d <= loop_number; ++ d) {
|
|
PerimeterGeneratorLoops &holes_d = holes[d];
|
|
// loop through all holes having depth == d
|
|
for (int i = 0; i < (int)holes_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = holes_d[i];
|
|
// find the hole loop that contains this one, if any
|
|
for (int t = d + 1; t <= loop_number; ++ t) {
|
|
for (int j = 0; j < (int)holes[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
// if no hole contains this hole, find the contour loop that contains it
|
|
for (int t = loop_number; t >= 0; -- t) {
|
|
for (int j = 0; j < (int)contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
NEXT_LOOP: ;
|
|
}
|
|
}
|
|
// nest contour loops
|
|
for (int d = loop_number; d >= 1; -- d) {
|
|
PerimeterGeneratorLoops &contours_d = contours[d];
|
|
// loop through all contours having depth == d
|
|
for (int i = 0; i < (int)contours_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = contours_d[i];
|
|
// find the contour loop that contains it
|
|
for (int t = d - 1; t >= 0; -- t) {
|
|
for (size_t j = 0; j < contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
contours_d.erase(contours_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_CONTOUR;
|
|
}
|
|
}
|
|
}
|
|
NEXT_CONTOUR: ;
|
|
}
|
|
}
|
|
// at this point, all loops should be in contours[0]
|
|
ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls);
|
|
// if brim will be printed, reverse the order of perimeters so that
|
|
// we continue inwards after having finished the brim
|
|
// TODO: add test for perimeter order
|
|
bool is_outer_wall_first =
|
|
this->object_config->wall_sequence == WallSequence::OuterInner;
|
|
if (is_outer_wall_first ||
|
|
//BBS: always print outer wall first when there indeed has brim.
|
|
(this->layer_id == 0 &&
|
|
this->object_config->brim_type == BrimType::btOuterOnly &&
|
|
this->object_config->brim_width.value > 0))
|
|
entities.reverse();
|
|
//BBS. adjust wall generate seq
|
|
else if (this->object_config->wall_sequence == WallSequence::InnerOuterInner)
|
|
if (entities.entities.size() > 1){
|
|
int last_outer=0;
|
|
int outer = 0;
|
|
for (; outer < entities.entities.size(); ++outer)
|
|
if (entities.entities[outer]->role() == erExternalPerimeter && outer - last_outer > 1) {
|
|
std::swap(entities.entities[outer], entities.entities[outer - 1]);
|
|
last_outer = outer;
|
|
}
|
|
}
|
|
// append perimeters for this slice as a collection
|
|
if (! entities.empty())
|
|
this->loops->append(entities);
|
|
} // for each loop of an island
|
|
|
|
// fill gaps
|
|
if (! gaps.empty()) {
|
|
// collapse
|
|
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
|
double max = 2. * perimeter_spacing;
|
|
ExPolygons gaps_ex = diff_ex(
|
|
//FIXME offset2 would be enough and cheaper.
|
|
opening_ex(gaps, float(min / 2.)),
|
|
offset2_ex(gaps, - float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
|
|
ThickPolylines polylines;
|
|
for (ExPolygon& ex : gaps_ex) {
|
|
//BBS: Use DP simplify to avoid duplicated points and accelerate medial-axis calculation as well.
|
|
ex.douglas_peucker(surface_simplify_resolution);
|
|
ex.medial_axis(min, max, &polylines);
|
|
}
|
|
|
|
#ifdef GAPS_OF_PERIMETER_DEBUG_TO_SVG
|
|
{
|
|
static int irun = 0;
|
|
BoundingBox bbox_svg;
|
|
bbox_svg.merge(get_extents(gaps_ex));
|
|
{
|
|
std::stringstream stri;
|
|
stri << "debug_gaps_ex_" << irun << ".svg";
|
|
SVG svg(stri.str(), bbox_svg);
|
|
svg.draw(to_polylines(gaps_ex), "blue", 0.5);
|
|
svg.Close();
|
|
}
|
|
++ irun;
|
|
}
|
|
#endif
|
|
// OrcaSlicer: filter out tiny gap fills
|
|
polylines.erase(std::remove_if(polylines.begin(), polylines.end(), [&](const ThickPolyline &p) {
|
|
return p.length()< scale_(this->config->filter_out_gap_fill.value);
|
|
}), polylines.end());
|
|
|
|
if (! polylines.empty()) {
|
|
ExtrusionEntityCollection gap_fill;
|
|
variable_width(polylines, erGapFill, this->solid_infill_flow, gap_fill.entities);
|
|
/* Make sure we don't infill narrow parts that are already gap-filled
|
|
(we only consider this surface's gaps to reduce the diff() complexity).
