// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro. #include "GLGizmoFlatten.hpp" #include "slic3r/GUI/GLCanvas3D.hpp" #include "slic3r/GUI/GUI_App.hpp" #include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp" #include "libslic3r/Geometry/ConvexHull.hpp" #include "libslic3r/Model.hpp" #include #include #include #include namespace Slic3r { namespace GUI { GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id) : GLGizmoBase(parent, icon_filename, sprite_id) , m_normal(Vec3d::Zero()) , m_starting_center(Vec3d::Zero()) { } bool GLGizmoFlatten::on_init() { // BBS m_shortcut_key = WXK_CONTROL_F; return true; } void GLGizmoFlatten::on_set_state() { m_hit_facet = -1; m_last_hit_facet = -1; } CommonGizmosDataID GLGizmoFlatten::on_get_requirements() const { return CommonGizmosDataID(int(CommonGizmosDataID::SelectionInfo) | int(CommonGizmosDataID::InstancesHider) | int(CommonGizmosDataID::Raycaster) | int(CommonGizmosDataID::ObjectClipper)); } void GLGizmoFlatten::on_render_input_window(float x, float y, float bottom_limit) { double screen_scale = wxDisplay(wxGetApp().plater()).GetScaleFactor(); static float last_y = 0.0f; static float last_h = 0.0f; const float win_h = ImGui::GetWindowHeight(); y = std::min(y, bottom_limit - win_h); GizmoImguiSetNextWIndowPos(x, y, ImGuiCond_Always, 0.0f, 0.0f); if (last_h != win_h || last_y != y) { // ask canvas for another frame to render the window in the correct position m_imgui->set_requires_extra_frame(); if (last_h != win_h) last_h = win_h; if (last_y != y) last_y = y; } ImGuiWrapper::push_toolbar_style(m_parent.get_scale()); GizmoImguiBegin(on_get_name(), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoCollapse | ImGuiWindowFlags_NoTitleBar); float space_size = m_imgui->get_style_scaling() * 8; float mode_cap = m_imgui->calc_text_size(_L("Mode") + ":").x; float caption_size = mode_cap + space_size + ImGui::GetStyle().WindowPadding.x; ImGui::AlignTextToFramePadding(); m_imgui->text(_L("Mode") + ":"); ImGui::SameLine();//ImGui::SameLine(caption_size); bool faltten_type_defult = m_faltten_type == FlattenType::Default; auto first_mode_str = _L("Convex hull"); if (m_imgui->bbl_checkbox(first_mode_str, faltten_type_defult)) { if (faltten_type_defult) { m_faltten_type = FlattenType::Default; } else { m_faltten_type = FlattenType::Triangle; } } ImGui::SameLine();//ImGui::SameLine(new_label_width); bool faltten_type_tri = m_faltten_type == FlattenType::Triangle; if (m_imgui->bbl_checkbox(_L("Triangular facet"), faltten_type_tri)) { if (!faltten_type_tri) { m_faltten_type = FlattenType::Default; } else { m_faltten_type = FlattenType::Triangle; } } if (m_show_warning) { m_imgui->warning_text(_L("Warning: All triangle areas are too small,The current function is not working.")); } GizmoImguiEnd(); ImGuiWrapper::pop_toolbar_style(); } std::string GLGizmoFlatten::on_get_name() const { if (!on_is_activable() && m_state == EState::Off) { return _u8L("Lay on face") + ":\n" + _u8L("Please select single object."); } else { return _u8L("Lay on face"); } } bool GLGizmoFlatten::on_is_activable() const { // This is assumed in GLCanvas3D::do_rotate, do not change this // without updating that function too. return m_parent.get_selection().is_single_full_instance(); } void GLGizmoFlatten::on_start_dragging() { if (m_hover_id != -1) { assert(m_planes_valid); if (m_faltten_type == FlattenType::Default) { m_normal = m_planes[m_hover_id].normal; } else { m_normal = m_hit_object_normal.cast(); } m_starting_center = m_parent.get_selection().get_bounding_box().center(); } } bool GLGizmoFlatten::update_raycast_cache(const Vec2d &mouse_position, const Camera &camera, const std::vector &trafo_matrices, int &cur_facet) { /*if (m_rr.mouse_position == mouse_position) { return false; }*/ Vec3f normal = Vec3f::Zero(); Vec3f hit = Vec3f::Zero(); Vec3f closest_hit = Vec3f::Zero(); Vec3f closest_nromal = Vec3f::Zero(); double closest_hit_squared_distance = std::numeric_limits::max(); int closest_hit_mesh_id = -1; size_t facet = 0; // Cast a ray on all meshes, pick the closest hit and save it for the respective mesh for (int mesh_id = 0; mesh_id < int(trafo_matrices.size()); ++mesh_id) { if (m_c->raycaster()->raycasters()[mesh_id]->unproject_on_mesh(mouse_position, trafo_matrices[mesh_id], camera, hit, normal, m_c->object_clipper()->get_clipping_plane(), &facet)) { // In