BambuSrc/libslic3r/LayerRegion.cpp

843 lines
38 KiB
C++
Raw Permalink Normal View History

2025-06-05 02:45:57 +00:00
#include "Layer.hpp"
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "PerimeterGenerator.hpp"
#include "Print.hpp"
#include "Surface.hpp"
#include "BoundingBox.hpp"
#include "SVG.hpp"
#include "RegionExpansion.hpp"
#include <string>
#include <map>
#include <boost/log/trivial.hpp>
static const double max_deviation = scale_(0.5);
static const double max_variance = 5 * scale_(0.01) * scale_(0.01);
namespace Slic3r {
Flow LayerRegion::flow(FlowRole role) const
{
return this->flow(role, m_layer->height);
}
Flow LayerRegion::flow(FlowRole role, double layer_height) const
{
return m_region->flow(*m_layer->object(), role, layer_height, m_layer->id() == 0);
}
Flow LayerRegion::bridging_flow(FlowRole role, bool thick_bridge) const
{
const PrintRegion &region = this->region();
const PrintRegionConfig &region_config = region.config();
const PrintObject &print_object = *this->layer()->object();
if (thick_bridge) {
// The old Slic3r way (different from all other slicers): Use rounded extrusions.
// Get the configured nozzle_diameter for the extruder associated to the flow role requested.
// Here this->extruder(role) - 1 may underflow to MAX_INT, but then the get_at() will follback to zero'th element, so everything is all right.
auto nozzle_diameter = float(print_object.print()->config().nozzle_diameter.get_at(region.extruder(role) - 1));
// Applies default bridge spacing.
return Flow::bridging_flow(float(sqrt(region_config.bridge_flow)) * nozzle_diameter, nozzle_diameter);
} else {
// The same way as other slicers: Use normal extrusions. Apply bridge_flow while maintaining the original spacing.
return this->flow(role).with_flow_ratio(region_config.bridge_flow);
}
}
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
void LayerRegion::slices_to_fill_surfaces_clipped()
{
// Note: this method should be idempotent, but fill_surfaces gets modified
// in place. However we're now only using its boundaries (which are invariant)
// so we're safe. This guarantees idempotence of prepare_infill() also in case
// that combine_infill() turns some fill_surface into VOID surfaces.
// Collect polygons per surface type.
std::array<SurfacesPtr, size_t(stCount)> by_surface;
for (Surface &surface : this->slices.surfaces)
by_surface[size_t(surface.surface_type)].emplace_back(&surface);
// Trim surfaces by the fill_boundaries.
this->fill_surfaces.surfaces.clear();
for (size_t surface_type = 0; surface_type < size_t(stCount); ++ surface_type) {
const SurfacesPtr &this_surfaces = by_surface[surface_type];
if (! this_surfaces.empty())
this->fill_surfaces.append(intersection_ex(this_surfaces, this->fill_expolygons), SurfaceType(surface_type));
}
}
void LayerRegion::auto_circle_compensation(SurfaceCollection& slices, const AutoContourHolesCompensationParams &auto_contour_holes_compensation_params, float manual_offset)
{
// filament is 1 base
int filament_idx = this->region().config().wall_filament - 1;
double limited_speed = auto_contour_holes_compensation_params.circle_compensation_speed[filament_idx];
double counter_speed_coef = auto_contour_holes_compensation_params.counter_speed_coef[filament_idx];
double counter_diameter_coef = auto_contour_holes_compensation_params.counter_diameter_coef[filament_idx];
double counter_compensate_coef = scale_(auto_contour_holes_compensation_params.counter_compensate_coef[filament_idx]);
double hole_speed_coef = auto_contour_holes_compensation_params.hole_speed_coef[filament_idx];
double hole_diameter_coef = auto_contour_holes_compensation_params.hole_diameter_coef[filament_idx];
double hole_compensate_coef = scale_(auto_contour_holes_compensation_params.hole_compensate_coef[filament_idx]);