|
|
Growing actual extrusions ensures that gaps not filled by medial axis
|
|
are not subtracted from fill surfaces (they might be too short gaps
|
|
that medial axis skips but infill might join with other infill regions
|
|
and use zigzag). */
|
|
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
|
// therefore it may cover the area, but no the volume.
|
|
last = diff_ex(last, gap_fill.polygons_covered_by_width(10.f));
|
|
this->gap_fill->append(std::move(gap_fill.entities));
|
|
}
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing / 2 :
|
|
// two or more loops?
|
|
perimeter_spacing / 2;
|
|
// only apply infill overlap if we actually have one perimeter
|
|
coord_t infill_peri_overlap = 0;
|
|
if (inset > 0) {
|
|
infill_peri_overlap = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(inset + solid_infill_spacing / 2))));
|
|
inset -= infill_peri_overlap;
|
|
}
|
|
// simplify infill contours according to resolution
|
|
Polygons pp;
|
|
for (ExPolygon &ex : last)
|
|
ex.simplify_p(m_scaled_resolution, &pp);
|
|
ExPolygons not_filled_exp = union_ex(pp);
|
|
// collapse too narrow infill areas
|
|
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
|
|
ExPolygons infill_exp = offset2_ex(
|
|
not_filled_exp,
|
|
float(-inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2.));
|
|
// append infill areas to fill_surfaces
|
|
//if any top_fills, grow them by ext_perimeter_spacing/2 to have the real un-anchored fill
|
|
ExPolygons top_infill_exp = intersection_ex(fill_clip, offset_ex(top_fills, double(ext_perimeter_spacing / 2)));
|
|
if (!top_fills.empty()) {
|
|
infill_exp = union_ex(infill_exp, offset_ex(top_infill_exp, double(infill_peri_overlap)));
|
|
}
|
|
this->fill_surfaces->append(infill_exp, stInternal);
|
|
|
|
// BBS: get the no-overlap infill expolygons
|
|
{
|
|
ExPolygons polyWithoutOverlap;
|
|
if (min_perimeter_infill_spacing / 2 > infill_peri_overlap)
|
|
polyWithoutOverlap = offset2_ex(
|
|
not_filled_exp,
|
|
float(-inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2 - infill_peri_overlap));
|
|
else
|
|
polyWithoutOverlap = offset_ex(
|
|
not_filled_exp,
|
|
double(-inset - infill_peri_overlap));
|
|
if (!top_fills.empty())
|
|
polyWithoutOverlap = union_ex(polyWithoutOverlap, top_infill_exp);
|
|
this->fill_no_overlap->insert(this->fill_no_overlap->end(), polyWithoutOverlap.begin(), polyWithoutOverlap.end());
|
|
}
|
|
|
|
} // for each island
|
|
}
|
|
|
|
//BBS:
|
|
void PerimeterGenerator::add_infill_contour_for_arachne( ExPolygons infill_contour,
|
|
int loops,
|
|
coord_t ext_perimeter_spacing,
|
|
coord_t perimeter_spacing,
|
|
coord_t min_perimeter_infill_spacing,
|
|
coord_t spacing,
|
|
bool is_inner_part)
|
|
{
|
|
if( offset_ex(infill_contour, -float(spacing / 2.)).empty() )
|
|
{
|
|
infill_contour.clear(); // Infill region is too small, so let's filter it out.