case this hit is clipped, skip it. //if (is_mesh_point_clipped(hit.cast(), trafo_matrices[mesh_id])) continue; double hit_squared_distance = (camera.get_position() - trafo_matrices[mesh_id] * hit.cast()).squaredNorm(); if (hit_squared_distance < closest_hit_squared_distance) { closest_hit_squared_distance = hit_squared_distance; closest_hit_mesh_id = mesh_id; closest_hit = hit; closest_nromal = normal; if (m_faltten_type == FlattenType::Triangle) { auto mo = m_c->selection_info()->model_object(); auto mv = mo->volumes[mesh_id]; m_hit_object_normal = mv->get_matrix().cast() * closest_nromal; } } } } if (closest_hit_mesh_id >= 0) { m_rr = {mouse_position, closest_hit_mesh_id, closest_hit, closest_nromal}; // update_raycast_cache berfor click down cur_facet = (int)facet; return true; } cur_facet = -1; return false; } void GLGizmoFlatten::on_render() { const auto& p_flat_shader = wxGetApp().get_shader("flat"); if (!p_flat_shader) { return; } const Selection& selection = m_parent.get_selection(); glsafe(::glClear(GL_DEPTH_BUFFER_BIT)); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glEnable(GL_BLEND)); wxGetApp().bind_shader(p_flat_shader); const Camera &camera = wxGetApp().plater()->get_camera(); p_flat_shader->set_uniform("projection_matrix", camera.get_projection_matrix()); if (selection.is_single_full_instance()) { if (m_faltten_type == FlattenType::Default) { const Transform3d &m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix(); const Transform3d view_model_matrix = camera.get_view_matrix() * Geometry::assemble_transform(selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z() * Vec3d::UnitZ()) * m; p_flat_shader->set_uniform("view_model_matrix", view_model_matrix); if (this->is_plane_update_necessary()) update_planes(); for (int i = 0; i < (int) m_planes.size(); ++i) { p_flat_shader->set_uniform("uniform_color", i == m_hover_id ? GLGizmoBase::FLATTEN_HOVER_COLOR : GLGizmoBase::FLATTEN_COLOR); m_planes[i].vbo.render(p_flat_shader); } } else { Vec2d mouse_pos = m_parent.get_local_mouse_position(); const Camera &camera = wxGetApp().plater()->get_camera(); const Transform3d view_model_matrix = camera.get_view_matrix(); p_flat_shader->set_uniform("view_model_matrix", view_model_matrix); const Selection & selection = m_parent.get_selection(); auto mo = get_selected_model_object(m_parent); if (mo) { const ModelInstance * mi = mo->instances[selection.get_instance_idx()]; std::vector trafo_matrices; for (const ModelVolume *mv : mo->volumes) { if (mv->is_model_part()) trafo_matrices.emplace_back(mi->get_transformation().get_matrix() * mv->get_matrix()); } update_raycast_cache(mouse_pos, camera, trafo_matrices,m_hit_facet); if (m_hit_facet >= 0) { if (m_last_hit_facet != m_hit_facet) { m_last_hit_facet = m_hit_facet; m_one_tri_model.reset(); auto mv = mo->volumes[m_rr.mesh_id]; auto world_tran = (mo->instances[selection.get_instance_idx()]->get_transformation().get_matrix() * mv->get_matrix()).cast(); auto &vertices = mv->mesh().its.vertices; auto &cur_faces = mv->mesh().its.indices; if (m_hit_facet < cur_faces.size()) { auto v0 = world_tran * vertices[cur_faces[m_hit_facet][0]] + m_rr.normal * 0.05; auto v1 = world_tran * vertices[cur_faces[m_hit_facet][1]] + m_rr.normal * 0.05; auto v2 = world_tran * vertices[cur_faces[m_hit_facet][2]] + m_rr.normal * 0.05; indexed_triangle_set temp_its; temp_its.indices.push_back({0, 1, 2}); temp_its.vertices.push_back(v0); temp_its.vertices.push_back(v1); temp_its.vertices.push_back(v2); m_one_tri_model.init_from(temp_its); } } if (m_one_tri_model.is_initialized()) { glsafe(::glDisable(GL_CULL_FACE)); m_one_tri_model.set_color(GLGizmoBase::FLATTEN_HOVER_COLOR); m_one_tri_model.render_geometry(); } } } } } wxGetApp().unbind_shader(); glsafe(::glEnable(GL_CULL_FACE)); glsafe(::glDisable(GL_BLEND)); } void GLGizmoFlatten::on_render_for_picking() { const auto& p_flat_shader = wxGetApp().get_shader("flat"); if (!p_flat_shader) { return; } const Selection& selection = m_parent.get_selection(); glsafe(::glDisable(GL_DEPTH_TEST)); glsafe(::glDisable(GL_BLEND)); wxGetApp().bind_shader(p_flat_shader); const Camera &camera = wxGetApp().plater()->get_picking_camera(); p_flat_shader->set_uniform("projection_matrix", camera.get_projection_matrix()); if (selection.is_single_full_instance() && !wxGetKeyState(WXK_CONTROL)) { if (m_faltten_type == FlattenType::Default) { const Transform3d &m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix(); const Transform3d view_model_matrix = camera.get_view_matrix() * Geometry::assemble_transform(selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z() * Vec3d::UnitZ()) * m; p_flat_shader->set_uniform("view_model_matrix", view_model_matrix); if (this->is_plane_update_necessary()) update_planes(); for (int i = 0; i < (int) m_planes.size(); ++i) { p_flat_shader->set_uniform("uniform_color", picking_color_component(i)); m_planes[i].vbo.render(p_flat_shader); } } else { if (m_one_tri_model.is_initialized()) { glsafe(::glDisable(GL_CULL_FACE)); const Transform3d view_model_matrix = camera.get_view_matrix(); p_flat_shader->set_uniform("view_model_matrix", view_model_matrix); m_one_tri_model.set_color(picking_color_component(0)); m_one_tri_model.render_geometry(); } } } wxGetApp().unbind_shader(); glsafe(::glEnable(GL_CULL_FACE)); } void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object) { m_starting_center = Vec3d::Zero(); if (model_object != m_old_model_object) { m_planes.clear(); m_planes_valid = false; } } void GLGizmoFlatten::update_planes() { const ModelObject* mo = m_c->selection_info()->model_object(); TriangleMesh ch; for (const ModelVolume* vol : mo->volumes) { if (vol->type() != ModelVolumeType::MODEL_PART) continue; TriangleMesh vol_ch = vol->get_convex_hull(); vol_ch.transform(vol->get_matrix()); ch.merge(vol_ch); } ch = ch.convex_hull_3d(); m_planes.clear(); const Transform3d& inst_matrix = mo->instances.front()->get_matrix(true); // Following constants are used for discarding too small polygons. const float experted_minimal_area = 5.0f; const float minimal_area = 1.0f; // in square mm (world coordinates) const float minimal_side = 1.f; // mm const float minimal_angle = 1.f; // degree, initial value was 10, but cause bugs // Now we'll go through all the facets and append Points of facets sharing the same normal. // This part is still performed in mesh coordinate system. const int num_of_facets = ch.facets_count(); const std::vector face_normals = its_face_normals(ch.its); const std::vector face_neighbors = its_face_neighbors(ch.its); std::vector facet_queue(num_of_facets, 0); std::vector facet_visited(num_of_facets, false); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; int facet_idx = 0; while (1) { // Find next unvisited triangle: for (; facet_idx < num_of_facets; ++ facet_idx) if (!facet_visited[facet_idx]) { facet_queue[facet_queue_cnt ++] = facet_idx; facet_visited[facet_idx] = true; normal_ptr = &face_normals[facet_idx]; m_planes.emplace_back(); break; } if (facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = face_normals[facet_idx]; if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) { const Vec3i face = ch.its.indices[facet_idx]; for (int j=0; j<3; ++j) m_planes.back().vertices.emplace_back(ch.its.vertices[face[j]].cast()); facet_visited[facet_idx] = true; for (int j = 0; j < 3; ++ j) if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && ! facet_visited[neighbor_idx]) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } m_planes.back().normal = normal_ptr->cast(); Pointf3s& verts = m_planes.back().vertices; // Now we'll transform all the points into world coordinates, so that the areas, angles and distances // make real sense. verts = transform(verts, inst_matrix); // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway): if (verts.size() == 3 && ((verts[0] - verts[1]).norm() < minimal_side || (verts[0] - verts[2]).norm() < minimal_side || (verts[1] - verts[2]).norm() < minimal_side)) m_planes.pop_back(); } // Let's prepare transformation of the normal vector from mesh to instance coordinates. Geometry::Transformation t(inst_matrix); Vec3d scaling = t.get_scaling_factor(); t.set_scaling_factor(Vec3d(1./scaling(0), 1./scaling(1), 1./scaling(2))); // Now we'll go through all the polygons, transform the points into xy plane to process them: for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) { Pointf3s& polygon = m_planes[polygon_id].vertices; const Vec3d& normal = m_planes[polygon_id].normal; // transform the normal according to the instance matrix: Vec3d normal_transformed = t.get_matrix() * normal; // We are going to rotate about z and y to flatten the plane Eigen::Quaterniond q; Transform3d