double counter_limit_min_value = scale_(auto_contour_holes_compensation_params.counter_limit_min_value[filament_idx]);
double counter_limit_max_value = scale_(auto_contour_holes_compensation_params.counter_limit_max_value[filament_idx]);
double hole_limit_min_value = scale_(auto_contour_holes_compensation_params.hole_limit_min_value[filament_idx]);
double hole_limit_max_value = scale_(auto_contour_holes_compensation_params.hole_limit_max_value[filament_idx]);
double diameter_limit_value = scale_(auto_contour_holes_compensation_params.diameter_limit[filament_idx]);
for (Surface &surface : slices.surfaces) {
Point center;
double diameter = 0;
if (surface.expolygon.contour.is_approx_circle(max_deviation, max_variance, center, diameter)) {
double offset_value = scale_(counter_speed_coef * limited_speed) + counter_diameter_coef * diameter + counter_compensate_coef;
if (offset_value < counter_limit_min_value) {
offset_value = counter_limit_min_value;
} else if (offset_value > counter_limit_max_value) {
offset_value = counter_limit_max_value;
}
offset_value -= manual_offset / 2;
Polygons offseted_polys = offset(surface.expolygon.contour, offset_value);
if (offseted_polys.size() == 1) {
surface.expolygon.contour = offseted_polys[0];
if (diameter < diameter_limit_value)
surface.counter_circle_compensation = true;
}
}
for (size_t i = 0; i < surface.expolygon.holes.size(); ++i) {
Polygon &hole = surface.expolygon.holes[i];
if (hole.is_approx_circle(max_deviation, max_variance, center, diameter)) {
double offset_value = scale_(hole_speed_coef * limited_speed) + hole_diameter_coef * diameter + hole_compensate_coef;
if (offset_value < hole_limit_min_value) {
offset_value = hole_limit_min_value;
} else if (offset_value > hole_limit_max_value) {
offset_value = hole_limit_max_value;
}
// positive value means shrinking hole, which oppsite to contour
offset_value = -offset_value;
offset_value -= manual_offset / 2;
Polygons offseted_polys = offset(hole, offset_value);
if (offseted_polys.size() == 1) {
hole = offseted_polys[0];
if (diameter < diameter_limit_value)
surface.holes_circle_compensation.push_back(i);
}
}
}
}
}
void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollection *fill_surfaces, ExPolygons *fill_no_overlap, std::vector<LoopNode> &loop_nodes)
{
this->perimeters.clear();
this->thin_fills.clear();
const PrintConfig & print_config = this->layer()->object()->print()->config();
const PrintRegionConfig &region_config = this->region().config();
const PrintObjectConfig& object_config = this->layer()->object()->config();
// This needs to be in sync with PrintObject::_slice() slicing_mode_normal_below_layer!
bool spiral_mode = print_config.spiral_mode &&
//FIXME account for raft layers.
(this->layer()->id() >= size_t(region_config.bottom_shell_layers.value) &&
this->layer()->print_z >= region_config.bottom_shell_thickness - EPSILON);
PerimeterGenerator g(
// input:
&slices,
this->layer()->height,
this->flow(frPerimeter),
&region_config,
&this->layer()->object()->config(),
&print_config,
spiral_mode,
// output:
&this->perimeters,
&this->thin_fills,
fill_surfaces,
//BBS
fill_no_overlap,
&loop_nodes
);
if (this->layer()->lower_layer != nullptr)
// Cummulative sum of polygons over all the regions.
g.lower_slices = &this->layer()->lower_layer->lslices;
if (this->layer()->upper_layer != NULL)
g.upper_slices = &this->layer()->upper_layer->lslices;
g.layer_id = (int)this->layer()->id();
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
g.overhang_flow = this->bridging_flow(frPerimeter, object_config.thick_bridges);
g.solid_infill_flow = this->flow(frSolidInfill);
if (this->layer()->object()->config().wall_generator.value == PerimeterGeneratorType::Arachne && !spiral_mode)
g.process_arachne();
else
g.process_classic();
}
#if 1
// Extract surfaces of given type from surfaces, extract fill (layer) thickness of one of the surfaces.