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t insert = (loops < 0) ? 0: ext_perimeter_spacing;
|
|
if (is_inner_part || loops > 0)
|
|
insert = perimeter_spacing;
|
|
|
|
insert = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(insert))));
|
|
|
|
Polygons inner_pp;
|
|
for (ExPolygon &ex : infill_contour)
|
|
ex.simplify_p(m_scaled_resolution, &inner_pp);
|
|
|
|
this->fill_surfaces->append(offset2_ex(union_ex(inner_pp), float(-min_perimeter_infill_spacing / 2.), float(insert + min_perimeter_infill_spacing / 2.)), stInternal);
|
|
|
|
append(*this->fill_no_overlap, offset2_ex(union_ex(inner_pp), float(-min_perimeter_infill_spacing / 2.), float(+min_perimeter_infill_spacing / 2.)));
|
|
}
|
|
|
|
// Thanks, Cura developers, for implementing an algorithm for generating perimeters with variable width (Arachne) that is based on the paper
|
|
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling"
|
|
void PerimeterGenerator::process_arachne()
|
|
{
|
|
// other perimeters
|
|
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
|
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
|
|
|
// external perimeters
|
|
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
|
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
|
|
|
|
// overhang perimeters
|
|
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
|
|
|
// solid infill
|
|
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (this->lower_slices != nullptr && this->config->detect_overhang_wall) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
|
|
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter / 2)));
|
|
}
|
|
|
|
|
|
// BBS: don't simplify too much which influence arc fitting when export gcode if arc_fitting is enabled
|
|
double surface_simplify_resolution = (print_config->enable_arc_fitting && this->config->fuzzy_skin == FuzzySkinType::None) ? 0.2 * m_scaled_resolution : m_scaled_resolution;
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
for (const Surface& surface : this->slices->surfaces) {
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = this->config->wall_loops + surface.extra_perimeters - 1; // 0-indexed loops
|
|
if (loop_number > 0 && this->object_config->only_one_wall_first_layer && layer_id == 0 ||
|
|
(this->object_config->top_one_wall_type == TopOneWallType::Topmost && this->upper_slices == nullptr))
|
|
loop_number = 0;
|
|
|
|
ExPolygons last = offset_ex(surface.expolygon.simplify_p(surface_simplify_resolution), -float(ext_perimeter_width / 2. - ext_perimeter_spacing / 2.));
|
|
Polygons last_p = to_polygons(last);
|
|
|
|
double min_nozzle_diameter = *std::min_element(print_config->nozzle_diameter.values.begin(), print_config->nozzle_diameter.values.end());
|
|
Arachne::WallToolPathsParams input_params;
|
|
{
|
|
if (const auto& min_feature_size_opt = object_config->min_feature_size)
|
|
input_params.min_feature_size = min_feature_size_opt.value * 0.01 * min_nozzle_diameter;
|
|
|
|
if (const auto& min_bead_width_opt = object_config->min_bead_width)
|
|
input_params.min_bead_width = min_bead_width_opt.value * 0.01 * min_nozzle_diameter;
|
|
|
|
if (const auto& wall_transition_filter_deviation_opt = object_config->wall_transition_filter_deviation)
|
|
input_params.wall_transition_filter_deviation = wall_transition_filter_deviation_opt.value * 0.01 * min_nozzle_diameter;
|
|
|
|
if (const auto& wall_transition_length_opt = object_config->wall_transition_length)
|
|
input_params.wall_transition_length = wall_transition_length_opt.value * 0.01 * min_nozzle_diameter;
|
|
|
|
input_params.wall_transition_angle = this->object_config->wall_transition_angle.value;
|
|
input_params.wall_distribution_count = this->object_config->wall_distribution_count.value;
|
|
}
|
|
|
|
int remain_loops = -1;
|
|
