BambuSrc/libslic3r/GCode/ToolOrderUtils.cpp

760 lines
32 KiB
C++
Raw Normal View History

2025-06-05 02:45:57 +00:00
#include "ToolOrderUtils.hpp"
#include <queue>
#include <set>
#include <map>
#include <cmath>
#include <boost/multiprecision/cpp_int.hpp>
namespace Slic3r
{
struct MinCostMaxFlow {
public:
struct Edge {
int from, to, capacity, cost, flow;
Edge(int u, int v, int cap, int cst) : from(u), to(v), capacity(cap), cost(cst), flow(0) {}
};
std::vector<int> solve();
void add_edge(int from, int to, int capacity, int cost);
bool spfa(int source, int sink);
int get_distance(int idx_in_left, int idx_in_right);
std::vector<std::vector<float>> matrix;
std::vector<int> l_nodes;
std::vector<int> r_nodes;
std::vector<Edge> edges;
std::vector<std::vector<int>> adj;
int total_nodes{ -1 };
int source_id{ -1 };
int sink_id{ -1 };
};
std::vector<int> MinCostMaxFlow::solve()
{
while (spfa(source_id, sink_id));
std::vector<int>matching(l_nodes.size(), MaxFlowGraph::INVALID_ID);
// to get the match info, just traverse the left nodes and
// check the edges with flow > 0 and linked to right nodes
for (int u = 0; u < l_nodes.size(); ++u) {
for (int eid : adj[u]) {
Edge& e = edges[eid];
if (e.flow > 0 && e.to >= l_nodes.size() && e.to < l_nodes.size() + r_nodes.size())
matching[e.from] = r_nodes[e.to - l_nodes.size()];
}
}
return matching;
}
void MinCostMaxFlow::add_edge(int from, int to, int capacity, int cost)
{
adj[from].emplace_back(edges.size());
edges.emplace_back(from, to, capacity, cost);
//also add reverse edge ,set capacity to zero,cost to negative
adj[to].emplace_back(edges.size());
edges.emplace_back(to, from, 0, -cost);
}
bool MinCostMaxFlow::spfa(int source, int sink)
{
std::vector<int>dist(total_nodes, MaxFlowGraph::INF);
std::vector<bool>in_queue(total_nodes, false);
std::vector<int>flow(total_nodes, MaxFlowGraph::INF);
std::vector<int>prev(total_nodes, 0);
std::queue<int>q;
q.push(source);
in_queue[source] = true;
dist[source] = 0;
while (!q.empty()) {
int now_at = q.front();
q.pop();
in_queue[now_at] = false;
for (auto eid : adj[now_at]) //traverse all linked edges
{
Edge& e = edges[eid];
if (e.flow<e.capacity && dist[e.to]>dist[now_at] + e.cost) {
dist[e.to] = dist[now_at] + e.cost;
prev[e.to] = eid;
flow[e.to] = std::min(flow[now_at], e.capacity - e.flow);
if (!in_queue[e.to]) {
q.push(e.to);
in_queue[e.to] = true;
}
}
}
}
if (dist[sink] == MaxFlowGraph::INF)
return false;
int now_at = sink;
while (now_at != source) {
int prev_edge = prev[now_at];
edges[prev_edge].flow += flow[sink];
edges[prev_edge ^ 1].flow -= flow[sink];
now_at = edges[prev_edge].from;
}
return true;
}
int MinCostMaxFlow::get_distance(int idx_in_left, int idx_in_right)
{
if (l_nodes[idx_in_left] == -1) {
return 0;
//TODO: test more here
int sum = 0;
for (int i = 0; i < matrix.size(); ++i)
sum += matrix[i][idx_in_right];
sum /= matrix.size();
return -sum;
}
return matrix[l_nodes[idx_in_left]][r_nodes[idx_in_right]];
}
MaxFlowSolver::MaxFlowSolver(const std::vector<int>& u_nodes, const std::vector<int>& v_nodes,
const std::unordered_map<int, std::vector<int>>& uv_link_limits,
const std::unordered_map<int, std::vector<int>>& uv_unlink_limits,
const std::vector<int>& u_capacity,
const std::vector<int>& v_capacity)
{
assert(u_capacity.empty() || u_capacity.size() == u_nodes.size());
assert(v_capacity.empty() || v_capacity.size() == v_nodes.size());
l_nodes = u_nodes;
r_nodes = v_nodes;
total_nodes = u_nodes.size() + v_nodes.size() + 2;
source_id = total_nodes - 2;
sink_id = total_nodes - 1;