static ExPolygons fill_surfaces_extract_expolygons(Surfaces &surfaces, std::initializer_list<SurfaceType> surface_types, double &thickness)
{
size_t cnt = 0;
for (const Surface &surface : surfaces)
if (std::find(surface_types.begin(), surface_types.end(), surface.surface_type) != surface_types.end()) {
++cnt;
thickness = surface.thickness;
}
if (cnt == 0)
return {};
ExPolygons out;
out.reserve(cnt);
for (Surface &surface : surfaces)
if (std::find(surface_types.begin(), surface_types.end(), surface.surface_type) != surface_types.end())
out.emplace_back(std::move(surface.expolygon));
return out;
}
// Cache for detecting bridge orientation and merging regions with overlapping expansions.
struct Bridge {
ExPolygon expolygon;
uint32_t group_id;
std::vector<Algorithm::RegionExpansionEx>::const_iterator bridge_expansion_begin;
std::optional<double> angle{std::nullopt};
};
// Group the bridge surfaces by overlaps.
uint32_t group_id(std::vector<Bridge> &bridges, uint32_t src_id) {
uint32_t group_id = bridges[src_id].group_id;
while (group_id != src_id) {
src_id = group_id;
group_id = bridges[src_id].group_id;
}
bridges[src_id].group_id = group_id;
return group_id;
};
std::vector<Bridge> get_grouped_bridges(
ExPolygons&& bridge_expolygons,
const std::vector<Algorithm::RegionExpansionEx>& bridge_expansions
) {
using namespace Algorithm;
std::vector<Bridge> result;
{
result.reserve(bridge_expansions.size());
uint32_t group_id = 0;
using std::move_iterator;
for (ExPolygon& expolygon : bridge_expolygons)
result.push_back({ std::move(expolygon), group_id ++, bridge_expansions.end() });
}
// Detect overlaps of bridge anchors inside their respective shell regions.
// bridge_expansions are sorted by boundary id and source id.
for (auto expansion_iterator = bridge_expansions.begin(); expansion_iterator != bridge_expansions.end();) {
auto boundary_region_begin = expansion_iterator;
auto boundary_region_end = std::find_if(
next(expansion_iterator),
bridge_expansions.end(),
[&](const RegionExpansionEx& expansion){
return expansion.boundary_id != expansion_iterator->boundary_id;
}
);
// Cache of bboxes per expansion boundary.
std::vector<BoundingBox> bounding_boxes;
bounding_boxes.reserve(std::distance(boundary_region_begin, boundary_region_end));
std::transform(
boundary_region_begin,
boundary_region_end,
std::back_inserter(bounding_boxes),
[](const RegionExpansionEx& expansion){
return get_extents(expansion.expolygon.contour);
}
);
// For each bridge anchor of the current source:
for (;expansion_iterator != boundary_region_end; ++expansion_iterator) {
auto candidate_iterator = std::next(expansion_iterator);
for (;candidate_iterator != boundary_region_end; ++candidate_iterator) {
const BoundingBox& current_bounding_box{
bounding_boxes[expansion_iterator - boundary_region_begin]
};
const BoundingBox& candidate_bounding_box{
bounding_boxes[candidate_iterator - boundary_region_begin]
};
if (
expansion_iterator->src_id != candidate_iterator->src_id
&& current_bounding_box.overlap(candidate_bounding_box)
// One may ignore holes, they are irrelevant for intersection test.