if (this->object_config->top_one_wall_type == TopOneWallType::Alltop) {
|
|
if (this->upper_slices != nullptr)
|
|
remain_loops = loop_number - 1;
|
|
|
|
loop_number = 0;
|
|
}
|
|
|
|
Arachne::WallToolPaths wallToolPaths(last_p, ext_perimeter_spacing, perimeter_spacing, coord_t(loop_number + 1), 0, layer_height, input_params);
|
|
std::vector<Arachne::VariableWidthLines> perimeters = wallToolPaths.getToolPaths();
|
|
loop_number = int(perimeters.size()) - 1;
|
|
|
|
//BBS: top one wall for arachne
|
|
ExPolygons infill_contour = union_ex(wallToolPaths.getInnerContour());
|
|
ExPolygons inner_infill_contour;
|
|
|
|
if( remain_loops >= 0 )
|
|
{
|
|
ExPolygons the_layer_surface = infill_contour;
|
|
// BBS: get boungding box of last
|
|
BoundingBox infill_contour_box = get_extents(infill_contour);
|
|
infill_contour_box.offset(SCALED_EPSILON);
|
|
|
|
// BBS: get the Polygons upper the polygon this layer
|
|
Polygons upper_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->upper_slices, infill_contour_box);
|
|
|
|
infill_contour = diff_ex(infill_contour, upper_polygons_series_clipped);
|
|
|
|
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
|
//BBS: add bridge area
|
|
if (this->lower_slices != nullptr) {
|
|
BoundingBox infill_contour_box = get_extents(infill_contour);
|
|
infill_contour_box.offset(SCALED_EPSILON);
|
|
// BBS: get the Polygons below the polygon this layer
|
|
Polygons lower_polygons_series_clipped = ClipperUtils::clip_clipper_polygons_with_subject_bbox(*this->lower_slices, infill_contour_box);
|
|
|
|
ExPolygons bridge_area = offset_ex(diff_ex(infill_contour, lower_polygons_series_clipped), std::max(ext_perimeter_spacing, perimeter_width));
|
|
infill_contour = diff_ex(infill_contour, bridge_area);
|
|
}
|
|
//BBS: filter small area and extend top surface a bit to hide the wall line
|
|
double min_width_top_surface = (this->object_config->top_area_threshold / 100) * std::max(double(ext_perimeter_spacing / 4 + 10), double(perimeter_width / 4));
|
|
infill_contour = offset2_ex(infill_contour, -min_width_top_surface, min_width_top_surface + perimeter_width);
|
|
|
|
//BBS: get the inner surface that not export to top
|
|
ExPolygons surface_not_export_to_top = diff_ex(the_layer_surface, infill_contour);
|
|
|
|
//BBS: get real top surface
|
|
infill_contour = intersection_ex(infill_contour, the_layer_surface);
|
|
Polygons surface_not_export_to_top_p = to_polygons(surface_not_export_to_top);
|
|
Arachne::WallToolPaths innerWallToolPaths(surface_not_export_to_top_p, perimeter_spacing, perimeter_spacing, coord_t(remain_loops + 1), 0, layer_height, input_params);
|
|
|
|
std::vector<Arachne::VariableWidthLines> perimeters_inner = innerWallToolPaths.getToolPaths();
|
|
remain_loops = int(perimeters_inner.size()) - 1;
|
|
|
|
//BBS: set wall's perporsity
|
|
if (!perimeters.empty()) {
|
|
for (int perimeter_idx = 0; perimeter_idx < perimeters_inner.size(); perimeter_idx++) {
|
|
if (perimeters_inner[perimeter_idx].empty()) continue;
|
|
|
|
for (Arachne::ExtrusionLine &wall : perimeters_inner[perimeter_idx]) {
|
|
// BBS: 0 means outer wall
|
|
wall.inset_idx++;
|
|
}
|
|
}
|
|
}
|
|
perimeters.insert(perimeters.end(), perimeters_inner.begin(), perimeters_inner.end());
|
|
|
|
inner_infill_contour = union_ex(innerWallToolPaths.getInnerContour());
|
|
}
|
|
|
|
#ifdef ARACHNE_DEBUG
|
|
{
|
|
static int iRun = 0;
|
|
export_perimeters_to_svg(debug_out_path("arachne-perimeters-%d-%d.svg", layer_id, iRun++), to_polygons(last), perimeters, union_ex(wallToolPaths.getInnerContour()));
|
|
}
|
|
#endif
|
|
|
|
// All closed ExtrusionLine should have the same the first and the last point.
|
|
// But in rare cases, Arachne produce ExtrusionLine marked as closed but without
|
|
// equal the first and the last point.