adj.resize(total_nodes);
// add edge from source to left nodes
for (int idx = 0; idx < l_nodes.size(); ++idx) {
int capacity = u_capacity.empty() ? 1 : u_capacity[idx];
add_edge(source_id, idx, capacity);
}
// add edge from right nodes to sink node
for (int idx = 0; idx < r_nodes.size(); ++idx) {
int capacity = v_capacity.empty() ? 1 : v_capacity[idx];
add_edge(l_nodes.size() + idx, sink_id, capacity);
}
// add edge from left nodes to right nodes
for (int i = 0; i < l_nodes.size(); ++i) {
int from_idx = i;
// process link limits , i can only link to uv_link_limits
if (auto iter = uv_link_limits.find(i); iter != uv_link_limits.end()) {
for (auto r_id : iter->second)
add_edge(from_idx, l_nodes.size() + r_id, 1);
continue;
}
// process unlink limits
std::optional<std::vector<int>> unlink_limits;
if (auto iter = uv_unlink_limits.find(i); iter != uv_unlink_limits.end())
unlink_limits = iter->second;
for (int j = 0; j < r_nodes.size(); ++j) {
// check whether i can link to j
if (unlink_limits.has_value() && std::find(unlink_limits->begin(), unlink_limits->end(), j) != unlink_limits->end())
continue;
add_edge(from_idx, l_nodes.size() + j, 1);
}
}
}
void MaxFlowSolver::add_edge(int from, int to, int capacity)
{
adj[from].emplace_back(edges.size());
edges.emplace_back(from, to, capacity);
//also add reverse edge ,set capacity to zero
adj[to].emplace_back(edges.size());
edges.emplace_back(to, from, 0);
}
std::vector<int> MaxFlowSolver::solve() {
std::vector<int> augment;
std::vector<int> previous(total_nodes, 0);
while (1) {
std::vector<int>(total_nodes, 0).swap(augment);
std::queue<int> travel;
travel.push(source_id);
augment[source_id] = MaxFlowGraph::INF;
while (!travel.empty()) {
int from = travel.front();
travel.pop();
// traverse all linked edges
for (int i = 0; i < adj[from].size(); ++i) {
int eid = adj[from][i];
Edge& tmp = edges[eid];
if (augment[tmp.to] == 0 && tmp.capacity > tmp.flow) {
previous[tmp.to] = eid;
augment[tmp.to] = std::min(augment[from], tmp.capacity - tmp.flow);
travel.push(tmp.to);
}
}
// already find an extend path, stop and do update
if (augment[sink_id] != 0)
break;
}
// no longer have extend path
if (augment[sink_id] == 0)
break;
for (int i = sink_id; i != source_id; i = edges[previous[i]].from) {
edges[previous[i]].flow += augment[sink_id];
edges[previous[i] ^ 1].flow -= augment[sink_id];
}
}
std::vector<int> matching(l_nodes.size(), MaxFlowGraph::INVALID_ID);
// to get the match info, just traverse the left nodes and
// check the edge with flow > 0 and linked to right nodes
for (int u = 0; u < l_nodes.size(); ++u) {
for (int eid : adj[u]) {
Edge& e = edges[eid];
if (e.flow > 0 && e.to >= l_nodes.size() && e.to < l_nodes.size() + r_nodes.size())
matching[e.from] = r_nodes[e.to - l_nodes.size()];
}
}
return matching;
}
GeneralMinCostSolver::~GeneralMinCostSolver()
{
}
GeneralMinCostSolver::GeneralMinCostSolver(const std::vector<std::vector<float>>& matrix_, const std::vector<int>& u_nodes, const std::vector<int>& v_nodes)
{
m_solver = std::make_unique<MinCostMaxFlow>();
m_solver->matrix = matrix_;;
m_solver->l_nodes = u_nodes;
m_solver->r_nodes = v_nodes;
m_solver->total_nodes = u_nodes.size() + v_nodes.size() + 2;
m_solver->source_id =m_solver->total_nodes - 2;
m_solver->sink_id = m_solver->total_nodes - 1;
m_solver->adj.resize(m_solver->total_nodes);
// add edge from source to left nodes,cost to 0
for (int i = 0; i < m_solver->l_nodes.size(); ++i)
m_solver->add_edge(m_solver->source_id, i, 1, 0);
// add edge from right nodes to sink,cost to 0