&& !intersection(expansion_iterator->expolygon.contour, candidate_iterator->expolygon.contour).empty()
) {
// The two bridge regions intersect. Give them the same (lower) group id.
uint32_t id = group_id(result, expansion_iterator->src_id);
uint32_t id2 = group_id(result, candidate_iterator->src_id);
if (id < id2)
result[id2].group_id = id;
else
result[id].group_id = id2;
}
}
}
}
return result;
}
void detect_bridge_directions(
const Algorithm::WaveSeeds& bridge_anchors,
std::vector<Bridge>& bridges,
const std::vector<ExpansionZone>& expansion_zones
) {
if (expansion_zones.empty()) {
throw std::runtime_error("At least one expansion zone must exist!");
}
auto it_bridge_anchor = bridge_anchors.begin();
for (uint32_t bridge_id = 0; bridge_id < uint32_t(bridges.size()); ++ bridge_id) {
Bridge &bridge = bridges[bridge_id];
Polygons anchor_areas;
int32_t last_anchor_id = -1;
for (; it_bridge_anchor != bridge_anchors.end() && it_bridge_anchor->src == bridge_id; ++ it_bridge_anchor) {
if (last_anchor_id != int(it_bridge_anchor->boundary)) {
last_anchor_id = int(it_bridge_anchor->boundary);
unsigned start_index{};
unsigned end_index{};
for (const ExpansionZone& expansion_zone: expansion_zones) {
end_index += expansion_zone.expolygons.size();
if (last_anchor_id < static_cast<int64_t>(end_index)) {
append(anchor_areas, to_polygons(expansion_zone.expolygons[last_anchor_id - start_index]));
break;
}
start_index += expansion_zone.expolygons.size();
}
}
}
Lines lines{to_lines(diff_pl(to_polylines(bridge.expolygon), expand(anchor_areas, float(SCALED_EPSILON))))};
auto [bridging_dir, unsupported_dist] = detect_bridging_direction(lines, to_polygons(bridge.expolygon));
bridge.angle = M_PI + std::atan2(bridging_dir.y(), bridging_dir.x());
if constexpr (false) {
coordf_t stroke_width = scale_(0.06);
BoundingBox bbox = get_extents(anchor_areas);
bbox.merge(get_extents(bridge.expolygon));
bbox.offset(scale_(1.));
::Slic3r::SVG
svg(debug_out_path(("bridge" + std::to_string(*bridge.angle) + "_" /* + std::to_string(this->layer()->bottom_z())*/).c_str()),
bbox);
svg.draw(bridge.expolygon, "cyan");
svg.draw(lines, "green", stroke_width);
svg.draw(anchor_areas, "red");
}
}
}
Surfaces merge_bridges(
std::vector<Bridge>& bridges,
const std::vector<Algorithm::RegionExpansionEx>& bridge_expansions,
const float closing_radius
) {
for (auto it = bridge_expansions.begin(); it != bridge_expansions.end(); ) {
bridges[it->src_id].bridge_expansion_begin = it;
uint32_t src_id = it->src_id;
for (++ it; it != bridge_expansions.end() && it->src_id == src_id; ++ it) ;
}
Surfaces result;
for (uint32_t bridge_id = 0; bridge_id < uint32_t(bridges.size()); ++ bridge_id) {
if (group_id(bridges, bridge_id) == bridge_id) {
// Head of the group.
Polygons acc;
for (uint32_t bridge_id2 = bridge_id; bridge_id2 < uint32_t(bridges.size()); ++ bridge_id2)
if (group_id(bridges, bridge_id2) == bridge_id) {
append(acc, to_polygons(std::move(bridges[bridge_id2].expolygon)));
auto it_bridge_expansion = bridges[bridge_id2].bridge_expansion_begin;
assert(it_bridge_expansion == bridge_expansions.end() || it_bridge_expansion->src_id == bridge_id2);
for (; it_bridge_expansion != bridge_expansions.end() && it_bridge_expansion->src_id == bridge_id2; ++ it_bridge_expansion)
append(acc, to_polygons(it_bridge_expansion->expolygon));
}
//FIXME try to be smart and pick the best bridging angle for all?
if (!bridges[bridge_id].angle) {
assert(false && "Bridge angle must be pre-calculated!");
}
Surface templ{ stBottomBridge, {} };
templ.bridge_angle = bridges[bridge_id].angle ? *bridges[bridge_id].angle : -1;
//NOTE: The current regularization of the shells can create small unasigned regions in the object (E.G. benchy)
// without the following closing operation, those regions will stay unfilled and cause small holes in the expanded surface.
