BambuStudio/libigl/igl/lim/lim.h

134 lines
5.9 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Christian Schüller <schuellchr@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_LIM_LIM_H
#define IGL_LIM_LIM_H
#include <igl/igl_inline.h>
#include <Eigen/Core>
#include <Eigen/Sparse>
namespace igl
{
namespace lim
{
// Computes a locally injective mapping of a triangle or tet-mesh based on
// a deformation energy subject to some provided linear positional
// constraints Cv-d.
//
// Inputs:
// vertices vx3 matrix containing vertex position of the mesh
// initialVertices vx3 matrix containing vertex position of initial
// rest pose mesh
// elements exd matrix containing vertex indices of all elements
// borderVertices (only needed for 2D LSCM) vector containing indices
// of border vertices
// gradients (only needed for 2D Poisson) vector containing
// partial derivatives of target element gradients
// (structure is: [xx_0, xy_0, xx_1, xy_1, ..., xx_v,
// xy_v, yx_0, yy_0, yx_1, yy_1, ..., yx_v, yy_v]')
// constraintMatrix C: (c)x(v*(d-1)) sparse linear positional constraint
// matrix. X an Y-coordinates are alternatingly stacked
// per row (structure for triangles: [x_1, y_1, x_2,
// y_2, ..., x_v,y_v])
// constraintTargets d: c vector target positions
// energyType type of used energy:
// Dirichlet, Laplacian, Green, ARAP, LSCM, Poisson (only 2D), UniformLaplacian, Identity
// tolerance max squared positional constraints error
// maxIteration max number of iterations
// findLocalMinima iterating until a local minima is found. If not
// enabled only tolerance must be fulfilled.
// enableOutput (optional) enables the output (#iteration / hessian correction / step size / positional constraints / barrier constraints / deformation energy) (default : true)
// enableBarriers (optional) enables the non-flip constraints (default = true)
// enableAlphaUpdate (optional) enables dynamic alpha weight adjustment (default = true)
// beta (optional) steepness factor of barrier slopes (default: ARAP/LSCM = 0.01, Green = 1)
// eps (optional) smallest valid triangle area (default: 1e-5 * smallest triangle)
//
// where:
// v : # vertices
// c : # linear constraints
// e : # elements of mesh
// d : # vertices per element (triangle = 3, tet = 4)
//--------------------------------------------------------------------------
// Output:
// vertices vx3 matrix containing resulting vertex position of the
// mesh
//--------------------------------------------------------------------------
// Return values:
// Succeeded : Successful optimization with fulfilled tolerance
// LocalMinima : Convergenged to a local minima / tolerance not fulfilled
// IterationLimit : Max iteration reached before tolerance was fulfilled
// Infeasible : not feasible -> has inverted elements (decrease eps?)
enum Energy { Dirichlet = 0, Laplacian=1, Green=2, ARAP=3, LSCM=4, Poisson=5, UniformLaplacian=6, Identity=7 };
enum State { Uninitialized = -4, Infeasible = -3, IterationLimit = -2, LocalMinima = -1, Running = 0, Succeeded = 1 };
State lim(
Eigen::Matrix<double,Eigen::Dynamic,3>& vertices,
const Eigen::Matrix<double,Eigen::Dynamic,3>& initialVertices,
const Eigen::Matrix<int,Eigen::Dynamic,Eigen::Dynamic>& elements,
const Eigen::SparseMatrix<double>& constraintMatrix,
const Eigen::Matrix<double,Eigen::Dynamic,1>& constraintTargets,
Energy energyType,
double tolerance,
int maxIteration,
bool findLocalMinima);
State lim(
Eigen::Matrix<double,Eigen::Dynamic,3>& vertices,
const Eigen::Matrix<double,Eigen::Dynamic,3>& initialVertices,
const Eigen::Matrix<int,Eigen::Dynamic,Eigen::Dynamic>& elements,
const Eigen::SparseMatrix<double>& constraintMatrix,
const Eigen::Matrix<double,Eigen::Dynamic,1>& constraintTargets,
Energy energyType,
double tolerance,
int maxIteration,
bool findLocalMinima,
bool enableOuput,
bool enableBarriers,
bool enableAlphaUpdate,
double beta,
double eps);
State lim(
Eigen::Matrix<double,Eigen::Dynamic,3>& vertices,
const Eigen::Matrix<double,Eigen::Dynamic,3>& initialVertices,
const Eigen::Matrix<int,Eigen::Dynamic,Eigen::Dynamic>& elements,
const std::vector<int>& borderVertices,
const Eigen::Matrix<double,Eigen::Dynamic,1>& gradients,
const Eigen::SparseMatrix<double>& constraintMatrix,
const Eigen::Matrix<double,Eigen::Dynamic,1>& constraintTargets,
Energy energyType,
double tolerance,
int maxIteration,
bool findLocalMinima);
State lim(
Eigen::Matrix<double,Eigen::Dynamic,3>& vertices,
const Eigen::Matrix<double,Eigen::Dynamic,3>& initialVertices,
const Eigen::Matrix<int,Eigen::Dynamic,Eigen::Dynamic>& elements,
const std::vector<int>& borderVertices,
const Eigen::Matrix<double,Eigen::Dynamic,1>& gradients,
const Eigen::SparseMatrix<double>& constraintMatrix,
const Eigen::Matrix<double,Eigen::Dynamic,1>& constraintTargets,
Energy energyType,
double tolerance,
int maxIteration,
bool findLocalMinima,
bool enableOuput,
bool enableBarriers,
bool enableAlphaUpdate,
double beta,
double eps);
}
}
#ifndef IGL_STATIC_LIBRARY
# include "lim.cpp"
#endif
#endif