for (int i = 0; i < m_solver->r_nodes.size(); ++i)
m_solver->add_edge(m_solver->l_nodes.size() + i, m_solver->sink_id, 1, 0);
// add edge from left node to right nodes
for (int i = 0; i < m_solver->l_nodes.size(); ++i) {
int from_idx = i;
for (int j = 0; j < m_solver->r_nodes.size(); ++j) {
int to_idx = m_solver->l_nodes.size() + j;
m_solver->add_edge(from_idx, to_idx, 1, m_solver->get_distance(i, j));
}
}
}
std::vector<int> GeneralMinCostSolver::solve() {
return m_solver->solve();
}
MinFlushFlowSolver::~MinFlushFlowSolver()
{
}
MinFlushFlowSolver::MinFlushFlowSolver(const std::vector<std::vector<float>>& matrix_, const std::vector<int>& u_nodes, const std::vector<int>& v_nodes,
const std::unordered_map<int, std::vector<int>>& uv_link_limits,
const std::unordered_map<int, std::vector<int>>& uv_unlink_limits,
const std::vector<int>& u_capacity,
const std::vector<int>& v_capacity)
{
assert(u_capacity.empty() || u_capacity.size() == u_nodes.size());
assert(v_capacity.empty() || v_capacity.size() == v_nodes.size());
m_solver = std::make_unique<MinCostMaxFlow>();
m_solver->matrix = matrix_;;
m_solver->l_nodes = u_nodes;
m_solver->r_nodes = v_nodes;
m_solver->total_nodes = u_nodes.size() + v_nodes.size() + 2;
m_solver->source_id =m_solver->total_nodes - 2;
m_solver->sink_id = m_solver->total_nodes - 1;
m_solver->adj.resize(m_solver->total_nodes);
// add edge from source to left nodes,cost to 0
for (int i = 0; i < m_solver->l_nodes.size(); ++i) {
int capacity = u_capacity.empty() ? 1 : u_capacity[i];
m_solver->add_edge(m_solver->source_id, i, capacity, 0);
}
// add edge from right nodes to sink,cost to 0
for (int i = 0; i < m_solver->r_nodes.size(); ++i) {
int capacity = v_capacity.empty() ? 1 : v_capacity[i];
m_solver->add_edge(m_solver->l_nodes.size() + i, m_solver->sink_id, capacity, 0);
}
// add edge from left node to right nodes
for (int i = 0; i < m_solver->l_nodes.size(); ++i) {
int from_idx = i;
// process link limits, i can only link to link_limits
if (auto iter = uv_link_limits.find(i); iter != uv_link_limits.end()) {
for (auto r_id : iter->second)
m_solver->add_edge(from_idx, m_solver->l_nodes.size() + r_id, 1, m_solver->get_distance(i, r_id));
continue;
}
// process unlink limits, check whether i can link to j
std::optional<std::vector<int>> unlink_limits;
if (auto iter = uv_unlink_limits.find(i); iter != uv_unlink_limits.end())
unlink_limits = iter->second;
for (int j = 0; j < m_solver->r_nodes.size(); ++j) {
if (unlink_limits.has_value() && std::find(unlink_limits->begin(), unlink_limits->end(), j) != unlink_limits->end())
continue;
m_solver->add_edge(from_idx, m_solver->l_nodes.size() + j, 1, m_solver->get_distance(i, j));
}
}
}
std::vector<int> MinFlushFlowSolver::solve() {
return m_solver->solve();
}
MatchModeGroupSolver::~MatchModeGroupSolver()
{
}
MatchModeGroupSolver::MatchModeGroupSolver(const std::vector<std::vector<float>>& matrix_, const std::vector<int>& u_nodes, const std::vector<int>& v_nodes, const std::vector<int>& v_capacity, const std::unordered_map<int, std::vector<int>>& uv_unlink_limits)
{
assert(v_nodes.size() == v_capacity.size());
m_solver = std::make_unique<MinCostMaxFlow>();
m_solver->matrix = matrix_;;
m_solver->l_nodes = u_nodes;
m_solver->r_nodes = v_nodes;
m_solver->total_nodes = u_nodes.size() + v_nodes.size() + 2;
m_solver->source_id = m_solver->total_nodes - 2;
m_solver->sink_id = m_solver->total_nodes - 1;
m_solver->adj.resize(m_solver->total_nodes);
// add edge from source to left nodes,cost to 0
for (int i = 0; i < m_solver->l_nodes.size(); ++i)