// look for narrow_ensure_vertical_wall_thickness_region_radius filter.
ExPolygons final = closing_ex(acc, closing_radius);
// without safety offset, artifacts are generated (GH #2494)
// union_safety_offset_ex(acc)
for (ExPolygon &ex : final)
result.emplace_back(templ, std::move(ex));
}
}
return result;
}
struct ExpansionResult {
Algorithm::WaveSeeds anchors;
std::vector<Algorithm::RegionExpansionEx> expansions;
};
ExpansionResult expand_expolygons(
const ExPolygons& expolygons,
std::vector<ExpansionZone>& expansion_zones
) {
using namespace Algorithm;
WaveSeeds bridge_anchors;
std::vector<RegionExpansionEx> bridge_expansions;
unsigned processed_bridges_count = 0;
for (ExpansionZone& expansion_zone : expansion_zones) {
WaveSeeds seeds{wave_seeds(
expolygons,
expansion_zone.expolygons,
expansion_zone.parameters.tiny_expansion,
true
)};
std::vector<RegionExpansionEx> expansions{propagate_waves_ex(
seeds,
expansion_zone.expolygons,
expansion_zone.parameters
)};
for (WaveSeed &seed : seeds)
seed.boundary += processed_bridges_count;
for (RegionExpansionEx &expansion : expansions)
expansion.boundary_id += processed_bridges_count;
expansion_zone.expanded_into = ! expansions.empty();
append(bridge_anchors, std::move(seeds));
append(bridge_expansions, std::move(expansions));
processed_bridges_count += expansion_zone.expolygons.size();
}
return {bridge_anchors, bridge_expansions};
}
// Extract bridging surfaces from "surfaces", expand them into "shells" using expansion_params,
// detect bridges.
// Trim "shells" by the expanded bridges.
Surfaces expand_bridges_detect_orientations(
Surfaces &surfaces,
std::vector<ExpansionZone>& expansion_zones,
const float closing_radius
)
{
using namespace Slic3r::Algorithm;
double thickness;
ExPolygons bridge_expolygons = fill_surfaces_extract_expolygons(surfaces, {stBottomBridge}, thickness);
if (bridge_expolygons.empty())
return {};
// Calculate bridge anchors and their expansions in their respective shell region.
ExpansionResult expansion_result{expand_expolygons(
bridge_expolygons,
expansion_zones
)};
std::vector<Bridge> bridges{get_grouped_bridges(
std::move(bridge_expolygons),
expansion_result.expansions
)};
bridge_expolygons.clear();
std::sort(expansion_result.anchors.begin(), expansion_result.anchors.end(), Algorithm::lower_by_src_and_boundary);
detect_bridge_directions(expansion_result.anchors, bridges, expansion_zones);
// Merge the groups with the same group id, produce surfaces by merging source overhangs with their newly expanded anchors.
std::sort(expansion_result.expansions.begin(), expansion_result.expansions.end(), [](auto &l, auto &r) {
return l.src_id < r.src_id || (l.src_id == r.src_id && l.boundary_id < r.boundary_id);
});
Surfaces out{merge_bridges(bridges, expansion_result.expansions, closing_radius)};
// Clip by the expanded bridges.