m = Transform3d::Identity(); m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix(); polygon = transform(polygon, m); // Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since // it works in fixed point representation, we will rescale the polygon to avoid overflows. // And yes, it is a nasty thing to do. Whoever has time is free to refactor. Vec3d bb_size = BoundingBoxf3(polygon).size(); float sf = std::min(1./bb_size(0), 1./bb_size(1)); Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f)); polygon = transform(polygon, tr); polygon = Slic3r::Geometry::convex_hull(polygon); polygon = transform(polygon, tr.inverse()); // Calculate area of the polygons and discard ones that are too small float& area = m_planes[polygon_id].area; area = 0.f; for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1); area = 0.5f * std::abs(area); bool discard = false; if (area < minimal_area) discard = true; else { // We also check the inner angles and discard polygons with angles smaller than the following threshold const double angle_threshold = ::cos(minimal_angle * (double)PI / 180.0); for (unsigned int i = 0; i < polygon.size(); ++i) { const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1]; const Vec3d& curr = polygon[i]; const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1]; if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) { discard = true; break; } } } if (discard) { m_planes[polygon_id--] = std::move(m_planes.back()); m_planes.pop_back(); continue; } // We will shrink the polygon a little bit so it does not touch the object edges: Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0)); centroid /= (double)polygon.size(); for (auto& vertex : polygon) vertex = 0.9f*vertex + 0.1f*centroid; // Polygon is now simple and convex, we'll round the corners to make them look nicer. // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex // towards their average (controlled by 'aggressivity'). This is repeated k times. // In next iterations, the neighbours are not always taken at the middle (to increase the // rounding effect at the corners, where we need it most). const unsigned int k = 10; // number of iterations const float aggressivity = 0.2f; // agressivity const unsigned int N = polygon.size(); std::vector> neighbours; if (k != 0) { Pointf3s points_out(2*k*N); // vector long enough to store the future vertices for (unsigned int j=0; j& planes) { for (size_t i = planes.size() - 1; i >= index; i--) { planes.pop_back(); } }; const int plane_count = 30; for (size_t i = 0; i < m_planes.size(); i++) { if (m_planes[i].area < experted_minimal_area) { if (i + 1 >= plane_count) { delte_index_to_end(plane_count, m_planes); break; } else {//= plane_count) { delte_index_to_end(plane_count, m_planes); break; } } break; } } } m_planes.resize(std::min((int)m_planes.size(), 254)); // Planes are finished - let's save what we calculated it from: m_volumes_matrices.clear(); m_volumes_types.clear(); for (const ModelVolume* vol : mo->volumes) { m_volumes_matrices.push_back(vol->get_matrix()); m_volumes_types.push_back(vol->type()); } m_first_instance_scale = mo->instances.front()->get_scaling_factor(); m_first_instance_mirror = mo->instances.front()->get_mirror(); m_old_model_object = mo; // And finally create respective VBOs. The polygon is convex with // the vertices in order, so triangulation is trivial. for (auto& plane : m_planes) { plane.vbo.reserve(plane.vertices.size()); for (const auto& vert : plane.vertices) plane.vbo.push_geometry(vert, plane.normal); for (size_t i=1; iselection_info()->model_object(); if (m_state != On || ! mo || mo->instances.empty()) return false; if (! m_planes_valid || mo != m_old_model_object || mo->volumes.size() != m_volumes_matrices.size()) return true; // We want to recalculate when the scale changes - some planes could (dis)appear. if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale) || ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror)) return true; for (unsigned int i=0; i < mo->volumes.size(); ++i) if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i]) || mo->volumes[i]->type() != m_volumes_types[i]) return true; return false; } Vec3d GLGizmoFlatten::get_flattening_normal() const { Vec3d out = m_normal; m_normal = Vec3d::Zero(); m_starting_center = Vec3d::Zero(); return out; } } // namespace GUI } // namespace Slic3r