m_solver->add_edge(m_solver->source_id, i, 1, 0);
// add edge from right nodes to sink,cost to 0
for (int i = 0; i < m_solver->r_nodes.size(); ++i)
m_solver->add_edge(m_solver->l_nodes.size() + i, m_solver->sink_id, v_capacity[i], 0);
// add edge from left node to right nodes
for (int i = 0; i < m_solver->l_nodes.size(); ++i) {
int from_idx = i;
// process unlink limits, check whether i can link to j
std::optional<std::vector<int>> unlink_limits;
if (auto iter = uv_unlink_limits.find(i); iter != uv_unlink_limits.end())
unlink_limits = iter->second;
for (int j = 0; j < m_solver->r_nodes.size(); ++j) {
if (unlink_limits.has_value() && std::find(unlink_limits->begin(), unlink_limits->end(), j) != unlink_limits->end())
continue;
m_solver->add_edge(from_idx, m_solver->l_nodes.size() + j, 1, m_solver->get_distance(i, j));
}
}
}
std::vector<int> MatchModeGroupSolver::solve() {
return m_solver->solve();
}
//solve the problem by searching the least flush of current filament
static std::vector<unsigned int> solve_extruder_order_with_greedy(const std::vector<std::vector<float>>& wipe_volumes,
const std::vector<unsigned int> curr_layer_extruders,
const std::optional<unsigned int>& start_extruder_id,
float* min_cost)
{
float cost = 0;
std::vector<unsigned int> best_seq;
std::vector<bool>is_visited(curr_layer_extruders.size(), false);
std::optional<unsigned int>prev_filament = start_extruder_id;
int idx = curr_layer_extruders.size();
while (idx > 0) {
if (!prev_filament) {
auto iter = std::find_if(is_visited.begin(), is_visited.end(), [](auto item) {return item == 0; });
assert(iter != is_visited.end());
prev_filament = curr_layer_extruders[iter - is_visited.begin()];
}
int target_idx = -1;
int target_cost = std::numeric_limits<int>::max();
for (size_t k = 0; k < is_visited.size(); ++k) {
if (!is_visited[k]) {
if (wipe_volumes[*prev_filament][curr_layer_extruders[k]] < target_cost) {
target_idx = k;
target_cost = wipe_volumes[*prev_filament][curr_layer_extruders[k]];
}
}
}
assert(target_idx != -1);
cost += target_cost;
best_seq.emplace_back(curr_layer_extruders[target_idx]);
prev_filament = curr_layer_extruders[target_idx];
is_visited[target_idx] = true;
idx -= 1;
}
if (min_cost)
*min_cost = cost;
return best_seq;
}
//solve the problem by forcasting one layer
static std::vector<unsigned int> solve_extruder_order_with_forcast(const std::vector<std::vector<float>>& wipe_volumes,
std::vector<unsigned int> curr_layer_extruders,
std::vector<unsigned int> next_layer_extruders,
const std::optional<unsigned int>& start_extruder_id,
float* min_cost)
{
std::sort(curr_layer_extruders.begin(), curr_layer_extruders.end());
std::sort(next_layer_extruders.begin(), next_layer_extruders.end());
float best_cost = std::numeric_limits<float>::max();
std::vector<unsigned int>best_seq;
do {
std::optional<unsigned int>prev_extruder_1 = start_extruder_id;
float curr_layer_cost = 0;
for (size_t idx = 0; idx < curr_layer_extruders.size(); ++idx) {
if (prev_extruder_1)
curr_layer_cost += wipe_volumes[*prev_extruder_1][curr_layer_extruders[idx]];
prev_extruder_1 = curr_layer_extruders[idx];
}
if (curr_layer_cost > best_cost)
continue;
do {
std::optional<unsigned int>prev_extruder_2 = prev_extruder_1;
float total_cost = curr_layer_cost;
for (size_t idx = 0; idx < next_layer_extruders.size(); ++idx) {
if (prev_extruder_2)
total_cost += wipe_volumes[*prev_extruder_2][next_layer_extruders[idx]];
prev_extruder_2 = next_layer_extruders[idx];
}
if (total_cost < best_cost) {
best_cost = total_cost;
best_seq = curr_layer_extruders;