for (ExpansionZone& expansion_zone : expansion_zones)
if (expansion_zone.expanded_into)
expansion_zone.expolygons = diff_ex(expansion_zone.expolygons, out);
return out;
}
Surfaces expand_merge_surfaces(
Surfaces &surfaces,
SurfaceType surface_type,
std::vector<ExpansionZone>& expansion_zones,
const float closing_radius,
const double bridge_angle
)
{
using namespace Slic3r::Algorithm;
double thickness;
ExPolygons src = fill_surfaces_extract_expolygons(surfaces, {surface_type}, thickness);
if (src.empty())
return {};
unsigned processed_expolygons_count = 0;
std::vector<RegionExpansion> expansions;
for (ExpansionZone& expansion_zone : expansion_zones) {
std::vector<RegionExpansion> zone_expansions = propagate_waves(src, expansion_zone.expolygons, expansion_zone.parameters);
expansion_zone.expanded_into = !zone_expansions.empty();
for (RegionExpansion &expansion : zone_expansions)
expansion.boundary_id += processed_expolygons_count;
processed_expolygons_count += expansion_zone.expolygons.size();
append(expansions, std::move(zone_expansions));
}
std::vector<ExPolygon> expanded = merge_expansions_into_expolygons(std::move(src), std::move(expansions));
//NOTE: The current regularization of the shells can create small unasigned regions in the object (E.G. benchy)
// without the following closing operation, those regions will stay unfilled and cause small holes in the expanded surface.
// look for narrow_ensure_vertical_wall_thickness_region_radius filter.
expanded = closing_ex(expanded, closing_radius);
// Trim the zones by the expanded expolygons.
for (ExpansionZone& expansion_zone : expansion_zones)
if (expansion_zone.expanded_into)
expansion_zone.expolygons = diff_ex(expansion_zone.expolygons, expanded);
Surface templ{ surface_type, {} };
templ.bridge_angle = bridge_angle;
Surfaces out;
out.reserve(expanded.size());
for (auto &expoly : expanded)
out.emplace_back(templ, std::move(expoly));
return out;
}
void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Polygons *lower_layer_covered)
{
using namespace Slic3r::Algorithm;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("4_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Width of the perimeters.
float shell_width = 0;
float expansion_min = 0;
if (int num_perimeters = this->region().config().wall_loops; num_perimeters > 0) {
Flow external_perimeter_flow = this->flow(frExternalPerimeter);
Flow perimeter_flow = this->flow(frPerimeter);
shell_width = 0.5f * external_perimeter_flow.scaled_width() + external_perimeter_flow.scaled_spacing();
shell_width += perimeter_flow.scaled_spacing() * (num_perimeters - 1);
expansion_min = perimeter_flow.scaled_spacing();
} else {
// TODO: Maybe there is better solution when printing with zero perimeters, but this works reasonably well, given the situation
shell_width = float(SCALED_EPSILON);
expansion_min = float(SCALED_EPSILON);;
}
// Scaled expansions of the respective external surfaces.
float expansion_top = shell_width * sqrt(2.);
float expansion_bottom = expansion_top;
float expansion_bottom_bridge = expansion_top;
// Expand by waves of expansion_step size (expansion_step is scaled), but with no more steps than max_nr_expansion_steps.
static constexpr const float expansion_step = scaled<float>(0.1);
// Don't take more than max_nr_steps for small expansion_step.
static constexpr const size_t max_nr_expansion_steps = 5;
// Radius (with added epsilon) to absorb empty regions emering from regularization of ensuring, viz const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing;
const float closing_radius = 0.55f * 0.65f * 1.05f * this->flow(frSolidInfill).scaled_spacing();
// Expand the top / bottom / bridge surfaces into the shell thickness solid infills.
double layer_thickness;
ExPolygons shells = union_ex(fill_surfaces_extract_expolygons(fill_surfaces.surfaces, { stInternalSolid }, layer_thickness));
ExPolygons sparse = union_ex(fill_surfaces_extract_expolygons(fill_surfaces.surfaces, { stInternal }, layer_thickness));
ExPolygons top_expolygons = union_ex(fill_surfaces_extract_expolygons(fill_surfaces.surfaces, { stTop }, layer_thickness));
const auto expansion_params_into_sparse_infill = RegionExpansionParameters::build(expansion_min, expansion_step, max_nr_expansion_steps);
const auto expansion_params_into_solid_infill = RegionExpansionParameters::build(expansion_bottom_bridge, expansion_step, max_nr_expansion_steps);
std::vector<ExpansionZone> expansion_zones{
ExpansionZone{std::move(shells), expansion_params_into_solid_infill},
ExpansionZone{std::move(sparse), expansion_params_into_sparse_infill},
ExpansionZone{std::move(top_expolygons), expansion_params_into_solid_infill}
};
SurfaceCollection bridges;
{
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z;
const double custom_angle = this->region().config().bridge_angle.value;
bridges.surfaces = custom_angle > 0 ?