|
|
assert([&perimeters = std::as_const(perimeters)]() -> bool {
|
|
for (const Arachne::VariableWidthLines& perimeter : perimeters)
|
|
for (const Arachne::ExtrusionLine& el : perimeter)
|
|
if (el.is_closed && el.junctions.front().p != el.junctions.back().p)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
int start_perimeter = int(perimeters.size()) - 1;
|
|
int end_perimeter = -1;
|
|
int direction = -1;
|
|
|
|
bool is_outer_wall_first =
|
|
this->object_config->wall_sequence == WallSequence::OuterInner || this->object_config->wall_sequence == WallSequence::InnerOuterInner;
|
|
if (is_outer_wall_first) {
|
|
start_perimeter = 0;
|
|
end_perimeter = int(perimeters.size());
|
|
direction = 1;
|
|
}
|
|
|
|
std::vector<Arachne::ExtrusionLine*> all_extrusions;
|
|
for (int perimeter_idx = start_perimeter; perimeter_idx != end_perimeter; perimeter_idx += direction) {
|
|
if (perimeters[perimeter_idx].empty())
|
|
continue;
|
|
for (Arachne::ExtrusionLine& wall : perimeters[perimeter_idx])
|
|
all_extrusions.emplace_back(&wall);
|
|
}
|
|
|
|
// Find topological order with constraints from extrusions_constrains.
|
|
std::vector<size_t> blocked(all_extrusions.size(), 0); // Value indicating how many extrusions it is blocking (preceding extrusions) an extrusion.
|
|
std::vector<std::vector<size_t>> blocking(all_extrusions.size()); // Each extrusion contains a vector of extrusions that are blocked by this extrusion.
|
|
std::unordered_map<const Arachne::ExtrusionLine*, size_t> map_extrusion_to_idx;
|
|
for (size_t idx = 0; idx < all_extrusions.size(); idx++)
|
|
map_extrusion_to_idx.emplace(all_extrusions[idx], idx);
|
|
|
|
auto extrusions_constrains = Arachne::WallToolPaths::getRegionOrder(all_extrusions, is_outer_wall_first);
|
|
for (auto [before, after] : extrusions_constrains) {
|
|
auto after_it = map_extrusion_to_idx.find(after);
|
|
++blocked[after_it->second];
|
|
blocking[map_extrusion_to_idx.find(before)->second].emplace_back(after_it->second);
|
|
}
|
|
|
|
std::vector<bool> processed(all_extrusions.size(), false); // Indicate that the extrusion was already processed.
|
|
Point current_position = all_extrusions.empty() ? Point::Zero() : all_extrusions.front()->junctions.front().p; // Some starting position.
|
|
std::vector<PerimeterGeneratorArachneExtrusion> ordered_extrusions; // To store our result in. At the end we'll std::swap.
|
|
ordered_extrusions.reserve(all_extrusions.size());
|
|
|
|
while (ordered_extrusions.size() < all_extrusions.size()) {
|
|
size_t best_candidate = 0;
|
|
double best_distance_sqr = std::numeric_limits<double>::max();
|
|
bool is_best_closed = false;
|
|
|
|
std::vector<size_t> available_candidates;
|
|
for (size_t candidate = 0; candidate < all_extrusions.size(); ++candidate) {
|
|
if (processed[candidate] || blocked[candidate])
|
|
continue; // Not a valid candidate.
|
|
available_candidates.push_back(candidate);
|
|
}
|
|
|
|
std::sort(available_candidates.begin(), available_candidates.end(), [&all_extrusions](const size_t a_idx, const size_t b_idx) -> bool {
|
|
return all_extrusions[a_idx]->is_closed < all_extrusions[b_idx]->is_closed;
|
|
});
|
|
|
|
for (const size_t candidate_path_idx : available_candidates) {
|
|
auto& path = all_extrusions[candidate_path_idx];
|
|
|
|
if (path->junctions.empty()) { // No vertices in the path. Can't find the start position then or really plan it in. Put that at the end.
|
|
if (best_distance_sqr == std::numeric_limits<double>::max()) {
|
|
best_candidate = candidate_path_idx;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const Point candidate_position = path->junctions.front().p;
|
|
double distance_sqr = (current_position - candidate_position).cast<double>().norm();
|
|
if (distance_sqr < best_distance_sqr) { // Closer than the best candidate so far.