}
} while (std::next_permutation(next_layer_extruders.begin(), next_layer_extruders.end()));
} while (std::next_permutation(curr_layer_extruders.begin(), curr_layer_extruders.end()));
if (min_cost) {
float real_cost = 0;
std::optional<unsigned int>prev_extruder = start_extruder_id;
for (size_t idx = 0; idx < best_seq.size(); ++idx) {
if (prev_extruder)
real_cost += wipe_volumes[*prev_extruder][best_seq[idx]];
prev_extruder = best_seq[idx];
}
*min_cost = real_cost;
}
return best_seq;
}
// Shortest hamilton path problem
static std::vector<unsigned int> solve_extruder_order(const std::vector<std::vector<float>>& wipe_volumes,
std::vector<unsigned int> all_extruders,
std::optional<unsigned int> start_extruder_id,
float* min_cost)
{
bool add_start_extruder_flag = false;
if (start_extruder_id) {
auto start_iter = std::find(all_extruders.begin(), all_extruders.end(), start_extruder_id);
if (start_iter == all_extruders.end())
all_extruders.insert(all_extruders.begin(), *start_extruder_id), add_start_extruder_flag = true;
else
std::swap(*all_extruders.begin(), *start_iter);
}
else {
start_extruder_id = all_extruders.front();
}
unsigned int iterations = (1 << all_extruders.size());
unsigned int final_state = iterations - 1;
std::vector<std::vector<float>>cache(iterations, std::vector<float>(all_extruders.size(), 0x7fffffff));
std::vector<std::vector<int>>prev(iterations, std::vector<int>(all_extruders.size(), -1));
cache[1][0] = 0.;
for (unsigned int state = 0; state < iterations; ++state) {
if (state & 1) {
for (unsigned int target = 0; target < all_extruders.size(); ++target) {
if (state >> target & 1) {
for (unsigned int mid_point = 0; mid_point < all_extruders.size(); ++mid_point) {
if (state >> mid_point & 1) {
auto tmp = cache[state - (1 << target)][mid_point] + wipe_volumes[all_extruders[mid_point]][all_extruders[target]];
if (cache[state][target] > tmp) {
cache[state][target] = tmp;
prev[state][target] = mid_point;
}
}
}
}
}
}
}
//get res
float cost = std::numeric_limits<float>::max();
int final_dst = 0;
for (unsigned int dst = 0; dst < all_extruders.size(); ++dst) {
if (all_extruders[dst] != start_extruder_id && cost > cache[final_state][dst]) {
cost = cache[final_state][dst];
if (min_cost)
*min_cost = cost;
final_dst = dst;
}
}
std::vector<unsigned int>path;
unsigned int curr_state = final_state;
int curr_point = final_dst;
while (curr_point != -1) {
path.emplace_back(all_extruders[curr_point]);
auto mid_point = prev[curr_state][curr_point];
curr_state -= (1 << curr_point);
curr_point = mid_point;
};
if (add_start_extruder_flag)
path.pop_back();
std::reverse(path.begin(), path.end());
return path;
}
template<class T>
static std::vector<T> collect_filaments_in_groups(const std::unordered_set<unsigned int>& group, const std::vector<unsigned int>& filament_list) {
std::vector<T>ret;
ret.reserve(group.size());
for (auto& f : filament_list) {
if (auto iter = group.find(f); iter != group.end())
ret.emplace_back(static_cast<T>(f));
}
return ret;
}
// get best filament order of single nozzle
std::vector<unsigned int> get_extruders_order(const std::vector<std::vector<float>>& wipe_volumes,
const std::vector<unsigned int>& curr_layer_extruders,
const std::vector<unsigned int>& next_layer_extruders,
const std::optional<unsigned int>& start_extruder_id,
bool use_forcast,
float* cost)
{
if (curr_layer_extruders.empty()) {
if (cost)
*cost = 0;
return curr_layer_extruders;
}
if (curr_layer_extruders.size() == 1) {
if (cost) {
*cost = 0;
if (start_extruder_id)