expand_merge_surfaces(fill_surfaces.surfaces, stBottomBridge, expansion_zones, closing_radius, Geometry::deg2rad(custom_angle)) :
expand_bridges_detect_orientations(fill_surfaces.surfaces, expansion_zones, closing_radius);
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun++), true);
}
#endif
}
fill_surfaces.remove_types({ stTop });
{
Surface top_templ(stTop, {});
top_templ.thickness = layer_thickness;
fill_surfaces.append(std::move(expansion_zones.back().expolygons), top_templ);
}
expansion_zones.pop_back();
expansion_zones.at(0).parameters = RegionExpansionParameters::build(expansion_bottom, expansion_step, max_nr_expansion_steps);
Surfaces bottoms = expand_merge_surfaces(fill_surfaces.surfaces, stBottom, expansion_zones, closing_radius);
expansion_zones.at(0).parameters = RegionExpansionParameters::build(expansion_top, expansion_step, max_nr_expansion_steps);
Surfaces tops = expand_merge_surfaces(fill_surfaces.surfaces, stTop, expansion_zones, closing_radius);
//expansion_zone[0]: shell , expansion_zone[1]: sparse
//apply minimu sparse infill area logic, this should also be added in bridge_over_infill
if (!this->layer()->object()->print()->config().spiral_mode && this->region().config().sparse_infill_density.value > 0) {
auto &sparse=expansion_zones[1].expolygons;
auto &shells=expansion_zones[0].expolygons;
double min_area = scale_(scale_(this->region().config().minimum_sparse_infill_area.value));
ExPolygons areas_to_be_solid{};
sparse.erase(std::remove_if(sparse.begin(), sparse.end(), [min_area, &areas_to_be_solid](ExPolygon& expoly) {
if (expoly.area() <= min_area) {
areas_to_be_solid.push_back(expoly);
return true;
}
return false;
}), sparse.end());
if (!areas_to_be_solid.empty())
shells = union_ex(shells, areas_to_be_solid);
}
// m_fill_surfaces.remove_types({ stBottomBridge, stBottom, stTop, stInternal, stInternalSolid });
fill_surfaces.clear();
unsigned zones_expolygons_count = 0;
for (const ExpansionZone& zone : expansion_zones)
zones_expolygons_count += zone.expolygons.size();
reserve_more(fill_surfaces.surfaces, zones_expolygons_count + bridges.size() + bottoms.size() + tops.size());
{
Surface solid_templ(stInternalSolid, {});
solid_templ.thickness = layer_thickness;
fill_surfaces.append(std::move(expansion_zones[0].expolygons), solid_templ);
}
{
Surface sparse_templ(stInternal, {});
sparse_templ.thickness = layer_thickness;
fill_surfaces.append(std::move(expansion_zones[1].expolygons), sparse_templ);
}
fill_surfaces.append(std::move(bridges.surfaces));
fill_surfaces.append(std::move(bottoms));
fill_surfaces.append(std::move(tops));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("4_process_external_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
#else
#endif
void LayerRegion::prepare_fill_surfaces()
{
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-initial");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
/* Note: in order to make the psPrepareInfill step idempotent, we should never
alter fill_surfaces boundaries on which our idempotency relies since that's
the only meaningful information returned by psPerimeters. */
bool spiral_mode = this->layer()->object()->print()->config().spiral_mode;
#if 0
// if no solid layers are requested, turn top/bottom surfaces to internal
if (! spiral_mode && this->region().config().top_shell_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_top())
//BBS
//surface.surface_type = this->layer()->object()->config().infill_only_where_needed ? stInternalVoid : stInternal;
surface.surface_type = PrintObject::infill_only_where_needed ? stInternalVoid : stInternal;
}
if (this->region().config().bottom_shell_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_bottom()) // (surface.surface_type == stBottom)
surface.surface_type = stInternal;
}
#endif
// turn too small internal regions into solid regions according to the user setting
if (! spiral_mode && this->region().config().sparse_infill_density.value > 0) {
// scaling an area requires two calls!
