BambuStudio/libslic3r/CurveAnalyzer.cpp

203 lines
9.2 KiB
C++

#include "CurveAnalyzer.hpp"
#include <cmath>
#include <cassert>
static const int curvatures_sampling_number = 6;
static const double curvatures_densify_width = 1; // mm
static const double curvatures_sampling_width = 6; // mm
static const double curvatures_angle_best = PI/6;
static const double curvatures_angle_worst = 5*PI/6;
static const double curvatures_best = (curvatures_angle_best * 1000 / curvatures_sampling_width);
static const double curvatures_worst = (curvatures_angle_worst * 1000 / curvatures_sampling_width);
namespace Slic3r {
// This function is used to calculate curvature for paths.
// Paths must be generated from a closed polygon.
// Data in paths may be modify, and paths will be spilited and regenerated
// arrording to different curve degree.
void CurveAnalyzer::calculate_curvatures(ExtrusionPaths& paths, ECurveAnalyseMode mode)
{
Polygon polygon;
std::vector<float> paths_length(paths.size(), 0.0);
for (size_t i = 0; i < paths.size(); i++) {
if (i == 0) {
paths_length[i] = paths[i].polyline.length();
}
else {
paths_length[i] = paths_length[i - 1] + paths[i].polyline.length();
}
polygon.points.insert(polygon.points.end(), paths[i].polyline.points.begin(), paths[i].polyline.points.end() - 1);
}
// 1 generate point series which is on the line of polygon, point distance along the polygon is smaller than 1mm
polygon.densify(scale_(curvatures_densify_width));
std::vector<float> polygon_length = polygon.parameter_by_length();
// 2 calculate angle of every segment
size_t point_num = polygon.points.size();
std::vector<float> angles(point_num, 0.f);
for (size_t i = 0; i < point_num; i++) {
size_t curr = i;
size_t prev = (curr == 0) ? point_num - 1 : curr - 1;
size_t next = (curr == point_num - 1) ? 0 : curr + 1;
const Point v1 = polygon.points[curr] - polygon.points[prev];
const Point v2 = polygon.points[next] - polygon.points[curr];
int64_t dot = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v1(1)) * int64_t(v2(0));
if (mode == ECurveAnalyseMode::RelativeMode)
cross = abs(cross);
angles[curr] = float(atan2(double(cross), double(dot)));
}
// 3 generate sum of angle and length of the adjacent segment for eveny point, range is approximately curvatures_sampling_width.
// And then calculate the curvature
std::vector<float> sum_angles(point_num, 0.f);
std::vector<double> average_curvatures(point_num, 0.f);
if (paths_length.back() < scale_(curvatures_sampling_width)) {
// loop is too short, so the curvatures is max
double temp = 1000.0 * 2.0 * PI / ((double)(paths_length.back()) * SCALING_FACTOR);
for (size_t i = 0; i < point_num; i++) {
average_curvatures[i] = temp;
}
}
else {
for (size_t i = 0; i < point_num; i++) {
// right segment
size_t j = i;
float right_length = 0;
while (right_length < scale_(curvatures_sampling_width / 2)) {
int next_j = (j + 1 >= point_num) ? 0 : j + 1;
sum_angles[i] += angles[j];
right_length += (polygon.points[next_j] - polygon.points[j]).cast<float>().norm();
j = next_j;
}
// left segment
size_t k = i;
float left_length = 0;
while (left_length < scale_(curvatures_sampling_width / 2)) {
size_t next_k = (k < 1) ? point_num - 1 : k - 1;
sum_angles[i] += angles[k];
left_length += (polygon.points[k] - polygon.points[next_k]).cast<float>().norm();
k = next_k;
}
sum_angles[i] = sum_angles[i] - angles[i];
average_curvatures[i] = (1000.0 * (double)abs(sum_angles[i]) / (double)curvatures_sampling_width);
}
}
// 4 calculate the degree of curve
// For angle >= curvatures_angle_worst, we think it's enough to be worst. Should make the speed to be slowest.