*cost = wipe_volumes[*start_extruder_id][curr_layer_extruders[0]];
}
return curr_layer_extruders;
}
if (use_forcast)
return solve_extruder_order_with_forcast(wipe_volumes, curr_layer_extruders, next_layer_extruders, start_extruder_id, cost);
else if (curr_layer_extruders.size() <= 20)
return solve_extruder_order(wipe_volumes, curr_layer_extruders, start_extruder_id, cost);
else
return solve_extruder_order_with_greedy(wipe_volumes, curr_layer_extruders, start_extruder_id, cost);
}
int reorder_filaments_for_minimum_flush_volume(const std::vector<unsigned int>& filament_lists,
const std::vector<int>& filament_maps,
const std::vector<std::vector<unsigned int>>& layer_filaments,
const std::vector<FlushMatrix>& flush_matrix,
std::optional<std::function<bool(int, std::vector<int>&)>> get_custom_seq,
std::vector<std::vector<unsigned int>>* filament_sequences)
{
//only when layer filament num <= 5,we do forcast
constexpr int max_n_with_forcast = 5;
int cost = 0;
std::vector<std::unordered_set<unsigned int>>groups(2); //save the grouped filaments
std::vector<std::vector<std::vector<unsigned int>>> layer_sequences(2); //save the reordered filament sequence by group
std::map<size_t, std::vector<unsigned int>> custom_layer_sequence_map; // save the filament sequences of custom layer
// group the filament
for (int i = 0; i < filament_maps.size(); ++i) {
if (filament_maps[i] == 0)
groups[0].insert(filament_lists[i]);
if (filament_maps[i] == 1)
groups[1].insert(filament_lists[i]);
}
// store custom layer sequence
for (size_t layer = 0; layer < layer_filaments.size(); ++layer) {
const auto& curr_lf = layer_filaments[layer];
std::vector<int>custom_filament_seq;
if (get_custom_seq && (*get_custom_seq)(layer, custom_filament_seq) && !custom_filament_seq.empty()) {
std::vector<unsigned int> unsign_custom_extruder_seq;
for (int extruder : custom_filament_seq) {
unsigned int unsign_extruder = static_cast<unsigned int>(extruder) - 1;
auto it = std::find(curr_lf.begin(), curr_lf.end(), unsign_extruder);
if (it != curr_lf.end())
unsign_custom_extruder_seq.emplace_back(unsign_extruder);
}
assert(curr_lf.size() == unsign_custom_extruder_seq.size());
custom_layer_sequence_map[layer] = unsign_custom_extruder_seq;
}
}
using uint128_t = boost::multiprecision::uint128_t;
auto extruders_to_hash_key = [](const std::vector<unsigned int>& curr_layer_extruders,
const std::vector<unsigned int>& next_layer_extruders,
const std::optional<unsigned int>& prev_extruder,
bool use_forcast)->uint128_t
{
uint128_t hash_key = 0;
//31-0 bit define current layer extruder,63-32 bit define next layer extruder,95~64 define prev extruder
if (prev_extruder)
hash_key |= (uint128_t(1) << (64 + *prev_extruder));
if (use_forcast) {
for (auto item : next_layer_extruders)
hash_key |= (uint128_t(1) << (32 + item));
}
for (auto item : curr_layer_extruders)
hash_key |= (uint128_t(1) << item);
return hash_key;
};
// get best layer sequence by group
for (size_t idx = 0; idx < groups.size(); ++idx) {
// case with one group
if (groups[idx].empty())
continue;
std::optional<unsigned int>current_extruder_id;
std::unordered_map<uint128_t, std::pair<float, std::vector<unsigned int>>> caches;
for (size_t layer = 0; layer < layer_filaments.size(); ++layer) {
const auto& curr_lf = layer_filaments[layer];
if (auto iter = custom_layer_sequence_map.find(layer); iter != custom_layer_sequence_map.end()) {
auto sequence_in_group = collect_filaments_in_groups<unsigned int>(groups[idx], iter->second);
float tmp_cost = 0;
std::optional<unsigned int>prev = current_extruder_id;