double min_area = scale_(scale_(this->region().config().minimum_sparse_infill_area.value));
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.surface_type == stInternal && surface.area() <= min_area)
surface.surface_type = stInternalSolid;
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-final");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
double LayerRegion::infill_area_threshold() const
{
double ss = this->flow(frSolidInfill).scaled_spacing();
return ss*ss;
}
void LayerRegion::trim_surfaces(const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
this->slices.set(intersection_ex(this->slices.surfaces, trimming_polygons), stInternal);
}
void LayerRegion::elephant_foot_compensation_step(const float elephant_foot_compensation_perimeter_step, const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
Polygons tmp = intersection(this->slices.surfaces, trimming_polygons);
append(tmp, diff(this->slices.surfaces, opening(this->slices.surfaces, elephant_foot_compensation_perimeter_step)));
this->slices.set(union_ex(tmp), stInternal);
}
void LayerRegion::export_region_slices_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
svg.draw(surface->expolygon, surface_type_to_color_name(surface->surface_type), transparency);
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
svg.draw(surface->expolygon.lines(), surface_type_to_color_name(surface->surface_type));
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_slices_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_slices_to_svg(debug_out_path("LayerRegion-slices-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const Surface &surface : this->fill_surfaces.surfaces) {
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
svg.draw_outline(surface.expolygon, "black", "blue", scale_(0.05));
}
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_fill_surfaces_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_fill_surfaces_to_svg(debug_out_path("LayerRegion-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::simplify_entity_collection(ExtrusionEntityCollection* entity_collection)
{
for (size_t i = 0; i < entity_collection->entities.size(); i++) {
if (ExtrusionEntityCollection* collection = dynamic_cast<ExtrusionEntityCollection*>(entity_collection->entities[i]))
this->simplify_entity_collection(collection);
else if (ExtrusionPath* path = dynamic_cast<ExtrusionPath*>(entity_collection->entities[i]))
this->simplify_path(path);
else if (ExtrusionMultiPath* multipath = dynamic_cast<ExtrusionMultiPath*>(entity_collection->entities[i]))
this->simplify_multi_path(multipath);
else if (ExtrusionLoop* loop = dynamic_cast<ExtrusionLoop*>(entity_collection->entities[i]))
this->simplify_loop(loop);
else
throw Slic3r::InvalidArgument("Invalid extrusion entity supplied to simplify_entity_collection()");
}
}
void LayerRegion::simplify_path(ExtrusionPath* path)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
if (enable_arc_fitting &&
!spiral_mode) {
if (path->role() == erInternalInfill)
path->simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
path->simplify_by_fitting_arc(scaled_resolution);
} else {
path->simplify(scaled_resolution);
}
}
void LayerRegion::simplify_multi_path(ExtrusionMultiPath* multipath)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
for (size_t i = 0; i < multipath->paths.size(); ++i) {
if (enable_arc_fitting &&
!spiral_mode) {
if (multipath->paths[i].role() == erInternalInfill)
multipath->paths[i].simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
multipath->paths[i].simplify_by_fitting_arc(scaled_resolution);
} else {
multipath->paths[i].simplify(scaled_resolution);
}
}
}
void LayerRegion::simplify_loop(ExtrusionLoop* loop)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
for (size_t i = 0; i < loop->paths.size(); ++i) {
if (enable_arc_fitting &&
!spiral_mode) {
if (loop->paths[i].role() == erInternalInfill)
loop->paths[i].simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
loop->paths[i].simplify_by_fitting_arc(scaled_resolution);
} else {
loop->paths[i].simplify(scaled_resolution);
}
}
}
}