|
|
if (path->is_closed || (!path->is_closed && best_distance_sqr != std::numeric_limits<double>::max()) || (!path->is_closed && !is_best_closed)) {
|
|
best_candidate = candidate_path_idx;
|
|
best_distance_sqr = distance_sqr;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto& best_path = all_extrusions[best_candidate];
|
|
ordered_extrusions.push_back({ best_path, best_path->is_contour(), false });
|
|
processed[best_candidate] = true;
|
|
for (size_t unlocked_idx : blocking[best_candidate])
|
|
blocked[unlocked_idx]--;
|
|
|
|
if (!best_path->junctions.empty()) { //If all paths were empty, the best path is still empty. We don't upate the current position then.
|
|
if (best_path->is_closed)
|
|
current_position = best_path->junctions[0].p; //We end where we started.
|
|
else
|
|
current_position = best_path->junctions.back().p; //Pick the other end from where we started.
|
|
}
|
|
}
|
|
|
|
if (this->layer_id > 0 && this->config->fuzzy_skin != FuzzySkinType::None) {
|
|
std::vector<PerimeterGeneratorArachneExtrusion*> closed_loop_extrusions;
|
|
for (PerimeterGeneratorArachneExtrusion& extrusion : ordered_extrusions)
|
|
if (extrusion.extrusion->inset_idx == 0) {
|
|
if (extrusion.extrusion->is_closed && this->config->fuzzy_skin == FuzzySkinType::External) {
|
|
closed_loop_extrusions.emplace_back(&extrusion);
|
|
}
|
|
else {
|
|
extrusion.fuzzify = true;
|
|
}
|
|
}
|
|
|
|
if (this->config->fuzzy_skin == FuzzySkinType::External) {
|
|
ClipperLib_Z::Paths loops_paths;
|
|
loops_paths.reserve(closed_loop_extrusions.size());
|
|
for (const auto& cl_extrusion : closed_loop_extrusions) {
|
|
assert(cl_extrusion->extrusion->junctions.front() == cl_extrusion->extrusion->junctions.back());
|
|
size_t loop_idx = &cl_extrusion - &closed_loop_extrusions.front();
|
|
ClipperLib_Z::Path loop_path;
|
|
loop_path.reserve(cl_extrusion->extrusion->junctions.size() - 1);
|
|
for (auto junction_it = cl_extrusion->extrusion->junctions.begin(); junction_it != std::prev(cl_extrusion->extrusion->junctions.end()); ++junction_it)
|
|
loop_path.emplace_back(junction_it->p.x(), junction_it->p.y(), loop_idx);
|
|
loops_paths.emplace_back(loop_path);
|
|
}
|
|
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.AddPaths(loops_paths, ClipperLib_Z::ptSubject, true);
|
|
ClipperLib_Z::PolyTree loops_polytree;
|
|
clipper.Execute(ClipperLib_Z::ctUnion, loops_polytree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
|
|
|
|
for (const ClipperLib_Z::PolyNode* child_node : loops_polytree.Childs) {
|
|
// The whole contour must have the same index.
|
|
coord_t polygon_idx = child_node->Contour.front().z();
|
|
bool has_same_idx = std::all_of(child_node->Contour.begin(), child_node->Contour.end(),
|
|
[&polygon_idx](const ClipperLib_Z::IntPoint& point) -> bool { return polygon_idx == point.z(); });
|
|
if (has_same_idx)
|
|
closed_loop_extrusions[polygon_idx]->fuzzify = true;
|
|
}
|
|
}
|
|
}
|
|
// BBS. adjust wall generate seq
|
|
if (this->object_config->wall_sequence == WallSequence::InnerOuterInner) {
|
|
if (ordered_extrusions.size() > 2) { // 3 walls minimum needed to do inner outer inner ordering
|
|
int position = 0; // index to run the re-ordering for multiple external perimeters in a single island.