// For angle <= curvatures_angle_best, we thins it's enough to be best. Should make the speed to be fastest.
// Use several steps [0 1 2...curvatures_sampling_number - 1] to describe the degree of curve. 0 is the flatest. curvatures_sampling_number - 1 is the sharpest
std::vector<int> curvatures_norm(point_num, 0.f);
std::vector<int> sampling_step(curvatures_sampling_number - 1, 0);
for (size_t i = 0; i < curvatures_sampling_number - 1; i++) {
sampling_step[i] = (2 * i + 1) * 50 / (curvatures_sampling_number - 1);
}
sampling_step[0] = 0;
sampling_step[curvatures_sampling_number - 2] = 100;
for (size_t i = 0; i < point_num; i++) {
curvatures_norm[i] = (int)(100 * (average_curvatures[i] - curvatures_best) / (curvatures_worst - curvatures_best));
if (curvatures_norm[i] >= 100)
curvatures_norm[i] = curvatures_sampling_number - 1;
else
for (size_t j = 0; j < curvatures_sampling_number - 1; j++) {
if (curvatures_norm[i] < sampling_step[j]) {
curvatures_norm[i] = j;
break;
}
}
}
std::vector<std::pair<std::pair<Point, int>, int>> curvature_list; // point, index, curve_degree
int last_curvature_norm = -1;
for (int i = 0; i < point_num; i++) {
if (curvatures_norm[i] != last_curvature_norm) {
last_curvature_norm = curvatures_norm[i];
curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[i], i), last_curvature_norm));
}
}
curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[0], point_num), curvatures_norm[0])); // the last point should be the first point
//5 split and modify the path according to the degree of curve
if (curvature_list.size() == 2) { // all paths has same curva_degree
for (size_t i = 0; i < paths.size(); i++) {
paths[i].set_curve_degree(curvature_list[0].second);
}
}
else {
ExtrusionPaths out;
out.reserve(paths.size() + curvature_list.size() - 1);
size_t j = 1;
int current_curva_norm = curvature_list[0].second;
for (size_t i = 0; i < paths.size() && j < curvature_list.size(); i++) {
if (paths[i].last_point() == curvature_list[j].first.first) {
paths[i].set_curve_degree(current_curva_norm);
out.push_back(paths[i]);
current_curva_norm = curvature_list[j].second;
j++;
continue;
}
else if (paths[i].first_point() == curvature_list[j].first.first) {
if (paths[i].polyline.points.front() == paths[i].polyline.points.back()) {
paths[i].set_curve_degree(current_curva_norm);
out.push_back(paths[i]);
current_curva_norm = curvature_list[j].second;
j++;
continue;
}
else {
// should never happen
assert(0);
}
}
if (paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
paths[i].last_point() == curvature_list[j].first.first) {
// save paths[i] directly
paths[i].set_curve_degree(current_curva_norm);
out.push_back(paths[i]);
if (paths[i].last_point() == curvature_list[j].first.first) {
current_curva_norm = curvature_list[j].second;
j++;
}
}
else {
//split paths[i]
ExtrusionPath current_path = paths[i];
while (j < curvature_list.size()) {
Polyline left, right;
current_path.polyline.split_at(curvature_list[j].first.first, &left, &right);
ExtrusionPath left_path(left, current_path);
left_path.set_curve_degree(current_curva_norm);
out.push_back(left_path);
ExtrusionPath right_path(right, current_path);
current_path = right_path;
current_curva_norm = curvature_list[j].second;
j++;
if (j < curvature_list.size() &&
(paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
paths[i].last_point() == curvature_list[j].first.first)) {
current_path.set_curve_degree(current_curva_norm);
out.push_back(current_path);
if (current_path.last_point() == curvature_list[j].first.first) {
current_curva_norm = curvature_list[j].second;
j++;
}
break;
}
}
}
}
paths.clear();
paths.reserve(out.size());
for (int i = 0; i < out.size(); i++) {
paths.push_back(out[i]);
}
}
}
}