for (auto& f : sequence_in_group) {
if (prev) { tmp_cost += flush_matrix[idx][*prev][f]; }
prev = f;
}
cost += tmp_cost;
if (!sequence_in_group.empty())
current_extruder_id = sequence_in_group.back();
//insert an empty array
if (filament_sequences)
layer_sequences[idx].emplace_back(std::vector<unsigned int>());
continue;
}
std::vector<unsigned int>filament_used_in_group = collect_filaments_in_groups<unsigned int>(groups[idx], curr_lf);
std::vector<unsigned int>next_lf;
if (layer + 1 < layer_filaments.size())
next_lf = layer_filaments[layer + 1];
std::vector<unsigned int>filament_used_in_group_next_layer = collect_filaments_in_groups<unsigned int>(groups[idx], next_lf);
bool use_forcast = (filament_used_in_group.size() <= max_n_with_forcast && filament_used_in_group_next_layer.size() <= max_n_with_forcast);
float tmp_cost = 0;
std::vector<unsigned int>sequence;
uint128_t hash_key = extruders_to_hash_key(filament_used_in_group, filament_used_in_group_next_layer, current_extruder_id, use_forcast);
if (auto iter = caches.find(hash_key); iter != caches.end()) {
tmp_cost = iter->second.first;
sequence = iter->second.second;
}
else {
sequence = get_extruders_order(flush_matrix[idx], filament_used_in_group, filament_used_in_group_next_layer, current_extruder_id, use_forcast, &tmp_cost);
caches[hash_key] = { tmp_cost,sequence };
}
assert(sequence.size() == filament_used_in_group.size());
if (filament_sequences)
layer_sequences[idx].emplace_back(sequence);
if (!sequence.empty())
current_extruder_id = sequence.back();
cost += tmp_cost;
}
}
// get the final layer sequences
// if only have one group,we need to check whether layer sequence[idx] is valid
if (filament_sequences) {
filament_sequences->clear();
filament_sequences->resize(layer_filaments.size());
int last_group_id = 0;
//if last_group == 0,print group 0 first ,else print group 1 first
if (!custom_layer_sequence_map.empty()) {
const auto& first_layer = custom_layer_sequence_map.begin()->first;
const auto& first_layer_filaments = custom_layer_sequence_map.begin()->second;
assert(!first_layer_filaments.empty());
bool first_group = groups[0].count(first_layer_filaments.front()) ? 0 : 1;
last_group_id = (first_layer & 1) ? !first_group : first_group;
}
for (size_t layer = 0; layer < layer_filaments.size(); ++layer) {
auto& curr_layer_seq = (*filament_sequences)[layer];
if (custom_layer_sequence_map.find(layer) != custom_layer_sequence_map.end()) {
curr_layer_seq = custom_layer_sequence_map[layer];
if (!curr_layer_seq.empty()) {
last_group_id = groups[0].count(curr_layer_seq.back()) ? 0 : 1;
}
continue;
}
if (last_group_id == 1) {
// try reuse the last group
if (!layer_sequences[1].empty() && !layer_sequences[1][layer].empty())
curr_layer_seq.insert(curr_layer_seq.end(), layer_sequences[1][layer].begin(), layer_sequences[1][layer].end());
if (!layer_sequences[0].empty() && !layer_sequences[0][layer].empty()) {
curr_layer_seq.insert(curr_layer_seq.end(), layer_sequences[0][layer].begin(), layer_sequences[0][layer].end());
last_group_id = 0; // update last group id
}
}
else if(last_group_id == 0) {
if (!layer_sequences[0].empty() && !layer_sequences[0][layer].empty()) {
curr_layer_seq.insert(curr_layer_seq.end(), layer_sequences[0][layer].begin(), layer_sequences[0][layer].end());
}
if (!layer_sequences[1].empty() && !layer_sequences[1][layer].empty()) {
curr_layer_seq.insert(curr_layer_seq.end(), layer_sequences[1][layer].begin(), layer_sequences[1][layer].end());
last_group_id = 1; // update last group id
}
}
}
}
return cost;
}
}