|
|
int arr_i = 0; // index to run through the walls
|
|
int outer, first_internal, second_internal; // allocate index values
|
|
// run the re-ordering for all wall loops in the same island
|
|
while (position < ordered_extrusions.size()) {
|
|
outer = first_internal = second_internal = -1; // initialise all index values to -1
|
|
// run through the walls to get the index values that need re-ordering until the first one for each
|
|
// is found. Start at "position" index to enable the for loop to iterate for multiple external
|
|
// perimeters in a single island
|
|
for (arr_i = position; arr_i < ordered_extrusions.size(); ++arr_i) {
|
|
switch (ordered_extrusions[arr_i].extrusion->inset_idx) {
|
|
case 0: // external perimeter
|
|
if (outer == -1)
|
|
outer = arr_i;
|
|
break;
|
|
case 1: // first internal wall
|
|
if (first_internal==-1 && arr_i>outer && outer!=-1)
|
|
first_internal = arr_i;
|
|
break;
|
|
case 2: // second internal wall
|
|
if (ordered_extrusions[arr_i].extrusion->inset_idx == 2 && second_internal == -1 &&
|
|
arr_i > first_internal && outer!=-1)
|
|
second_internal = arr_i;
|
|
break;
|
|
}
|
|
if (outer >-1 && first_internal>-1 && second_internal>-1)
|
|
break; // found all three perimeters to re-order
|
|
}
|
|
if (outer > -1 && first_internal > -1 && second_internal > -1) { // found perimeters to re-order?
|
|
const auto temp = ordered_extrusions[second_internal];
|
|
ordered_extrusions[second_internal] = ordered_extrusions[first_internal];
|
|
ordered_extrusions[first_internal] = ordered_extrusions[outer];
|
|
ordered_extrusions[outer] = temp;
|
|
} else
|
|
break; // did not find any more candidates to re-order, so stop the while loop early
|
|
// go to the next perimeter to continue scanning for external walls in the same island
|
|
position = arr_i + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ExtrusionEntityCollection extrusion_coll = traverse_extrusions(*this, ordered_extrusions); !extrusion_coll.empty())
|
|
this->loops->append(extrusion_coll);
|
|
|
|
const coord_t spacing = (perimeters.size() == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
|
|
// collapse too narrow infill areas
|
|
const auto min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
// append infill areas to fill_surfaces
|
|
add_infill_contour_for_arachne(infill_contour, loop_number, ext_perimeter_spacing, perimeter_spacing, min_perimeter_infill_spacing, spacing, false);
|
|
|
|
//BBS: add infill_contour of top one wall part
|
|
if( !inner_infill_contour.empty() )
|
|
add_infill_contour_for_arachne(inner_infill_contour, remain_loops, ext_perimeter_spacing, perimeter_spacing, min_perimeter_infill_spacing, spacing, true);
|
|
|
|
}
|
|
}
|
|
|
|
bool PerimeterGeneratorLoop::is_internal_contour() const
|
|
{
|
|
// An internal contour is a contour containing no other contours
|
|
if (! this->is_contour)
|
|
return false;
|
|
for (const PerimeterGeneratorLoop &loop : this->children)
|
|
if (loop.is_contour)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
std::vector<Polygons> PerimeterGenerator::generate_lower_polygons_series(float width)
|
|
{
|
|
float nozzle_diameter = print_config->nozzle_diameter.get_at(config->wall_filament - 1);
|
|
float start_offset = -0.5 * width;
|
|
float end_offset = 0.5 * nozzle_diameter;
|
|
|
|
assert(overhang_sampling_number >= 3);
|
|
// generate offsets
|
|
std::vector<float> offset_series;
|
|
offset_series.reserve(2);
|
|
|
|
offset_series.push_back(start_offset + 0.5 * (end_offset - start_offset) / (overhang_sampling_number - 1));
|
|
offset_series.push_back(end_offset);
|
|
std::vector<Polygons> lower_polygons_series;
|
|
if (this->lower_slices == NULL) {
|
|
return lower_polygons_series;
|
|
}
|
|
|
|
// offset expolygon to generate series of polygons
|
|
for (int i = 0; i < offset_series.size(); i++) {
|
|
lower_polygons_series.emplace_back(offset(*this->lower_slices, float(scale_(offset_series[i]))));
|
|
}
|
|
return lower_polygons_series;
|
|
}
|
|
|
|
}
|